{ "cells": [ { "cell_type": "markdown", "id": "dde8b5d5-5bba-4266-8521-3e3e163bef3a", "metadata": {}, "source": [ "# Handling multi-dimensional arrays with xarray" ] }, { "cell_type": "markdown", "id": "a0d36cd0-7cdc-4e5e-922b-a1979a1c9e7b", "metadata": {}, "source": [ "## Authors & Contributors\n", "\n", "### Authors\n", "\n", "- Pier Lorenzo Marasco, Ispra (Italy), [@pl-marasco](https://github.com/pl-marasco)\n", "- Anne Fouilloux, Simula Research Laboratory (Norway), [@annefou](https://github.com/annefou)\n", "\n", "### Contributors\n", "\n", "- Alejandro Coca-Castro, The Alan Turing Institute (United Kingdom), [@acocac](https://github.com/acocac)\n", "- Guillaume Eynard-Bontemps, CNES (France), [@guillaumeeb](https://github.com/guillaumeeb)" ] }, { "cell_type": "markdown", "id": "ec37ef0f-da32-40c7-8320-467c46bfab6a", "metadata": {}, "source": [ "
\n", " Overview\n", "
\n", "
\n", " Questions\n", " \n", " Objectives\n", " \n", "
" ] }, { "cell_type": "markdown", "id": "d746c8d3-c818-4c19-bf58-1f29715d9df6", "metadata": {}, "source": [ "## Context\n", "\n", "We will be using the [Pangeo](https://pangeo.io/) open-source software stack for visualizing the Particle Matter < 2.5 μm and computing time averaged values (such as daily mean and other statistics).\n", "\n", "### Data\n", "\n", "We will be using data from [Copernicus Atmosphere Monitoring Service](https://ads.atmosphere.copernicus.eu/)\n", "and more precisely PM2.5 ([Particle Matter < 2.5 μm](https://en.wikipedia.org/wiki/Particulates#Size,_shape_and_solubility_matter)) 4 days forecast from December, 22 2021.\n", "\n", "The dataset can be downloaded from [Zenodo](https://zenodo.org/): [PM2.5 4 days forecast from December, 22 2020 retrieved from Copernicus Monitoring Service](https://zenodo.org/records/5805953)." ] }, { "cell_type": "markdown", "id": "6d69e8e9-5e58-460b-bb67-be18fd5cfd08", "metadata": {}, "source": [ "
\n", "
Comment: Remark
\n", "

This tutorial uses data on a regular latitude-longitude grid. More complex and irregular grids are not discussed in this tutorial. In addition,\n", "this tutorial is not meant to cover all the different possibilities offered by Xarrays but shows functionalities we find useful for day to day\n", "analysis.

\n", "
\n", "
\n", "
Agenda
\n", "

In this tutorial, we will cover:

\n", "
    \n", "
  1. Analysis
      \n", "
    1. Import Python packages
    2. \n", "
    \n", "
  2. \n", "
\n", "
" ] }, { "cell_type": "markdown", "id": "c341348a-77e3-47bb-aa1a-86982f930c79", "metadata": {}, "source": [ "## Setup\n", "\n", "This episode uses the following main Python packages:\n", "\n", "- xarray {cite:ps}`a-xarray-hoyer2017` with [`netCDF4`](https://pypi.org/project/h5netcdf/) and [`h5netcdf`](https://pypi.org/project/h5netcdf/) engines\n", "- pooch {cite:ps}`a-pooch-Uieda2020`\n", "- numpy {cite:ps}`a-numpy-harris2020`\n", "- cmcrameri {cite:ps}`a-cmcrameri-crameri2018`\n", "\n", "Please install these packages if they are not already available in your Python environment (see info [here](https://github.com/pangeo-data/geo-open-hack-2024/tree/main)).\n", "\n", "### Packages\n", "\n", "In this episode, Python packages are imported when we start to use them. However, for best software practices, we recommend that you install and import all the necessary libraries at the top of your Jupyter notebook." ] }, { "cell_type": "code", "execution_count": 1, "id": "dfb32910-f236-4d50-88e0-70871bba51e6", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: cmcrameri in /srv/conda/envs/notebook/lib/python3.11/site-packages (1.9)\n", "Requirement already satisfied: matplotlib in /srv/conda/envs/notebook/lib/python3.11/site-packages (from cmcrameri) (3.8.2)\n", "Requirement already satisfied: numpy in /srv/conda/envs/notebook/lib/python3.11/site-packages (from cmcrameri) (1.26.2)\n", "Requirement already satisfied: packaging in /srv/conda/envs/notebook/lib/python3.11/site-packages (from cmcrameri) (23.2)\n", "Requirement already satisfied: contourpy>=1.0.1 in /srv/conda/envs/notebook/lib/python3.11/site-packages (from matplotlib->cmcrameri) (1.2.0)\n", "Requirement already satisfied: cycler>=0.10 in /srv/conda/envs/notebook/lib/python3.11/site-packages (from matplotlib->cmcrameri) (0.12.1)\n", "Requirement already satisfied: fonttools>=4.22.0 in /srv/conda/envs/notebook/lib/python3.11/site-packages (from matplotlib->cmcrameri) (4.46.0)\n", "Requirement already satisfied: kiwisolver>=1.3.1 in /srv/conda/envs/notebook/lib/python3.11/site-packages (from matplotlib->cmcrameri) (1.4.5)\n", "Requirement already satisfied: pillow>=8 in /srv/conda/envs/notebook/lib/python3.11/site-packages (from matplotlib->cmcrameri) (10.1.0)\n", "Requirement already satisfied: pyparsing>=2.3.1 in /srv/conda/envs/notebook/lib/python3.11/site-packages (from matplotlib->cmcrameri) (3.1.1)\n", "Requirement already satisfied: python-dateutil>=2.7 in /srv/conda/envs/notebook/lib/python3.11/site-packages (from matplotlib->cmcrameri) (2.8.2)\n", "Requirement already satisfied: six>=1.5 in /srv/conda/envs/notebook/lib/python3.11/site-packages (from python-dateutil>=2.7->matplotlib->cmcrameri) (1.16.0)\n", "Note: you may need to restart the kernel to use updated packages.\n" ] } ], "source": [ "pip install cmcrameri" ] }, { "cell_type": "code", "execution_count": 2, "id": "51c76db6-f5aa-40eb-97f1-2df7cde50e83", "metadata": {}, "outputs": [], "source": [ "import xarray as xr" ] }, { "cell_type": "markdown", "id": "2d9c40c3-44c9-451f-b8ad-fec067c05932", "metadata": {}, "source": [ "### Fetch Data\n", "\n", "- For now we will fetch a netCDF file containing the near-surface temperature from one single CMIP6 model CESM2.\n", "- The file is available in a Zenodo repository. We will download it using using `pooch`, a very handy Python-based library to download and cache your data files locally (see further info [here](https://www.fatiando.org/pooch/latest/index.html))\n", "- In the [Data access and discovery](https://pangeo-data.github.io/escience-2022/pangeo101/data_discovery.html) episode, we will learn about different ways to access data, including access to remote data." ] }, { "cell_type": "code", "execution_count": 3, "id": "08ba3f1d-71ea-42ec-904f-dc2452640590", "metadata": {}, "outputs": [], "source": [ "import pooch" ] }, { "cell_type": "code", "execution_count": 4, "id": "f247c3cd-7f19-43c8-b721-6b159f401379", "metadata": { "tags": [ "hide-output" ] }, "outputs": [], "source": [ "cams_file = pooch.retrieve(\n", " url=\"https://zenodo.org/record/5805953/files/CAMS-PM2_5-20211222.netcdf\",\n", " known_hash=\"md5:c4a6bb0a5a5640fc8de2ae6f377932fc\",\n", " path=f\".\",\n", ")" ] }, { "cell_type": "markdown", "id": "3a1db255-b521-4465-9ffd-0113c48f1fd1", "metadata": {}, "source": [ "## Open and read metadata through Xarray" ] }, { "cell_type": "code", "execution_count": 5, "id": "6974bdbf-f874-4b0d-bb9b-13a0161af3b0", "metadata": {}, "outputs": [], "source": [ "cams = xr.open_dataset(cams_file)" ] }, { "cell_type": "markdown", "id": "711acf54", "metadata": {}, "source": [ "As the dataset is in the NetCDF format, Xarray automatically selects the correct engine (this happens in the background because engine='netcdf' has been automatically specified). Other common options are \"h5netcdf\" or \"zarr\".\n", "GeoTiff data can also be read, but to access it requires rioxarray, which will be quickly covered later.\n", "Supposing that you have a dataset in an unrecognised format, you can always create your own reader as a subclass of the backend entry point and pass it through the engine parameter." ] }, { "cell_type": "markdown", "id": "fac7ac28", "metadata": {}, "source": [ ":::{tip}\n", "If you get an error with the previous command, first check the location of the input file some_hash-CAMS-PM2_5-20211222.netcdf: it should have been downloaded in the same directory as your Jupyter Notebook.\n", ":::" ] }, { "cell_type": "code", "execution_count": 6, "id": "098a2be0", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:     (longitude: 700, latitude: 400, level: 1, time: 97)\n",
       "Coordinates:\n",
       "  * longitude   (longitude) float32 335.0 335.1 335.2 ... 44.75 44.85 44.95\n",
       "  * latitude    (latitude) float32 69.95 69.85 69.75 69.65 ... 30.25 30.15 30.05\n",
       "  * level       (level) float32 0.0\n",
       "  * time        (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n",
       "Data variables:\n",
       "    pm2p5_conc  (time, level, latitude, longitude) float32 ...\n",
       "Attributes:\n",
       "    title:        PM25 Air Pollutant FORECAST at the Surface\n",
       "    institution:  Data produced by Meteo France\n",
       "    source:       Data from ENSEMBLE model\n",
       "    history:      Model ENSEMBLE FORECAST\n",
       "    FORECAST:     Europe, 20211222+[0H_96H]\n",
       "    summary:      ENSEMBLE model hourly FORECAST of PM25 concentration at the...\n",
       "    project:      MACC-RAQ (http://macc-raq.gmes-atmosphere.eu)
" ], "text/plain": [ "\n", "Dimensions: (longitude: 700, latitude: 400, level: 1, time: 97)\n", "Coordinates:\n", " * longitude (longitude) float32 335.0 335.1 335.2 ... 44.75 44.85 44.95\n", " * latitude (latitude) float32 69.95 69.85 69.75 69.65 ... 30.25 30.15 30.05\n", " * level (level) float32 0.0\n", " * time (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n", "Data variables:\n", " pm2p5_conc (time, level, latitude, longitude) float32 ...\n", "Attributes:\n", " title: PM25 Air Pollutant FORECAST at the Surface\n", " institution: Data produced by Meteo France\n", " source: Data from ENSEMBLE model\n", " history: Model ENSEMBLE FORECAST\n", " FORECAST: Europe, 20211222+[0H_96H]\n", " summary: ENSEMBLE model hourly FORECAST of PM25 concentration at the...\n", " project: MACC-RAQ (http://macc-raq.gmes-atmosphere.eu)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams" ] }, { "cell_type": "markdown", "id": "0f1c3f6a", "metadata": {}, "source": [ "## What is xarray?\n", "\n", "Xarray introduces labels in the form of dimensions, coordinates and attributes on top of raw NumPy-like multi-dimensional arrays, which allows for a more intuitive, more concise, and less error-prone developer experience.\n", "\n", "### How is xarray structured?\n", "\n", "Xarray has two core data structures, which build upon and extend the core strengths of NumPy and Pandas libraries. Both data structures are fundamentally N-dimensional:\n", "\n", "- [DataArray](https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray) is the implementation of a labeled, N-dimensional array. It is an N-D generalization of a Pandas.Series. The name DataArray itself is borrowed from [Fernando Perez’s datarray project](http://fperez.org/py4science/datarray/), which prototyped a similar data structure.\n", "\n", "- [Dataset](https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset) is a multi-dimensional, in-memory array database. It is a dict-like container of DataArray objects aligned along any number of shared dimensions, and serves a similar purpose in xarray as the pandas.DataFrame.\n" ] }, { "cell_type": "markdown", "id": "fb97b357", "metadata": {}, "source": [ "## Accessing Coordinates and Data Variables " ] }, { "cell_type": "markdown", "id": "628c0446", "metadata": {}, "source": [ "DataArray, within Datasets, can be accessed through:\n", "- the dot notation like Dataset.NameofVariable \n", "- or using square brackets, like Dataset['NameofVariable'] (NameofVariable needs to be a string so use quotes or double quotes)" ] }, { "cell_type": "code", "execution_count": 7, "id": "4701e7a9", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'time' (time: 97)>\n",
       "array([              0,   3600000000000,   7200000000000,  10800000000000,\n",
       "        14400000000000,  18000000000000,  21600000000000,  25200000000000,\n",
       "        28800000000000,  32400000000000,  36000000000000,  39600000000000,\n",
       "        43200000000000,  46800000000000,  50400000000000,  54000000000000,\n",
       "        57600000000000,  61200000000000,  64800000000000,  68400000000000,\n",
       "        72000000000000,  75600000000000,  79200000000000,  82800000000000,\n",
       "        86400000000000,  90000000000000,  93600000000000,  97200000000000,\n",
       "       100800000000000, 104400000000000, 108000000000000, 111600000000000,\n",
       "       115200000000000, 118800000000000, 122400000000000, 126000000000000,\n",
       "       129600000000000, 133200000000000, 136800000000000, 140400000000000,\n",
       "       144000000000000, 147600000000000, 151200000000000, 154800000000000,\n",
       "       158400000000000, 162000000000000, 165600000000000, 169200000000000,\n",
       "       172800000000000, 176400000000000, 180000000000000, 183600000000000,\n",
       "       187200000000000, 190800000000000, 194400000000000, 198000000000000,\n",
       "       201600000000000, 205200000000000, 208800000000000, 212400000000000,\n",
       "       216000000000000, 219600000000000, 223200000000000, 226800000000000,\n",
       "       230400000000000, 234000000000000, 237600000000000, 241200000000000,\n",
       "       244800000000000, 248400000000000, 252000000000000, 255600000000000,\n",
       "       259200000000000, 262800000000000, 266400000000000, 270000000000000,\n",
       "       273600000000000, 277200000000000, 280800000000000, 284400000000000,\n",
       "       288000000000000, 291600000000000, 295200000000000, 298800000000000,\n",
       "       302400000000000, 306000000000000, 309600000000000, 313200000000000,\n",
       "       316800000000000, 320400000000000, 324000000000000, 327600000000000,\n",
       "       331200000000000, 334800000000000, 338400000000000, 342000000000000,\n",
       "       345600000000000], dtype='timedelta64[ns]')\n",
       "Coordinates:\n",
       "  * time     (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n",
       "Attributes:\n",
       "    long_name:  FORECAST time from 20211222
" ], "text/plain": [ "\n", "array([ 0, 3600000000000, 7200000000000, 10800000000000,\n", " 14400000000000, 18000000000000, 21600000000000, 25200000000000,\n", " 28800000000000, 32400000000000, 36000000000000, 39600000000000,\n", " 43200000000000, 46800000000000, 50400000000000, 54000000000000,\n", " 57600000000000, 61200000000000, 64800000000000, 68400000000000,\n", " 72000000000000, 75600000000000, 79200000000000, 82800000000000,\n", " 86400000000000, 90000000000000, 93600000000000, 97200000000000,\n", " 100800000000000, 104400000000000, 108000000000000, 111600000000000,\n", " 115200000000000, 118800000000000, 122400000000000, 126000000000000,\n", " 129600000000000, 133200000000000, 136800000000000, 140400000000000,\n", " 144000000000000, 147600000000000, 151200000000000, 154800000000000,\n", " 158400000000000, 162000000000000, 165600000000000, 169200000000000,\n", " 172800000000000, 176400000000000, 180000000000000, 183600000000000,\n", " 187200000000000, 190800000000000, 194400000000000, 198000000000000,\n", " 201600000000000, 205200000000000, 208800000000000, 212400000000000,\n", " 216000000000000, 219600000000000, 223200000000000, 226800000000000,\n", " 230400000000000, 234000000000000, 237600000000000, 241200000000000,\n", " 244800000000000, 248400000000000, 252000000000000, 255600000000000,\n", " 259200000000000, 262800000000000, 266400000000000, 270000000000000,\n", " 273600000000000, 277200000000000, 280800000000000, 284400000000000,\n", " 288000000000000, 291600000000000, 295200000000000, 298800000000000,\n", " 302400000000000, 306000000000000, 309600000000000, 313200000000000,\n", " 316800000000000, 320400000000000, 324000000000000, 327600000000000,\n", " 331200000000000, 334800000000000, 338400000000000, 342000000000000,\n", " 345600000000000], dtype='timedelta64[ns]')\n", "Coordinates:\n", " * time (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n", "Attributes:\n", " long_name: FORECAST time from 20211222" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams.time" ] }, { "cell_type": "markdown", "id": "55cbc2ca", "metadata": {}, "source": [ "`cams.time` is a one-dimensional `xarray.DataArray` with dates of type `timedelta64[ns]`" ] }, { "cell_type": "code", "execution_count": 8, "id": "e9a1e3c4", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'pm2p5_conc' (time: 97, level: 1, latitude: 400,\n",
       "                                longitude: 700)>\n",
       "[27160000 values with dtype=float32]\n",
       "Coordinates:\n",
       "  * longitude  (longitude) float32 335.0 335.1 335.2 335.4 ... 44.75 44.85 44.95\n",
       "  * latitude   (latitude) float32 69.95 69.85 69.75 69.65 ... 30.25 30.15 30.05\n",
       "  * level      (level) float32 0.0\n",
       "  * time       (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n",
       "Attributes:\n",
       "    species:        PM2.5 Aerosol\n",
       "    units:          µg/m3\n",
       "    value:          hourly values\n",
       "    standard_name:  mass_concentration_of_pm2p5_ambient_aerosol_in_air
" ], "text/plain": [ "\n", "[27160000 values with dtype=float32]\n", "Coordinates:\n", " * longitude (longitude) float32 335.0 335.1 335.2 335.4 ... 44.75 44.85 44.95\n", " * latitude (latitude) float32 69.95 69.85 69.75 69.65 ... 30.25 30.15 30.05\n", " * level (level) float32 0.0\n", " * time (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n", "Attributes:\n", " species: PM2.5 Aerosol\n", " units: µg/m3\n", " value: hourly values\n", " standard_name: mass_concentration_of_pm2p5_ambient_aerosol_in_air" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams.pm2p5_conc" ] }, { "cell_type": "markdown", "id": "ed915a07", "metadata": {}, "source": [ "`cams.pm2p5_conc` is a 4-dimensional `xarray.DataArray` with PM2.5 values of type `float32`" ] }, { "cell_type": "code", "execution_count": 9, "id": "0373cd09", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'pm2p5_conc' (time: 97, level: 1, latitude: 400,\n",
       "                                longitude: 700)>\n",
       "[27160000 values with dtype=float32]\n",
       "Coordinates:\n",
       "  * longitude  (longitude) float32 335.0 335.1 335.2 335.4 ... 44.75 44.85 44.95\n",
       "  * latitude   (latitude) float32 69.95 69.85 69.75 69.65 ... 30.25 30.15 30.05\n",
       "  * level      (level) float32 0.0\n",
       "  * time       (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n",
       "Attributes:\n",
       "    species:        PM2.5 Aerosol\n",
       "    units:          µg/m3\n",
       "    value:          hourly values\n",
       "    standard_name:  mass_concentration_of_pm2p5_ambient_aerosol_in_air
" ], "text/plain": [ "\n", "[27160000 values with dtype=float32]\n", "Coordinates:\n", " * longitude (longitude) float32 335.0 335.1 335.2 335.4 ... 44.75 44.85 44.95\n", " * latitude (latitude) float32 69.95 69.85 69.75 69.65 ... 30.25 30.15 30.05\n", " * level (level) float32 0.0\n", " * time (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n", "Attributes:\n", " species: PM2.5 Aerosol\n", " units: µg/m3\n", " value: hourly values\n", " standard_name: mass_concentration_of_pm2p5_ambient_aerosol_in_air" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams['pm2p5_conc']" ] }, { "cell_type": "markdown", "id": "a27ebaab", "metadata": {}, "source": [ "Same can be achieved for attributes and a DataArray.attrs will return a dictionary." ] }, { "cell_type": "code", "execution_count": 10, "id": "fc8a6cee", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'species': 'PM2.5 Aerosol',\n", " 'units': 'µg/m3',\n", " 'value': 'hourly values',\n", " 'standard_name': 'mass_concentration_of_pm2p5_ambient_aerosol_in_air'}" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams['pm2p5_conc'].attrs" ] }, { "cell_type": "markdown", "id": "8b7ea761", "metadata": {}, "source": [ "### Xarray and Memory usage\n", "\n", "Once a Data Array|Set is opened, xarray loads into memory only the coordinates and all the metadata needed to describe it.\n", "The underlying data, the component written into the datastore, are loaded into memory as a NumPy array, only once directly accessed; once in there, it will be kept to avoid re-readings.\n", "This brings the fact that it is good practice to have a look at the size of the data before accessing it. A classical mistake is to try loading arrays bigger than the memory with the obvious result of killing a notebook Kernel or Python process.\n", "If the dataset does not fit in the available memory, then the only option will be to load it through the chunking; later on, in the tutorial 'chunking_introduction', we will introduce this concept.\n", "\n", "As the size of the data is not too big here, we can continue without any problem. But let's first have a look at the actual size and then how it impacts the memory once loaded into it." ] }, { "cell_type": "code", "execution_count": 11, "id": "7453de03", "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 12, "id": "0b0c7d85", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "103.61 MB\n" ] } ], "source": [ "print(f'{np.round(cams.pm2p5_conc.nbytes / 1024**2, 2)} MB') # all the data is automatically loaded into memory as NumpyArray once they are accessed." ] }, { "cell_type": "code", "execution_count": 13, "id": "77ae36e2", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[[[ 0.42024356, 0.43306175, 0.43306175, ..., 1.1240219 ,\n", " 1.1100953 , 1.1711167 ],\n", " [ 0.42376786, 0.42228994, 0.4203146 , ..., 1.0781493 ,\n", " 1.0713849 , 1.0403484 ],\n", " [ 0.43263543, 0.42045674, 0.4205562 , ..., 1.0738008 ,\n", " 1.0674912 , 1.040718 ],\n", " ...,\n", " [ 4.7686515 , 4.742063 , 4.6856174 , ..., 13.320076 ,\n", " 13.320076 , 13.320076 ],\n", " [ 4.760523 , 4.5973964 , 4.596444 , ..., 13.668938 ,\n", " 13.857061 , 14.004897 ],\n", " [ 4.7297707 , 4.6450453 , 4.596444 , ..., 13.734294 ,\n", " 14.114733 , 14.217151 ]]],\n", "\n", "\n", " [[[ 0.422131 , 0.43288863, 0.4367966 , ..., 1.1655718 ,\n", " 1.1554822 , 1.1033283 ],\n", " [ 0.42667848, 0.42512947, 0.42289838, ..., 1.1445398 ,\n", " 1.1299878 , 1.1228825 ],\n", " [ 0.4322207 , 0.42198887, 0.42232996, ..., 1.1307553 ,\n", " 1.1097516 , 1.1059716 ],\n", " ...,\n", " [ 4.7942286 , 4.601387 , 4.598602 , ..., 12.46404 ,\n", " 12.46404 , 12.46404 ],\n", " [ 4.7004933 , 4.552246 , 4.551919 , ..., 12.46404 ,\n", " 12.46404 , 12.5137205 ],\n", " [ 4.7043304 , 4.59161 , 4.551919 , ..., 12.294092 ,\n", " 12.453936 , 12.902416 ]]],\n", "\n", "\n", " [[[ 0.42609787, 0.43024746, 0.4346244 , ..., 0.9865882 ,\n", " 1.0178379 , 1.0529956 ],\n", " [ 0.43139854, 0.4296648 , 0.4271779 , ..., 1.0334556 ,\n", " 1.0725212 , 1.1076789 ],\n", " [ 0.42479047, 0.4242931 , 0.42459154, ..., 1.0842452 ,\n", " 1.1154948 , 1.0923595 ],\n", " ...,\n", " [ 4.7678266 , 4.4651637 , 4.470095 , ..., 11.657135 ,\n", " 11.657135 , 11.657135 ],\n", " [ 4.6748877 , 4.4521894 , 4.4522886 , ..., 11.657135 ,\n", " 11.657135 , 11.706419 ],\n", " [ 4.6776447 , 4.5542374 , 4.4917097 , ..., 11.611789 ,\n", " 11.649291 , 12.092002 ]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[ 0.57321995, 0.5810359 , 0.5888377 , ..., 2.7216597 ,\n", " 2.784159 , 2.85446 ],\n", " [ 0.50000566, 0.50000566, 0.50000566, ..., 2.7450933 ,\n", " 2.8075926 , 2.8935256 ],\n", " [ 0.50000566, 0.50000566, 0.50000566, ..., 2.6435282 ,\n", " 2.6982117 , 2.768527 ],\n", " ...,\n", " [ 4.0881042 , 3.9690316 , 4.1219263 , ..., 8.822366 ,\n", " 8.876935 , 8.929686 ],\n", " [ 4.15535 , 4.363454 , 4.3675466 , ..., 9.40069 ,\n", " 9.604076 , 9.632611 ],\n", " [ 4.3675466 , 4.3675466 , 4.3675466 , ..., 9.696504 ,\n", " 10.013576 , 10.074853 ]]],\n", "\n", "\n", " [[[ 0.50926936, 0.53270304, 0.548335 , ..., 2.743642 ,\n", " 2.7983253 , 2.8686407 ],\n", " [ 0.54735446, 0.5316088 , 0.5561367 , ..., 2.751458 ,\n", " 2.8139575 , 2.8998904 ],\n", " [ 0.5000039 , 0.5000039 , 0.5000039 , ..., 2.6186433 ,\n", " 2.6889586 , 2.7670758 ],\n", " ...,\n", " [ 4.012103 , 3.9297085 , 3.8763325 , ..., 7.403509 ,\n", " 7.445005 , 7.572675 ],\n", " [ 3.9674525 , 3.9496036 , 3.9531279 , ..., 7.9029355 ,\n", " 8.055048 , 8.2472925 ],\n", " [ 3.9531279 , 3.9531279 , 3.9531279 , ..., 8.190677 ,\n", " 8.524234 , 8.813909 ]]],\n", "\n", "\n", " [[[ 0.500001 , 0.500001 , 0.500001 , ..., 2.7360647 ,\n", " 2.7907553 , 2.8610635 ],\n", " [ 0.51731694, 0.51731694, 0.51731694, ..., 2.696999 ,\n", " 2.7751305 , 2.8610635 ],\n", " [ 0.500001 , 0.500001 , 0.500001 , ..., 2.5329418 ,\n", " 2.6266909 , 2.728256 ],\n", " ...,\n", " [ 3.9130645 , 3.8914356 , 3.8592055 , ..., 6.9082866 ,\n", " 6.61145 , 6.622023 ],\n", " [ 3.9357026 , 3.7816854 , 3.7221985 , ..., 7.2744718 ,\n", " 7.0306134 , 7.076543 ],\n", " [ 3.9141445 , 3.7201238 , 3.7152212 , ..., 7.353484 ,\n", " 7.3293824 , 7.501277 ]]]], dtype=float32)" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams.pm2p5_conc.data" ] }, { "cell_type": "markdown", "id": "2299a7a5", "metadata": {}, "source": [ "## Renaming Coordinates and Data Variables " ] }, { "cell_type": "markdown", "id": "f67b002a", "metadata": {}, "source": [ "It may be useful to rename variables or coordinates to more common ones. It is not always necessary because coordinate and variable names are fully standardized e.g. most netCDF climate and forecast data follow [CF-conventions](https://cfconventions.org/). \n", "\n", "CAMS data do not fully follow CF-Conventions.\n", "\n", "We will therefore show you how you can rename coordinates and/or variables and revert back our change." ] }, { "cell_type": "code", "execution_count": 14, "id": "ec650690", "metadata": {}, "outputs": [], "source": [ "cams = cams.rename(longitude='lon', latitude='lat')" ] }, { "cell_type": "code", "execution_count": 15, "id": "5ca93e2e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:     (lon: 700, lat: 400, level: 1, time: 97)\n",
       "Coordinates:\n",
       "  * lon         (lon) float32 335.0 335.1 335.2 335.4 ... 44.75 44.85 44.95\n",
       "  * lat         (lat) float32 69.95 69.85 69.75 69.65 ... 30.25 30.15 30.05\n",
       "  * level       (level) float32 0.0\n",
       "  * time        (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n",
       "Data variables:\n",
       "    pm2p5_conc  (time, level, lat, lon) float32 0.4202 0.4331 ... 7.329 7.501\n",
       "Attributes:\n",
       "    title:        PM25 Air Pollutant FORECAST at the Surface\n",
       "    institution:  Data produced by Meteo France\n",
       "    source:       Data from ENSEMBLE model\n",
       "    history:      Model ENSEMBLE FORECAST\n",
       "    FORECAST:     Europe, 20211222+[0H_96H]\n",
       "    summary:      ENSEMBLE model hourly FORECAST of PM25 concentration at the...\n",
       "    project:      MACC-RAQ (http://macc-raq.gmes-atmosphere.eu)
" ], "text/plain": [ "\n", "Dimensions: (lon: 700, lat: 400, level: 1, time: 97)\n", "Coordinates:\n", " * lon (lon) float32 335.0 335.1 335.2 335.4 ... 44.75 44.85 44.95\n", " * lat (lat) float32 69.95 69.85 69.75 69.65 ... 30.25 30.15 30.05\n", " * level (level) float32 0.0\n", " * time (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n", "Data variables:\n", " pm2p5_conc (time, level, lat, lon) float32 0.4202 0.4331 ... 7.329 7.501\n", "Attributes:\n", " title: PM25 Air Pollutant FORECAST at the Surface\n", " institution: Data produced by Meteo France\n", " source: Data from ENSEMBLE model\n", " history: Model ENSEMBLE FORECAST\n", " FORECAST: Europe, 20211222+[0H_96H]\n", " summary: ENSEMBLE model hourly FORECAST of PM25 concentration at the...\n", " project: MACC-RAQ (http://macc-raq.gmes-atmosphere.eu)" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams" ] }, { "cell_type": "markdown", "id": "536a807b-5c6c-43e7-8b39-0097909632a6", "metadata": {}, "source": [ "## Shift longitude from 0,360 to -180,180" ] }, { "cell_type": "code", "execution_count": 16, "id": "33800746-3922-4bcb-8478-446c62cdba7b", "metadata": {}, "outputs": [], "source": [ "cams.coords['lon'] = (cams['lon'] + 180) % 360 - 180" ] }, { "cell_type": "markdown", "id": "c28bcd77", "metadata": {}, "source": [ "## Selection methods\n", "\n", "As underneath DataArrays are Numpy Array objects (that implement the standard Python x[obj] (x: array, obj: int,slice) syntax). Their data can be accessed through the same approach of numpy indexing." ] }, { "cell_type": "code", "execution_count": 17, "id": "cc3c889d", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'pm2p5_conc' ()>\n",
       "array(2.396931, dtype=float32)\n",
       "Coordinates:\n",
       "    lat      float32 59.95\n",
       "    level    float32 0.0\n",
       "    time     timedelta64[ns] 00:00:00\n",
       "    lon      float32 -14.95\n",
       "Attributes:\n",
       "    species:        PM2.5 Aerosol\n",
       "    units:          µg/m3\n",
       "    value:          hourly values\n",
       "    standard_name:  mass_concentration_of_pm2p5_ambient_aerosol_in_air
" ], "text/plain": [ "\n", "array(2.396931, dtype=float32)\n", "Coordinates:\n", " lat float32 59.95\n", " level float32 0.0\n", " time timedelta64[ns] 00:00:00\n", " lon float32 -14.95\n", "Attributes:\n", " species: PM2.5 Aerosol\n", " units: µg/m3\n", " value: hourly values\n", " standard_name: mass_concentration_of_pm2p5_ambient_aerosol_in_air" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams.pm2p5_conc[0,0,100,100]" ] }, { "cell_type": "markdown", "id": "b2a17eae", "metadata": {}, "source": [ "or slicing" ] }, { "cell_type": "code", "execution_count": 18, "id": "aa68d9d8", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'pm2p5_conc' (lat: 10, lon: 10)>\n",
       "array([[2.396931, 2.40307 , 2.406154, 2.408797, 2.415234, 2.418361, 2.414907,\n",
       "        2.408982, 2.398707, 2.388873],\n",
       "       [2.175199, 2.175696, 2.172883, 2.173877, 2.177146, 2.17976 , 2.219366,\n",
       "        2.337629, 2.281311, 2.306678],\n",
       "       [2.153712, 2.11665 , 2.083326, 2.175028, 2.317506, 2.509566, 2.59864 ,\n",
       "        2.742937, 2.716505, 2.692815],\n",
       "       [2.673005, 2.624574, 2.577082, 2.55173 , 2.527671, 2.507051, 2.495241,\n",
       "        2.491348, 2.499505, 2.51255 ],\n",
       "       [3.034373, 3.064997, 3.083713, 3.099743, 3.114579, 3.122835, 3.130595,\n",
       "        3.134872, 3.066902, 3.080857],\n",
       "       [2.827477, 2.889905, 2.940652, 3.008623, 3.070142, 3.122423, 3.16949 ,\n",
       "        3.204718, 3.228834, 3.248346],\n",
       "       [2.72496 , 2.726921, 2.744543, 2.776133, 2.823825, 2.872682, 2.926299,\n",
       "        3.074007, 3.489817, 3.465331],\n",
       "       [2.830262, 2.818837, 2.809443, 2.803788, 2.796654, 3.25818 , 3.697267,\n",
       "        3.924114, 3.825889, 3.679787],\n",
       "       [4.127571, 3.362629, 3.57602 , 3.699882, 3.674302, 3.445621, 3.212406,\n",
       "        3.258507, 3.308671, 3.361635],\n",
       "       [4.588827, 4.447983, 4.203201, 3.700336, 3.73332 , 3.784365, 3.837968,\n",
       "        3.880246, 3.91303 , 3.947676]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 59.95 59.85 59.75 59.65 ... 59.35 59.25 59.15 59.05\n",
       "    level    float32 0.0\n",
       "    time     timedelta64[ns] 00:00:00\n",
       "  * lon      (lon) float32 -14.95 -14.85 -14.75 -14.65 ... -14.25 -14.15 -14.05\n",
       "Attributes:\n",
       "    species:        PM2.5 Aerosol\n",
       "    units:          µg/m3\n",
       "    value:          hourly values\n",
       "    standard_name:  mass_concentration_of_pm2p5_ambient_aerosol_in_air
" ], "text/plain": [ "\n", "array([[2.396931, 2.40307 , 2.406154, 2.408797, 2.415234, 2.418361, 2.414907,\n", " 2.408982, 2.398707, 2.388873],\n", " [2.175199, 2.175696, 2.172883, 2.173877, 2.177146, 2.17976 , 2.219366,\n", " 2.337629, 2.281311, 2.306678],\n", " [2.153712, 2.11665 , 2.083326, 2.175028, 2.317506, 2.509566, 2.59864 ,\n", " 2.742937, 2.716505, 2.692815],\n", " [2.673005, 2.624574, 2.577082, 2.55173 , 2.527671, 2.507051, 2.495241,\n", " 2.491348, 2.499505, 2.51255 ],\n", " [3.034373, 3.064997, 3.083713, 3.099743, 3.114579, 3.122835, 3.130595,\n", " 3.134872, 3.066902, 3.080857],\n", " [2.827477, 2.889905, 2.940652, 3.008623, 3.070142, 3.122423, 3.16949 ,\n", " 3.204718, 3.228834, 3.248346],\n", " [2.72496 , 2.726921, 2.744543, 2.776133, 2.823825, 2.872682, 2.926299,\n", " 3.074007, 3.489817, 3.465331],\n", " [2.830262, 2.818837, 2.809443, 2.803788, 2.796654, 3.25818 , 3.697267,\n", " 3.924114, 3.825889, 3.679787],\n", " [4.127571, 3.362629, 3.57602 , 3.699882, 3.674302, 3.445621, 3.212406,\n", " 3.258507, 3.308671, 3.361635],\n", " [4.588827, 4.447983, 4.203201, 3.700336, 3.73332 , 3.784365, 3.837968,\n", " 3.880246, 3.91303 , 3.947676]], dtype=float32)\n", "Coordinates:\n", " * lat (lat) float32 59.95 59.85 59.75 59.65 ... 59.35 59.25 59.15 59.05\n", " level float32 0.0\n", " time timedelta64[ns] 00:00:00\n", " * lon (lon) float32 -14.95 -14.85 -14.75 -14.65 ... -14.25 -14.15 -14.05\n", "Attributes:\n", " species: PM2.5 Aerosol\n", " units: µg/m3\n", " value: hourly values\n", " standard_name: mass_concentration_of_pm2p5_ambient_aerosol_in_air" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams.pm2p5_conc[0, 0, 100:110, 100:110]" ] }, { "cell_type": "markdown", "id": "4029e12c", "metadata": {}, "source": [ "As it is not easy to remember the order of dimensions, Xarray really helps by making it possible to select the position using names:\n", "\n", "- `.isel` -> selection based on positional index\n", "- `.sel` -> selection based on coordinate values" ] }, { "cell_type": "markdown", "id": "eabe47e9", "metadata": {}, "source": [ "We first check the number of elements in each coordinate of the `pm2p5_conc` Data Variable using the built-in method sizes. Same result can be achieved querying each coordinate using the Python built-in function `len`." ] }, { "cell_type": "code", "execution_count": 19, "id": "0ff0f183", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Frozen({'time': 97, 'level': 1, 'lat': 400, 'lon': 700})" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams.pm2p5_conc.sizes" ] }, { "cell_type": "code", "execution_count": 20, "id": "be3fa61d", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'pm2p5_conc' ()>\n",
       "array(2.396931, dtype=float32)\n",
       "Coordinates:\n",
       "    lat      float32 59.95\n",
       "    level    float32 0.0\n",
       "    time     timedelta64[ns] 00:00:00\n",
       "    lon      float32 -14.95\n",
       "Attributes:\n",
       "    species:        PM2.5 Aerosol\n",
       "    units:          µg/m3\n",
       "    value:          hourly values\n",
       "    standard_name:  mass_concentration_of_pm2p5_ambient_aerosol_in_air
" ], "text/plain": [ "\n", "array(2.396931, dtype=float32)\n", "Coordinates:\n", " lat float32 59.95\n", " level float32 0.0\n", " time timedelta64[ns] 00:00:00\n", " lon float32 -14.95\n", "Attributes:\n", " species: PM2.5 Aerosol\n", " units: µg/m3\n", " value: hourly values\n", " standard_name: mass_concentration_of_pm2p5_ambient_aerosol_in_air" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams.pm2p5_conc.isel(time=0,level=0, lat=100, lon=100) # same as tas_ds.tas[0,0,100,100]" ] }, { "cell_type": "markdown", "id": "df820084", "metadata": {}, "source": [ "The more common way to select a point is through the labeled coordinate using the `.sel` method." ] }, { "cell_type": "code", "execution_count": 21, "id": "c71a659b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'pm2p5_conc' (level: 1, lat: 400, lon: 700)>\n",
       "array([[[0.500001, 0.500001, ..., 1.419116, 1.425483],\n",
       "        [0.500001, 0.500001, ..., 1.238894, 1.257112],\n",
       "        ...,\n",
       "        [2.416178, 2.482116, ..., 9.897312, 9.944606],\n",
       "        [2.588073, 2.540324, ..., 9.613549, 9.609912]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 69.95 69.85 69.75 69.65 ... 30.35 30.25 30.15 30.05\n",
       "  * level    (level) float32 0.0\n",
       "    time     timedelta64[ns] 2 days\n",
       "  * lon      (lon) float32 -24.95 -24.85 -24.75 -24.65 ... 44.75 44.85 44.95\n",
       "Attributes:\n",
       "    species:        PM2.5 Aerosol\n",
       "    units:          µg/m3\n",
       "    value:          hourly values\n",
       "    standard_name:  mass_concentration_of_pm2p5_ambient_aerosol_in_air
" ], "text/plain": [ "\n", "array([[[0.500001, 0.500001, ..., 1.419116, 1.425483],\n", " [0.500001, 0.500001, ..., 1.238894, 1.257112],\n", " ...,\n", " [2.416178, 2.482116, ..., 9.897312, 9.944606],\n", " [2.588073, 2.540324, ..., 9.613549, 9.609912]]], dtype=float32)\n", "Coordinates:\n", " * lat (lat) float32 69.95 69.85 69.75 69.65 ... 30.35 30.25 30.15 30.05\n", " * level (level) float32 0.0\n", " time timedelta64[ns] 2 days\n", " * lon (lon) float32 -24.95 -24.85 -24.75 -24.65 ... 44.75 44.85 44.95\n", "Attributes:\n", " species: PM2.5 Aerosol\n", " units: µg/m3\n", " value: hourly values\n", " standard_name: mass_concentration_of_pm2p5_ambient_aerosol_in_air" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams.pm2p5_conc.sel(time=np.timedelta64(2,'D'))" ] }, { "cell_type": "markdown", "id": "f152eac9", "metadata": {}, "source": [ "Time is easy to be used as there is a 1 to 1 correspondence with values in the index, float values are not that easy to be used and a small discrepancy can make a big difference in terms of results." ] }, { "cell_type": "markdown", "id": "e3884097", "metadata": {}, "source": [ "\n", "Coordinates are always affected by precision issues; the best option to quickly get a point over the coordinates is to set the sampling method (method='') that will search for the closest point according to the specified one.\n", "\n", "Options for the method are:\n", "- pad / **f**fill: propagate last valid index value forward\n", "- backfill / **b**fill: propagate next valid index value backward\n", "- nearest: use nearest valid index value\n", "\n", "Another important parameter that can be set is the tolerance that specifies the distance between the requested and the target (so that abs(index\\[indexer] - target) <= tolerance) from [documentation](https://xarray.pydata.org/en/v0.17.0/generated/xarray.DataArray.sel.html#:~:text=xarray.DataArray.sel%20%C2%B6%20DataArray.sel%28indexers%3DNone%2C%20method%3DNone%2C%20tolerance%3DNone%2C%20drop%3DFalse%2C%20%2A%2Aindexers_kwargs%29%20%C2%B6,this%20method%20should%20use%20labels%20instead%20of%20integers.)." ] }, { "cell_type": "code", "execution_count": 22, "id": "de3b813c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:     (level: 1, time: 97)\n",
       "Coordinates:\n",
       "    lat         float32 46.35\n",
       "  * level       (level) float32 0.0\n",
       "  * time        (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n",
       "    lon         float32 8.75\n",
       "Data variables:\n",
       "    pm2p5_conc  (time, level) float32 5.469 5.207 5.003 ... 4.19 4.119 4.017\n",
       "Attributes:\n",
       "    title:        PM25 Air Pollutant FORECAST at the Surface\n",
       "    institution:  Data produced by Meteo France\n",
       "    source:       Data from ENSEMBLE model\n",
       "    history:      Model ENSEMBLE FORECAST\n",
       "    FORECAST:     Europe, 20211222+[0H_96H]\n",
       "    summary:      ENSEMBLE model hourly FORECAST of PM25 concentration at the...\n",
       "    project:      MACC-RAQ (http://macc-raq.gmes-atmosphere.eu)
" ], "text/plain": [ "\n", "Dimensions: (level: 1, time: 97)\n", "Coordinates:\n", " lat float32 46.35\n", " * level (level) float32 0.0\n", " * time (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n", " lon float32 8.75\n", "Data variables:\n", " pm2p5_conc (time, level) float32 5.469 5.207 5.003 ... 4.19 4.119 4.017\n", "Attributes:\n", " title: PM25 Air Pollutant FORECAST at the Surface\n", " institution: Data produced by Meteo France\n", " source: Data from ENSEMBLE model\n", " history: Model ENSEMBLE FORECAST\n", " FORECAST: Europe, 20211222+[0H_96H]\n", " summary: ENSEMBLE model hourly FORECAST of PM25 concentration at the...\n", " project: MACC-RAQ (http://macc-raq.gmes-atmosphere.eu)" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams.sel(lat=46.3, lon=8.8, method='nearest')" ] }, { "cell_type": "markdown", "id": "69292a19", "metadata": {}, "source": [ ":::{warning}\n", "To select a single real value without specifying a method, you would need to specify the exact encoded value; not the one you see when printed.\n", ":::" ] }, { "cell_type": "code", "execution_count": 23, "id": "90e5ebea", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "-14.95001220703125" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams.isel(lon=100).lon.values.item()" ] }, { "cell_type": "code", "execution_count": 24, "id": "5b91cce4", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "59.95000076293945" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams.isel(lat=100).lat.values.item()" ] }, { "cell_type": "code", "execution_count": 25, "id": "586339f1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:     (level: 1, time: 97)\n",
       "Coordinates:\n",
       "    lat         float32 59.95\n",
       "  * level       (level) float32 0.0\n",
       "  * time        (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n",
       "    lon         float32 -14.95\n",
       "Data variables:\n",
       "    pm2p5_conc  (time, level) float32 2.397 2.281 2.223 ... 2.175 2.192 2.274\n",
       "Attributes:\n",
       "    title:        PM25 Air Pollutant FORECAST at the Surface\n",
       "    institution:  Data produced by Meteo France\n",
       "    source:       Data from ENSEMBLE model\n",
       "    history:      Model ENSEMBLE FORECAST\n",
       "    FORECAST:     Europe, 20211222+[0H_96H]\n",
       "    summary:      ENSEMBLE model hourly FORECAST of PM25 concentration at the...\n",
       "    project:      MACC-RAQ (http://macc-raq.gmes-atmosphere.eu)
" ], "text/plain": [ "\n", "Dimensions: (level: 1, time: 97)\n", "Coordinates:\n", " lat float32 59.95\n", " * level (level) float32 0.0\n", " * time (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n", " lon float32 -14.95\n", "Data variables:\n", " pm2p5_conc (time, level) float32 2.397 2.281 2.223 ... 2.175 2.192 2.274\n", "Attributes:\n", " title: PM25 Air Pollutant FORECAST at the Surface\n", " institution: Data produced by Meteo France\n", " source: Data from ENSEMBLE model\n", " history: Model ENSEMBLE FORECAST\n", " FORECAST: Europe, 20211222+[0H_96H]\n", " summary: ENSEMBLE model hourly FORECAST of PM25 concentration at the...\n", " project: MACC-RAQ (http://macc-raq.gmes-atmosphere.eu)" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams.sel(lat=59.95000076293945, lon=-14.95001220703125)" ] }, { "cell_type": "markdown", "id": "98c41084", "metadata": {}, "source": [ "That is why we use a `method`! It makes your life easier to deal with inexact matches." ] }, { "cell_type": "markdown", "id": "1ded4da9", "metadata": {}, "source": [ "As the exercise is focused on an Area Of Interest, this can be obtained through a bounding box defined with slices." ] }, { "cell_type": "code", "execution_count": 26, "id": "90629284", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'pm2p5_conc' (time: 97, level: 1, lat: 155, lon: 450)>\n",
       "array([[[[ 0.855664, ...,  0.865896],\n",
       "         ...,\n",
       "         [14.878069, ...,  7.30256 ]]],\n",
       "\n",
       "\n",
       "       ...,\n",
       "\n",
       "\n",
       "       [[[ 1.36206 , ...,  2.526661],\n",
       "         ...,\n",
       "         [ 1.954816, ...,  6.040956]]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 69.95 69.85 69.75 69.65 ... 54.85 54.75 54.65 54.55\n",
       "  * level    (level) float32 0.0\n",
       "  * time     (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n",
       "  * lon      (lon) float32 -2.45 -2.35 -2.25 -2.15 ... 42.15 42.25 42.35 42.45\n",
       "Attributes:\n",
       "    species:        PM2.5 Aerosol\n",
       "    units:          µg/m3\n",
       "    value:          hourly values\n",
       "    standard_name:  mass_concentration_of_pm2p5_ambient_aerosol_in_air
" ], "text/plain": [ "\n", "array([[[[ 0.855664, ..., 0.865896],\n", " ...,\n", " [14.878069, ..., 7.30256 ]]],\n", "\n", "\n", " ...,\n", "\n", "\n", " [[[ 1.36206 , ..., 2.526661],\n", " ...,\n", " [ 1.954816, ..., 6.040956]]]], dtype=float32)\n", "Coordinates:\n", " * lat (lat) float32 69.95 69.85 69.75 69.65 ... 54.85 54.75 54.65 54.55\n", " * level (level) float32 0.0\n", " * time (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n", " * lon (lon) float32 -2.45 -2.35 -2.25 -2.15 ... 42.15 42.25 42.35 42.45\n", "Attributes:\n", " species: PM2.5 Aerosol\n", " units: µg/m3\n", " value: hourly values\n", " standard_name: mass_concentration_of_pm2p5_ambient_aerosol_in_air" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams_AOI = cams.pm2p5_conc.sel(lat=slice(71.5, 54.5), lon=slice(-2.5,42.5))\n", "cams_AOI" ] }, { "cell_type": "markdown", "id": "067dc4cf", "metadata": {}, "source": [ ":::{tip} the values for `lat` and `lon` need to be selected in the order shown in the coordinate section (here in increasing order) and not always in increasing order?\n", "**You need to use the same order as the corresponding DataArray**.\n", ":::" ] }, { "cell_type": "markdown", "id": "1ff8090c", "metadata": {}, "source": [ "## Plotting\n", " Plotting data can easily be obtained through matplotlib.pyplot back-end [matplotlib documentation](https://matplotlib.org/stable/index.html)." ] }, { "cell_type": "code", "execution_count": 27, "id": "a262ec7b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAHFCAYAAAD7ZFORAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZwUxdnHf909x+5yLPelCGsEEQRBURRMAA0gohjxxgiCIgQNl4LiiQQWQYPgERAPQI23YNA3KqiAUTSISkREVEBBBJH72N2Z6e56/+ipnuru6p7umdmDpb6fz+puH1XVxwxVz/N7nkcihBAIBAKBQCAQVEPkyh6AQCAQCAQCQXkhJjoCgUAgEAiqLWKiIxAIBAKBoNoiJjoCgUAgEAiqLWKiIxAIBAKBoNoiJjoCgUAgEAiqLWKiIxAIBAKBoNoiJjoCgUAgEAiqLWKiIxAIBAKBoNoiJjoVxIIFCyBJEn788cfKHgpWrFgBSZKwYsWKCu/70UcfRZs2bRCNRlFUVIT7778fiUTC17mJRAL3338/WrZsiWg0ijZt2uDRRx/1de71118PSZIgSRJOPfXUbC7BwZgxY8y2a9asmVEbq1atwqRJk7B//37Hvh49eqBHjx7ZDbKKk817waMqfd54bN68GQMGDECdOnVQs2ZN9OrVC1988QX32JdeegkdO3ZEXl4emjVrhjFjxuDw4cPHfF8CgW+IoEKYP38+AUC2bNlS2UMhy5cvJwDI8uXLK7TfKVOmEEmSyMSJE8ny5cvJjBkzSCQSIcOGDfN1/o033kii0SiZMWMGWb58ObnjjjuIJElk6tSpac8dPHgwadKkCfnkk0/I//73v2wvxcKPP/5IPvnkE3LhhReSGjVqZNTGgw8+6Pp+rF+/nqxfvz7LUVZdsn0veFSlz5udXbt2kWbNmpF27dqR119/nfzf//0fOffcc0mtWrXIt99+azn2+eefJwDIjTfeSD744AMyd+5cUlhYSHr16nVM9yUQBEFMdCqIqvTFWxkTnd27d5O8vDxy0003WbZPnTqVSJKU9h/yr7/+mkiSRIqLiy3bhw0bRvLz88mePXs8zx88eDBp0aJFRmP3y+DBg8tlolOdyfa9cKMqfd7sjB8/noTDYfLjjz+a2w4cOEAaNGhArrzySnObqqqkadOmpHfv3pbz//nPfxIA5N///vcx25dAEAThuqpk3nvvPZx//vmoXbs2CgoK0K1bN7z//vvm/jfeeAOSJFm2UebMmQNJkvDVV1+Z29asWYP+/fujXr16yMvLQ6dOnfDKK69UyLV48c4776CsrAxDhgyxbB8yZAgIIXjjjTc8z3/jjTdACOGeX1painfeeSfjsUmShFtuuQXz58/HySefjPz8fHTu3BmffvopCCF48MEHUVRUhJo1a+K8887DDz/8kHFfPCZNmoTx48cDAIqKikw3GHUt2l1XP/74IyRJwoMPPojp06ejZcuWyM/PR48ePfDdd98hkUjgjjvuQLNmzVBYWIhLL70Uu3btcvT78ssv45xzzkGNGjVQs2ZN9OnTB19++WVOry0d2b4XAPDpp5+iW7dupgtk4sSJXLfXyy+/jN69e6Np06bIz8/HKaecgjvuuANHjhwxj3nuuecgSRI++eQTx/mTJ09GOBzGL7/8AgD48ssvcdFFF6FRo0aIRqNo1qwZ+vXrh59//tlzvIsXL8Z5552HFi1amNtq166NAQMG4M0334SqquZ17dixw3FvrrjiCtSsWROLFy9Oe2+qa18CQRDERKcSef7559G7d2/Url0bCxcuxCuvvIJ69eqhT58+5sSGfpHOnz/fcf6CBQtw+umno0OHDgCA5cuXo1u3bti/fz/mzp2Lf/3rX+jYsSOuuuoqLFiwIKMxqqrq64cQ4tnO119/DQBo3769ZXvTpk3RoEEDc7/X+Q0bNkSTJk0s2+m1pzs/HW+99RaeeuopPPDAA3jxxRdx6NAh9OvXD7feeis+/vhjPPbYY5g3bx6++eYbXHbZZWmvNwg33ngj/vrXvwIAFi1ahE8++QSffPIJTj/9dM/zHn/8cXz88cd4/PHH8dRTT+Hbb7/FxRdfjBtuuAG//fYbnnnmGcyYMQPvvfcebrzxRsu5xcXFuOaaa9C2bVu88soreO6553Do0CH8/ve/xzfffJN2zFXlvfjmm29w/vnnY//+/ViwYAHmzp2LL7/8ElOmTHEc+/333+PCCy/E008/jXfeeQdjxozBK6+8gosvvtg85qqrrkKTJk3w+OOPO673iSeewKWXXopmzZrhyJEj6NWrF3799Vc8/vjjWLZsGWbNmoUTTjgBhw4dch1vaWkpNm3aZL63LB06dEBpaSk2b95suTf2Y8PhMNq0aeO4N5IkWSbE1aUvgSBbQpU9gGOVkpISjB49GhdddJFlBXPhhRfi9NNPx5133on//ve/CIVC+POf/4w5c+bgwIEDKCwsBABs2LABq1evtohxR44ciXbt2uGDDz5AKGQ82j59+mD37t248847MWjQIMiy/7ntjz/+iKKiIl/HLl++3FMwu2fPHkSjUdSoUcOxr169etizZ49n+3v27EG9evUc22vUqIFIJJL2/HTEYjEsXbrUHJ8kSfjTn/6E5cuX44svvoAkSQCA3377DWPGjMHXX3/t+Mc5U44//niccMIJAIBOnTqhZcuWvs6rU6cO3njjDfOZ7t69G2PGjEGbNm3wr3/9yzzu22+/xaxZs3Dw4EHUrl0b27Ztw3333YdbbrkFjzzyiHlcr1690KpVK9x///14+eWXXfutSu/F5MmTQQjBBx98gMaNGwMA+vXrxxWc33333ebvhBB069YNp5xyCrp3746vvvoKHTp0QCQSwfDhwzFt2jTMnDkTjRo1AmBMQH/55RfccsstAIx7umfPHjz99NO45JJLzHavvPJKz/Hu27cPhBDuu0y30Wum/3c71i60VhQFiqJUu74EgmwRE51KYtWqVdi7dy8GDx5smnQpF1xwAWbMmIEjR46gRo0aGDp0KGbOnImXX34ZN910EwBg/vz5iEajGDhwIADghx9+wLfffouHHnoIACxtXnjhhXjrrbewceNGnHLKKb7H2KxZM3z22We+jj355JPTHkMnC0H35ep8L3r27Gn5x5bep759+1raptt/+umnnE10MuXCCy+0TFzp2Pr162c5jm7funUrTj31VLz77rtQVRWDBg2yvCd5eXno3r07li9f7tlvVXovli9fjvPPP9+c5ADGP8JXXXUV7r//fsuxmzdvxt13340PPvgAu3btslibNmzYYFoY/vKXv2DatGl48skncddddwEAHnvsMbRv3x5/+MMfAAAnnXQS6tati9tvvx07duzAH/7wB7Rt2zbttWZyzW7H2rfbv0eqS18CQbaIiU4l8euvvwIALr/8ctdj9u7dixo1aqBdu3Y488wzMX/+fNx0003QNA3PP/88LrnkEnNVRNu77bbbcNttt3Hb2717d6AxRiIRdOzY0dex7OqOR/369VFWVoaSkhIUFBRY9u3duxdnnHFG2vPXrl3r2H7kyBHE43Hu6jAI9vMjkYjn9rKysqz6ywWZjpm+K2eeeSa33XRWv6r0XuzZs8fhzgTg2Hb48GH8/ve/R15eHqZMmYLWrVujoKAA27Ztw4ABA1BaWmoe27hxY1x11VV44okncMcdd2D9+vX4z3/+gyeeeMI8prCwECtXrsTUqVNx5513Yt++fWjatCmGDRuGu+++G+FwmDveunXrQpIkrqVq7969AFLPr379+uY1shM5emy6d7669iUQBEVMdCqJBg0aADDyh5x99tncY9gvgSFDhmDkyJHYsGEDNm/e7BDz0fYmTpyIAQMGcNvzs7pmyaWLglo/1q1bhy5dupjbd+7cid27d6fNbdO+fXu89NJL2Llzp+UfsXXr1gFAznPjVGfou/Laa69ZhKN+qUrvRf369bFz507Hdvu2Dz74AL/88gtWrFiB7t27m9t5eYsAYPTo0Xjuuefwr3/9C++88w7q1KmDa6+91jH2l156CYQQfPXVV1iwYAEmT56M/Px83HHHHdx28/PzcdJJJ5nvLcu6deuQn5+PE0880WyfbmetRaqq4ttvv8U111zD7aO69yUQBEVMdCqJbt26oU6dOvjmm29Mv78X11xzDcaNG4cFCxZg8+bNOO6449C7d29z/8knn4xWrVrhf//7H4qLi3Myxly6KC644ALk5eVhwYIFln/QaGK3P/3pT57nX3LJJbj77ruxcOFC3H777Zbz8/PzccEFF/gaZ1UlGo0CgMWyUF706dMHoVAImzZtwmWXXRb4/Kr0XvTs2RNLlizBr7/+ai4MNE1zaIyoO4TeZwprpWE544wz0LVrV0yfPh1ff/01brrpJq6OiLZ92mmn4eGHH8aCBQtcE+RRLr30UsyaNQvbtm1D8+bNAQCHDh3CokWL0L9/f1Nf16VLFzRt2hQLFizAVVddZZ7/2muv4fDhw64LmmOhL4EgEJUR034swsvr8dxzzxFZlslVV11FXn31VbJy5Ury2muvkXvuuYeMGDHC0cY111xDGjVqRCKRCLnzzjsd+z/44AMSjUZJ7969yQsvvEBWrlxJFi9eTIqLi8nll19uHlfZCQPvvPNOsmLFCvLggw+SaDTqSAy3cOFCoigKWbhwoWU7TRj44IMPkhUrVpA777wzUMJAtzw6AMjNN99s2bZlyxYCgDz44IOW7fTevfrqq9w+7Hl0Bg8e7CufC213+PDhZNWqVeSzzz4jBw8eJIQQ0r17d9K9e/eMx0bfvc8++8zcVlxcTEKhEBk+fDhZvHgxWbFiBXn55ZfJrbfeSu69917PseYav+8Fj3Xr1pH8/HzStm1b8tJLL5ElS5aQPn36kObNm1vu++7du0ndunXJaaedRhYtWkTefPNNcvXVV5NWrVoRAGT+/PmOtl9++WUCgEiSRL777jvLvjfffJP07duXPPHEE2TZsmVk6dKlZMSIEQQAmTdvnueYd+3aRZo2bUrat29PFi9eTP7973+TP/zhD6RWrVpkw4YNlmOfe+45AoDcdNNNZPny5WTevHmkTp063MR6iqKQ8847r9r1JRBki5joVBBuCcxWrlxJ+vXrR+rVq0fC4TA57rjjSL9+/bj/kC5dupQAIAAcX7yU//3vf+TKK68kjRo1IuFwmDRp0oScd955ZO7cueYxlTXRIYSQ2bNnk9atW5NIJEJOOOEEct9995F4PG45ht4r+z8+8Xic3HfffeSEE04gkUiEtG7dmjzyyCO++q2sic5ll11G8vPzyb59+9KOceLEiaRZs2ZElmXL8ymPiQ4hhLzxxhukZ8+epHbt2iQajZIWLVqQyy+/nLz33ntpx5pr/LwXbnz88cfk7LPPJtFolDRp0oSMHz+ezJs3z/F5W7VqFTnnnHNIQUEBadiwIbnxxhvJF1984TrRicViJBqNkgsuuMCx79tvvyXXXHMN+d3vfkfy8/NJYWEhOeuss8iCBQt8jfmHH34gf/rTn0jt2rVJQUEBOf/888nnn3/OPfaFF14gHTp0IJFIhDRp0oSMGjWKHDp0yHEcAMt7Ul36EgiyRSIkhwlBBIIqyvXXX48VK1bghx9+gCRJaUWyQdB1Hbqu44YbbsDrr79uqdfTpEkTXHfddXjwwQdz1p+gYnjzzTfRv39//N///R8uvPDCyh6OQCDIEJEwUHDM8NNPPyEcDuO0007Labvjxo1DOBzGs88+a9m+fv16lJSUWDRFgqrPN998g7fffhu33norOnbsiL59+1b2kAQCQRYIi47gmODHH380w+vz8/PRrl27nLW9bds2M2RbURR06tQpZ20LKp4ePXrg448/xumnn46FCxeiTZs2lT0kgUCQBWKiIxAIBAKBoNpSqa6rli1bmgUM2Z+bb74ZgJGmfdKkSWjWrJlZtHD9+vWVOWSBQCAQCARHEZU60fnss8+wY8cO82fZsmUAjCq2ADBjxgzMnDkTjz32GD777DM0adIEvXr18iyaJxAIBAKBQECpUq6rMWPG4K233sL3338PwEhMNmbMGFPMGYvF0LhxY0yfPh3Dhw+vzKEKBAKBQCA4CqgymZHj8Tief/55jBs3DpIkYfPmzdi5c6cl+280GkX37t2xatUq14lOLBZDLBYz/9Z1HXv37kX9+vVFsTiBQCAQeEIIwaFDh9CsWbO0dd+yoaysDPF4POt2IpEI8vLycjCi6kuVmei88cYb2L9/P66//noAqVo19qJvjRs3xk8//eTazrRp0xxViwUCgUAgCMK2bdtw/PHHl0vbZWVlaJZfE/ugZd1WkyZNsGXLFjHZ8aDKTHSefvpp9O3bF82aNbNst1thCCGelpmJEydi3Lhx5t8HDhzACSecgM5/fA2hML9WTVAk2Z9lSJLSrwbc2pJsKwn7woK2TYju2h+7j0Xnbwbh7CC6P8+mW19+8dtPrvH7LKsa7LOWQ0byQ13lf2nSa9Q1zfU+u92HoM+FfYfs7zDtx61Nouvcc9L1xZ7DXgftxz4m3jH2c6395ObdZNtP993g5/Pk1gY9l+jEcU3sOV7vPntPc23U4H3/0GfE3mu3e8BeA+8Y9rozeXZq4gjWvHc5atWqFfhcv8TjceyDhgVKEQqykMqWQMf1O7cgHo+LiY4HVWKi89NPP+G9997DokWLzG20QvXOnTvRtGlTc/uuXbscVh6WaDTqKNwHAKFwjaN8osP/wspsouP+D41zm5joVEW4Ex0pzURHFhMdMdHJZKKT288I7/unKk10Uv2U/3dDjbCCAinzLO0S0ZADo1C1p0pkRp4/fz4aNWqEfv36mduKiorQpEkTMxILMGbBK1euRNeuXStjmJBkKdA/jIToab+wiE7MH+t23fKj68T84bWt6wSapkHTNM9+3SY5AP1HQLZty92kzvP8gPc2V7D33/Ily3km9vMqE/YZ038kQpEQwtGIOfExj01eiyTJjvuc7r4HfSb0HXKbsHjdN7+THPqZ4P3Ne5b2Mbl/5gj3J1ewbeqaZv5kukggRDfPty946LOm/bLn8MbjHCv/u8fr+8MP9vNT/STHkrwWr3vCO8b9Wbq3w3u3K/o7SApJkLP4kUJH50Ktoql0i46u65g/fz4GDx6MUCg1HEmSMGbMGBQXF6NVq1Zo1aoViouLUVBQgIEDB1biiAUCgUAgyB4pLGe1SJSqTtB0labSJzrvvfcetm7diqFDhzr2TZgwAaWlpRg5ciT27duHLl26YOnSpeXqO2XJ1ezey71kOY5jak6tVFJtaDrftUVXS+yqiZqdg6zEUivfYCtNnjstKF6ujYqAtzL0OraiVoC8cUiyZNxrXQagA7JhyQlHI0AUSMTi0BKJnPTl/1zD/cRzKwVth+LWRqZtlyf0/aXvhSTJIEQ3/8+Scq0RkID+B7N99vMi65b+zN8Zy475zsDmArI9c6t7z+pSZL9Lgj5nu4vKbpUJ+nmi57h9b3iNi3fNlW2pFZQPlT7R6d27N9xS+UiShEmTJmHSpEkVOyiBQCAQCMoZWZGy0kDJunBd+aHSJzpVAZ44sbxW6umsO/ZVjZuojuiaZb/uIrfK1KduXVG7C/uyFSHzyIWQsKLI5fviacKW02u9NFWDJBNzZcoTeNotAawVjmd14Pflvoqn27K1tnidXxUtORTWSuMlBAYAuwbVS3Pi1o9jO9Vt2aw6AOdzJbt/F9nfa551l+qenJqpNGN3sWwF0j869HTBhOzp2qwopHB22kRJTHR8UXW/MQQCgUAgEAiyRFh0BAKBQCCoBOSQcF1VBGKiA28hnrktB0JbR7+2tsw+OKZcnlCOEB1Eo+fZ2ioH8z7PpeQ3d082/ZltHwWurCAEybMkIeXncM9DQ0B0DQkaruuSY8TyN+su8fnseO4K+/5c4u0qc/+irwq5meg9DUcjiNYwErrpqg5N06Crmvl/wJbjRkl+vpnvAj/Xky7HDNuWpe0030U8qPvcL16uOb/uG/c8UM78QEfD94VwXVUMwnUlEAgEAoGg2iIsOhx4FhVuSGaOhbgOkZ7mb9Wvaxrk5IqfJx7MZIXNOye1suZnlgXK9/5ks1LLNtw5ffvpQ2O9nqXXPTX2y1AUxUgSx0mE5pYNVpJkQNbT3jOvbMW0f/t46H63dyVX99pPEktupvAqYBGUJBmhSAjRGnmWUGgFCqIFSQsPU5pDS/6uq6lEgvR5E8k9a7CZIA/WIAW/AnM75RFkwOLHimGGwwd8bkeDJYciKxJkJQvXlSYsOn4QEx2BQCAQCCoBSZEgZTHRkSAmOn44Jic6flcTbpYdunrMdLUUBK9wdLckZLkKjbcnG2QTwZlj8Fg1Z6trcgs7zSaxl3P8Fee9NUN+ZYl7L7nnMAkjNRjPRFEUaOAkX2MsBoCh63GGCadPiMiveeZt2bFTnhoxHr5qQ7kmlfO2FAaxDEmyZPlcEqIbiRtVDZIsIxQOmW2onGSO9L2QZMnUZSXzQFp0V6aVJ7nNbhFkkwN6jVdWFHOcFZkA0y9Hk3VGUHU5Jic6AoFAIBBUNlm7roRFxxdioiMQCAQCQSWQbTFjiYiJjh+OmYmO/YVKa35mzNkO838O3FXp+ueeYxNE20ODeWJXNxcCWxsrl3iFoGfrwmLbD+q+cqvfVd4iZcsYLBWlrTWhjG3urpNQOGx5LxQoIOYzdHdPSLIE6MFcrOy94N2v8rxXXs81W9dKuvclV2HJvHutaxoknSCuaqnq8hodlw4lpBguL1vGc8cYk58lRTH+w3Nl0YzL9ozIjnHqRhV1+zazL4/7UW6Z448xV5WkyJCULIp64ti6X5kiwssFAoFAIBBUW44Ziw5rmfFzrNf2nNQ18lhlpUum5bcmDrvyZrNv6joJZM3JlfUnF6Hn2T6DTCuz89tyH4NbKLk1AZz7GCRZMlf5dkskK2JlBci6prmmJLBXsnYbl/PavMPIc0llVY+2v1P2cfD22/fZt3P7Sb7zWiJlmaXnaKoGIBVmLocUyElhsxc8Cw/9rOqqs+8gpETuKatnyhKZO+FyVRRBVxRCo1MxHDMTHYFAIBAIqhKSJDIjVwTCdSUQCAQCgaDacsxZdNK5LDI1z/sVOrruT+NaCIrdbZXO9cTLpMw7xyv/SyBxcJY5iHLt4vArSk4nEvU6z+4OcReQSykXW7KemaZqru4lXv0qR86lZF4W0x3BCNu93js67mzdVu55fFi3SHafIS/8vC+ZuEWzGpOlVp21PaLr0HSAKpaVkGLmvHG0oxPIIcVxjzXZcHEaQmXO/Zf9fY7ttc1Y9xWPdPXHeHmx7L9XZp2yinSjSQqycl1JlXObjjqOuYmOQCAQCARVgawzI4vwcl+IiQ6CW3HcViXelX6t5/ipYeVnHPb27OOSM1idsMJTXiZhv1l901ERmaWD4ia6dTxvzv1OrXy9a/SwmYt1TeMKjomuId2dYfuhVhy7Ncf+txnaDCVlTUlm4HWreJ7uWoJYS9ytgektahUlWq3IcGpe37x3SlM1qHEVckiBoqSsN8bnEZZtRCLQiQ4lHDaOUTUQW5ZzousWCx/AD0dPWbncxPXOzwuv4jpPyO12/ZXBsSqGPlYQEx2BQCAQCCoBunDM5nxBeo65iQ7PUpFJ6Kxbteh055i/I5WoK8hqIsiKh7XmpNPpuN0XZ//Z63Ms/XpYdSov3NhpXUin36DHGv93WnXs+hzaTjgaAZDS4BgWF91xjtu9sK/I2eSMlt9Nq01qbPZnLocUU8tB23Zb5dt1FX7GSu+PlzWQpxWzX28mq++gIeE8i6uX9TGbpJiORKCWd0WzWEN0VQNNMMhqdnSiQ9Zl6Jzq7fS56ppmfg+wNbXM4xnLnkkaHU86Cxz7e1W05lS2JSfrzMjCEuULMR0UCAQCgUBQbTnmLDoCgUAgEFQFsk4YKMTIvhATnSQ80a0XVreEP3O1u6DPf3ZVbi0pjluB6Dr0pMGOZliVOWZo3WJerhxhsJfZvzzCTTNNMZAKtZa4IdzhaARK0p2gJhJQEyoA3VJPiHVPSEk3QigcgqZq5nMD4KxBZP0zLaZY2tYfvQ5ae4mKk426RwmLK1GSZG42a0embp/ifD/3nVcDzE6Qzwu/n/SpHiz9pXFHWcLDA7q87Mdxz2fuLy9jsuGOBIhMbOH6tu80iX4f6Gnc2IyI2OV6MnErk2Q9rqqgK6kqLh/huqoYxERHIBAIBIJKwIi4zEKMnIPo3WOBY3Ki48dywTvGLk4NagFJJ7Sk7Rr7/dUk8j7GWD3pOoEsO8OOgZRI2a2qt1/KWzhcHu17Venm9U//z19169ASCSRicZugm3CfqblCl6XkOcS0tAS9TrcxOceYsgwo4TDYJHDmMWwdNZtI1qt/Xl/G/4NZO40oFAmSnBLapkvbwI4j01poXteY7T8mQdIoeN1zJWl9cyaDdFpvqOjcbTyynLL4Osag8xNIslYee5JJv+9seVhzgnw3CAvIsckxOdERCAQCgaCyEa6rikFMdAQCgUAgqASyFiOLop6+OGYmOjwzfSZt5Aq/tZX8wKuVY+9HR0qMzIpMUwJTfiZkv+TCrZTOxJ8r9xU/87G7ANmOZYx6KkOyGlfNfdzsupLV9SnJEjRVs2yTFQXJdCaWPDbp3DcEmtU15uJusbivQorptrTfd/b9YPfZn1E6IbmbC8pNZM6730GzL2cCd/wVpH/g3QNebh1N1Uz3lfV8p0vcrEvl8Xni5dZiv5fY/aw7i+ikSmQ1DxqoIKwfxy7HzERHIBAIBIKqhHBdVQxiolOJZFLXh5uFlq1E7SLGtIabW1diNIMyzZjqHEv6lVsmwkRuOy4rRb+Zd3OJny8Rs8ZU0vriZqFwCxtOt01WFNNikzqGbw20Z95OZ+GRJBmKAqi61ULjFV5sr3ruldXaaxt9v2l237Qh3AGfeS7qYrlZubJpw9yepg6a2zlqXIUkSwgl61jpZloCAhp8YLQjg+juOQl44eVs1myKPZMyHSPXCpXlZ9Ieeu7WZnWy5IgSEBWDuEsCgUAgEAiqLcKiU0n4mYkHrnWUXPVLsgSicVbjyRUeb41pr5icDelWXOnClnlWHbe6UdniFkZrrF7dV5cW6wSnvpCjTZdkcPbzHdfGLMrdUgD4SUQJ2Wr1k2TrmFgLDU1O6KXD8NLtsH273Q9ZUSwWIV7qAztBayVVVLVzxzg8rFNemiS/FiOiE6iJBCRZhkItfkRP6sXcE/K5WXHcxuPVv59tQfFjzQnSV5BnX1maI+G6qhjEREcgEAgEgkpATHQqBuG6EggEAoHgGGH79u3485//jPr166OgoAAdO3bE559/bu4nhGDSpElo1qwZ8vPz0aNHD6xfv74SR5w9wqJTSQSt+eLHXOsQIAcwxeoJdxGtHFIyCjt3DSG2CVndhLIVYUq2uzfoWNkaUGxW5Kz6cnHvGL+7uWvSh/2nO9ftHB0ywlEFCtGhxlXHuOyCZm4faUTWruJ4rzQCHiHrPPxkTs7FyjfX72M2dbqo+JjYXKgSUp9VOl4/Liujbf77ItvSILBt28flh3TfZbkQNru5pL3GWRnuq4q26Ozbtw/dunVDz5498fbbb6NRo0bYtGkT6tSpYx4zY8YMzJw5EwsWLEDr1q0xZcoU9OrVCxs3bkStWrUyHmtlIiY6AoFAIBBUAsZEJ5uoq2ATnenTp6N58+aYP3++ua1ly5bm74QQzJo1C3fddRcGDBgAAFi4cCEaN26MF154AcOHD894rJWJcF1VIrlIYmhtj7j+2KFJA+mPrCjmD11RGRWtNWiJRHYh45xVi1186idhW3n5o93qUQXtkxVLBxFOZ2PNSdeuubpnnicNg1cUBfk1CyArCiL5UfM9UMIhz5WmveaR1+o+2xVrOvy+l26fA3af1zHlib1KPPcY233k3VNZUYzq5iEl7T+eNKyZDUdPdzyQ20AAfj/ZW0+dqTWIe7oO272v6CKZRoqFzH/oNR08eNDyE4vFuP0tWbIEnTt3xhVXXIFGjRqhU6dOePLJJ839W7Zswc6dO9G7d29zWzQaRffu3bFq1aryvRnlSKVPdNL5Cw8fPoxbbrkFxx9/PPLz83HKKadgzpw5lThigUAgEAiqDs2bN0dhYaH5M23aNO5xmzdvxpw5c9CqVSu8++67GDFiBEaNGoVnn30WALBz504AQOPGjS3nNW7c2Nx3NFKpris//sKxY8di+fLleP7559GyZUssXboUI0eORLNmzXDJJZdU3uADkK5KtjPEM/fzT7vFgpfGn/1bDktm2KqRlIwAWnJlmUwqFxS7ZsfuE+dpdhwlB8oxWWCm7do1KVR/5ceqk0uLnh2vsHMCDfGyMtSUaqNW/UIc3ncIoUjI1HNITPkJ+7nm7z6S/GVDupDzIM8rnXWKty3Xlii39ARe2+znWY+3Pl81oULWnEkCeaUeeO3wSkl4nZdLcpZw1GdpEbdEmBVNrjQ627ZtQ+3atc3t0WiUe7yu6+jcuTOKi4sBAJ06dcL69esxZ84cDBo0KNWuZNfUEce2o4lKneik8xcCwCeffILBgwejR48eAICbbroJTzzxBNasWXPUTHQEAoFAILCTq8zItWvXtkx03GjatCnatm1r2XbKKafg9ddfBwA0adIEgGHZadq0qXnMrl27HFaeo4lKdV2l8xcCwLnnnoslS5Zg+/btIIRg+fLl+O6779CnTx9um7FYzOGvFAgEAoHgWKdbt27YuHGjZdt3332HFi1aAACKiorQpEkTLFu2zNwfj8excuVKdO3atULHmksqdaKTzl8IAI888gjatm2L448/HpFIBBdccAH+8Y9/4Nxzz+W2OW3aNIuvsnnz5hV1Oa5QUWh5uin8j8UpuDQz4nIy9BpuKtkcv65q0DXjJ1MTc7pssLzxuJ2fLW7PxkvYnVbo7ahBpbv+uFFRNWwO7zMWAtGCPFv/Ej/s36epPegzsrsw02UXztRtFUR4nGtxMr13wV1U7veySdFxaNyyGWrVq4OC2jUQikbM+mGaqpk/vKzaXu8i0XVL5fJcfnelq+eVDbxnFiQQoqIF6ew7kelPEMaOHYtPP/0UxcXF+OGHH/DCCy9g3rx5uPnmm43xSBLGjBmD4uJiLF68GF9//TWuv/56FBQUYODAgeVxCyqESnVd+fEXPvLII/j000+xZMkStGjRAh9++CFGjhyJpk2b4o9//KOjzYkTJ2LcuHHm3wcPHqwSkx2BQCAQCFgqOo/OmWeeicWLF2PixImYPHkyioqKMGvWLFx77bXmMRMmTEBpaSlGjhyJffv2oUuXLli6dOlRm0MHqOSJTjp/YWlpKe68804sXrwY/fr1AwB06NABa9euxUMPPcSd6ESjUVch1tFAuiRvuYOGlXoncqMhx0SWoCeThhkrPEAOARIUX73ZBY+8CtlcwWk5iwTLR/id2ZjdxsJWjs4lRCeo26Q+1IQKXUs9W0vfFSjapLW3eO8Du40XPswS1GKSdlw5ECd7hTf7Oc48Pvku0Hflt593oWbdWubnSZZk6LAl9zMtM/xq5u4Cf5uloxyefdB76vbsLd8nLm2mS0RZGakFKoOLLroIF110ket+SZIwadIkTJo0qeIGVc5U6kQnnb8wkUggkUhAtv0DoCgK9CrgBhIIBAKBIFNyJUYWeFOpE52xY8eia9euKC4uxpVXXonVq1dj3rx5mDdvHgBDSd69e3eMHz8e+fn5aNGiBVauXIlnn30WM2fOrMyhCwQCgUCQFaKoZ8VQqRMdP/7Cl156CRMnTsS1116LvXv3okWLFpg6dSpGjBhRiSMvPypKsJzqh+/CMo9jcttIMpsjxsiuC8XpWuGZkOl5rAvLbjIPUmumPPPpZEM2z88rQ7LfLMlBV3h7d/wGPZn7x2jf6aLg5TVicynpnNwtmcDL55TuGJ4ry06u3pN0bqV0fftxgaW/FmuNvHhpGfbF4qhRWAtqQjUy7YYUGFmw4872OdnGTdeWzVUYJGeSX+g99Hsf/R7n59mkE7gLqi+VXusqnb+wSZMmljw7AoFAIBBUB4TrqmKo9ImOIBjl+WJ7ZaJNrZydwlhnJXY3sV/quJSo0pktmdc/d7wuWVDLAz8rS2NVmXl9KnsGbTas3+85blWpnc/IIF4aY45zqQWUXPWb/7dlxs6FYNliNXKx1vG25zJ7sh9Yy0HQtr3CnIPVVNMdz/3IgUMIhUOQZMUQJMuSEURgs9DR32kIOu2bPle6P8gzTJfxmSWXqQkysbDx2qhUJMn4yeZ8QVrEREcgEAgEgkpAkrLU6IiJji/ERKeKU1GmSVr/iCaKo6tBwOa7lyXQP02dDgDWiuNV28tu1Ult866D5UVFWHbStS0lV9CSLCU1K8EtO273Khe10IKeY7GUcGp22fUbbhWgXZM+elSJNsaqO+45L9Elr1/7+8o7NxsyaUtiLCz076Bh6+k+V2pCRQiAHJYRjkaSmh0AUCyfVUJ06JpmseqYfbBh/D6eY5DxuxHEIlRe/QqqN2KiIxAIBAJBJSA0OhWDmOgIBAKBQFAJiPDyikFMdKo4uc6ym74/w4UFzb3ekRxSUlmSqXhRY90RTjeWNfxct+zzcmEFoTxCzoO2KckywiEFWrImGE+87XYe77h029jnnMvVncMtxMlIa27TPdxQHi4qN3RVM/8B8Lr3bnXSuMfJqfD5isIu2LaLZ+nvQTJfy7IEPSl6d3NfAcZnNK8gH2oiYe7XNQ26TqCryRpPHveC6ASQU+9AEFeya3tJ7LXH7NtygZdQWbisjj3EREcgEAgEgkpAuK4qBjHRqabkQsDKCpTZbWxSMsvxSSuAdbszUSA7Rvf6ThKgB19FlpdVh8VtFUqIDi2hgyRFnrKigEgEmo/VeqaWO697mAtCEeMrwp5U0C9uFjrWYmS8S1YLQybP0LWGkUNM7y90PQieSQBt4fj887OrZ8ZaMNSEClnTjErmSeurJMtQZBmyrkOXJahxNc14JIdVJxtc60+VgyXH/ntFpqEIiiRndw9y8GiOCcRtEggEAoFAUG0RFh2BQCAQCCoBIUauGMREp4LxyoVRnmTjynLLZ8LLBcLWxkodmxIfKyEFupmXxTvrr6Udex2eHNXe8ew7jbndTWDJ1n7KNltypmTi0jLrEEky5JACWZaghMNQkq64eFlZ8tmlnievZpm9TR6sO4QK281zPGptuY49wPvgqLFmioI5mZc9rs0rOzSbTTqX6D7GIjNBBPT9swjYJRmhSMjTfcUKuIHMa12Vl9jYqy+/2/nHpv9OyimybPxkc74gLWKiIxAIBAKBoFw4fPgwdNvksXbt2hU6BjHRqWB49Z4qaxyUbELRjfON1St7bRYRsxl+rEOHDJlWvU4Tes1aTnJZ2dzvtQdbCaY/NtfWPN7Y/Yq9jfM5lqnkaj9akA8lHEK8LGYep4TDQCIByIaFx826kGvsVkJ2W6YEEce6WYDMv13ExkGtGOm+D+jz5IWY0+dM98mybrMosccaQv8g4fuZWFHtwuBMrDpu1jxHLb4cvYsVHcUkSVJWZRyqagmILVu24JZbbsGKFStQVlZmbieEQJIkaJrmcXbuERMdgUAgEAgqgeoaXn7ttdcCAJ555hk0bty40idkYqJTCVSWFcdOrj4k1pUba1FI9kF9/bpRw4hadWRZgh6gJhRbKygd3tqKyv9y8GvdCVyjyufxvMR1gLFSTsTipn5DDimmRkdKana0RAIaDVk2NVfeCej84mU1MNMXVIA+yw5Pc2Mm08uh/iSdVSeSH01qmowVsaoSU09Fx6QoVpErtbaaGixZNsKaNQ1BnlvQe++mU/Ky0mQSyl4Vw8b9Ul3FyF999RU+//xznHzyyZU9FAAivFwgEAgEAkEOOfPMM7Ft27bKHoaJsOgIBAKBQFAZSFlGXVXRjIFPPfUURowYge3bt+PUU09FOBy27O/QoUOFjkdMdI5RysN941Z/x+LCSrqvNB1Qkm4RQnRPF1ZK7BzMRO0d9mwVcdrPsx7Ld83R8/ljdjHPc/rNlShdCYfM8brVMvJr6k5ludZhyga1VOiyEoJRz8vDKJypK6KqYq/9FsRtkKtnHC+NIZR8zlQErasa5GQGa7Z+Fs2ITHTdrHMlEwky3FMjUNKlBQgSGMA7n9uvR800c1y0tt5R7K6ykKXrClXUdfXbb79h06ZNGDJkiLlNkiQhRhYIBAKBQHD0M3ToUHTq1AkvvviiECMLKo/yqJHEWivcLTsEMhTLPiqgZC07bHt+4YkleVYdXiV1Om4v/FYX54X98vbZt7v16fc5aQnv+kWOPn0mY2THYIiQiSl+td4/Wxj2UWTNcauEzksEmAm5DEBQE2pKfCwnLaRJ642uqwhHI8k+SbKWkgxJJyB6AlpyGLKiQI+lVtUOy0uA2l/ZWHmoWJn2ZX8XWdJVXM+WyggSkSQ5q89JVf2M/fTTT1iyZAlOOumkyh4KACFGFggEAoGgcpCl7H+qIOeddx7+97//VfYwTIRF5xjGS6fiF0tSP5vuxK1PHcaK0tEWY9kBYK4+aT+ZrubsifFSpQtkF+tOSi+USfkGXpteVh43q1KqWrjO3Z7Vc2NDo23aCLewaXY8OvgV6bPBj0UgcDV7jlXAvp0Ng+ZZpHzrmryS7zksJsFLsFjKjCSTArIpGgBDQ6UlEsbvimJJEmjqdXQCWTFSB9BjJXA+j14pGhgrTlaJBIkOojn32VMe8NvJnVW6qqT8qC5cfPHFGDt2LNatW4f27ds7xMj9+/ev0PGIiY5AIBAIBJVAdU0YOGLECADA5MmTHfuEGFkgEAgEgmOE6pow0F7bqrIREx0B143jhtPtQiwf1nTuJdPdQQwBpRJyuheoIDZoSG46E7rdzeZ23W5iZTp+L9G169g82nQ7jvZh35/NKo7NVGv/f7qQY944rNdVtUJ+eUJNN/Emr4J5kH9Egl477zmme5eouJiFunvpCtlwaTmfpyHkZVyPyePpZ42XwZimKaDH5QK/bi6iE2u9PDjvcS6tGZVZd1BQ/oiJjkAgEAgElYEkZZf0r4oW9QSAI0eOYOXKldi6dSvi8bhl36hRoyp0LGKiIwDgX4zHE8LaLQG8cG6eJQhKSlTJs+rIsjWRYDaCZEvbTEVn57Xw7wMvwZ9dRJyrFaF3xfHcrWIzuZfsdRoJ6ZwWkIqy7JRnaG0uXAL+RcxeFj5/VjZatRxIVZWnen9N00BrXVFoLTMzAR/RzYrmFYFfq1lVsxLmmurquvryyy9x4YUXoqSkBEeOHEG9evWwe/duFBQUoFGjRhU+0amaSiaBQCAQCKo7spz9TxVk7NixuPjii7F3717k5+fj008/xU8//YQzzjgDDz30UIWPp2reJYFAIBAIBEcla9euxa233gpFMcr8xGIxNG/eHDNmzMCdd95Z4eMREx1BTuHXV+K7dYz6VUZeD0c23uTfbAZY4yf5d5ZuC1oniDdW6h5K9ekmYE3tp+45v64lrzad2ySLiZv924/pmnc8zX/C3ndTeMqtfaRb/p/aTri/VyRySEEoEkIoEsraFWAX5dIaa76zBAd4Ljz3p30s1naN/bIsMZ8Loy8lHIaiKOZ2sw2O+Nct9w0hhkg50PVmkNmX13YmteyqA5IkZf1TFQmHw+bYGjdujK1btwIACgsLzd8rEqHREQgEAoGgMqim1cs7deqENWvWoHXr1ujZsyfuvfde7N69G8899xzat29f4eOpmndJUOUJXIcqSCZY22qTrmDl5Ko2F1Yd1nrBW33LIQWSLEFWFISiEUTyo4gW5CfFt/5rVfGwW4zSjpVZ7XLHqiielgTPjL1shmCa7TaL1XVlCJGJbqQq0NTMkpDZrTZuVhy3+5IbgbyXAN1qzXFDiYQgJ606XsdRXDMOM9Y+817YLICWY4KEjPu8p6n9IuT7aKS4uBhNmzYFAPztb39D/fr18Ze//AW7du3CvHnzKnw8wqIjEAgEAkElUF2jrjp37mz+3rBhQ/z73//mHvfxxx+jc+fOiEaj5ToeMdERZEzWyevMkFbmbx8YmhhrwjPffTqSjlmT5pnbkxoeJaQY1gIdADTojNXA7fqDVihnj+e16Sesnq09lE2Yt6WStE2vwqtt5ZXQrTLIdgx+7jVrXeNZKNzazXxMfGsOz6JpWCJlMymgntTB8aqD++ubYyEM2AavLf+ap4pzOlRKOQWjvHx25x/F9O3bF2vXrsXll18e6DxJkrBkyRIcd9xxvo4XEx2BQCAQCAQVDiHGhJdGadWsWdPXOQ888ABisZjvfsRERyAQCASCykCWjJ9szq8mjB8/Ho0aNfJ17N///vdAbVe63Wv79u3485//jPr166OgoAAdO3bE559/bjlmw4YN6N+/PwoLC1GrVi2cffbZlRKiJvDGHsbsNwyahpgH7cv8nWO+tYc9+xXYyopiinuJTqDGVeiaBi2hQkuolpByXq0ie8iw/+sJJkq2bPdZ48sPQVw/Vc1tlS1ubky343huUN77zgtXDzomN3ExX9ybzFzN/A5k7nLKNRX5rrCfSd4P79iKhIbnZ/NTHdiyZQsaNmzo+/hvvvkGLVq08H18pVp09u3bh27duqFnz554++230ahRI2zatAl16tQxj9m0aRPOPfdc3HDDDbj//vtRWFiIDRs2IC8vr/IGLhAIBAKBICcEmbQAQPPmzQMdX6kTnenTp6N58+aYP3++ua1ly5aWY+666y5ceOGFmDFjhrntxBNPrKghCtLAimd5FZAtKw45u0rXdquPpc4SI0pmxbT245zjt27XoXG3ZyK8zpW4MV29I16lZ7djLfsDJ3or39WuX2G5JSS+nEz3bu+MX6sP2wb9XLglV3Rriw0r50GIUSOOVjWn1hxJlqElEozA3ZmQszKoKEtOkPe00sPXj3HXFS/hoaZpUGihNgD//e9/EYvFcM455yAcDmfUT6XavZYsWYLOnTvjiiuuQKNGjdCpUyc8+eST5n5d1/F///d/aN26Nfr06YNGjRqhS5cueOONNypv0AKBQCAQ5AC7KzyTn6MZKkYGgB07duDcc89FNBpF9+7dsW/fPlx00UU455xz0KNHD5x66qnYsWNHRv1U6l3avHkz5syZg1atWuHdd9/FiBEjMGrUKDz77LMAgF27duHw4cN44IEHcMEFF2Dp0qW49NJLMWDAAKxcuZLbZiwWw8GDBy0/AoFAIBBUOSQp+58ATJo0yVFCokmTJuZ+QggmTZqEZs2aIT8/Hz169MD69etzfdUmhw4dMj00t99+OwghWLx4MZo2bYqLLroIBw8exLZt2/DTTz+hcePGmDp1akb9VKrrStd1dO7cGcXFxQCMtNHr16/HnDlzMGjQIOhJs+Ill1yCsWPHAgA6duyIVatWYe7cuejevbujzWnTpuH++++vuIsQpHVfUYLmvGFxuq1ofSl/eU/SuRrs7q5MBcUW8WfyvtjdXko4xLgXrP251bry7tf/l10mdYn8umnY4zN1U7D5gKoabrXRAO8aYLy//fXnt26aZL5jcsgw+Rv3UQvktrJkm87x/c/GbeXXbVzpbqijhHbt2uG9994z/2bdRDNmzMDMmTOxYMECtG7dGlOmTEGvXr2wceNG1KpVK23b3333HVq1amW6pD766CM89NBD+P7779G0aVP89a9/xSWXXMI997333sOiRYtw9tlno1u3bmjQoAGWLVtm5sq5//77ceONN2Z0zZVq0WnatCnatm1r2XbKKaeYEVUNGjRAKBTyPMbOxIkTceDAAfNn27Zt5TN4gUAgEAiyQZaMWlcZ/wTX6IRCITRp0sT8odFOhBDMmjULd911FwYMGIBTTz0VCxcuRElJCV544QVfbZ9yyin47bffAAArVqxA9+7does6rr32WtSpUwcDBgzAu+++yz1337595qSmXr16KCgosIiUf/e732XsuqpUi063bt2wceNGy7bvvvvOvLhIJIIzzzzT8xg70Wi03NNJC5zYrTpAcqXJrAxpOCTN3kt0AknhNuerL7tVx8ti5CX+lCQZkmJs1xJq8hhnduNMBMm8jMdGmLpV1CrJGdyIHBHUAsNm6rXXl+K15WYR8luDyzw+Kb5N124uSW8J5FQBz5Ho1r8lgzgsapmMw35/KW7PwlebQcdgu59+dChHtSUnA/eT43zAIdHw+nfw+++/R7NmzRCNRtGlSxcUFxfjxBNPxJYtW7Bz50707t3b0k737t2xatUqDB8+PO1wWM3NlClTMGLECDz++OPmtokTJ6K4uBh9+vRxnNuoUSPs2LHDjKi65ZZbUK9ePXP/vn37UKNGjbRj4FGpFp2xY8fi008/RXFxMX744Qe88MILmDdvHm6++WbzmPHjx+Pll1/Gk08+iR9++AGPPfYY3nzzTYwcObISRy4QCAQCQdWgefPmKCwsNH+mTZvGPa5Lly549tln8e677+LJJ5/Ezp070bVrV+zZswc7d+4EADRu3NhyTuPGjc19Qfjmm28waNAgy7brrrvOVfPTsWNHfPLJJ+bfDzzwgGWi89FHH6FDhw6BxwFUskXnzDPPxOLFizFx4kRMnjwZRUVFmDVrFq699lrzmEsvvRRz587FtGnTMGrUKJx88sl4/fXXce6551biyAU87CtQu77DrBjOhoITHRIUY1XmYdWQZcmh0+HWk5JkQNY9V5IO/UQypBy24teZRDS4aTbYbYa1yJ/2xWw3WXuLV7MoaFvOcXlYVmzWAVYPIkkylJA1MZ2uac7x6LKlLT/wrBIVkRwtW2tM9rW2+HXSdJ241rpK3Svd8W4F1drwjg/cRoB74GaNqdZWHIZsI6foudu2bUPt2rXN7W7WnL59+5q/t2/fHueccw5+97vfYeHChTj77LONNm0WJkIINwzcjUOHDiEvLw/5+fmOcUQiEZSWlnLP+9e//uXZ7llnncXV5fqh0ktAXHTRRbjooos8jxk6dCiGDh1aQSMSCAQCgaACyFFRz9q1a1smOn6pUaMG2rdvj++//x5/+tOfAAA7d+5E06ZNzWN27drlsPJ40bp1awDGBOnzzz9Hx44dzX3r16/3XYjTzplnnpnReUAVmOgIBAKBQCCoeGKxGDZs2IDf//73KCoqQpMmTbBs2TJ06tQJABCPx7Fy5UpMnz7dV3vLly+3/M1OmADgxx9/xLBhw9K2s337dnz88cfYtWuXGX1NGTVqlK+xsPia6Jx++umBGg1aQr0i8GMetLpdnKI4t32CFJkJdg1TO8887/d8O0EEtuVRs4lXB4u33VdbkhE2rCeFv4RYXXNeLiFZUTIMbfbOskx03eLpY10ujmMtGXzTh6ETopvuLr/jo21mg18Rda7gX4O7AN7P58PruymdWF+SpZyE9/sRQx/rLisTKcvMyAGFzLfddhsuvvhinHDCCdi1axemTJmCgwcPYvDgwZAkCWPGjEFxcTFatWqFVq1aobi4GAUFBRg4cKCv9tO5lkaPHp22jfnz52PEiBGIRCKoX7++xW0mSVL5TXTKu4S6QCAQCATHGtkW5gx67s8//4xrrrkGu3fvRsOGDXH22Wfj008/NaOYJ0yYgNLSUowcORL79u1Dly5dsHTpUl85dHisWbMGGzZsgCRJaNOmDTp37pz2nHvvvRf33nsvJk6cCDlHmZ99u67Ks4R6RZHOKsMVt3ITuPFX68cyXonTeCv81LFy2hBzXmVzto6P+5j8hdl6WUdyaeHhte1ZG4wZk86EcbuN1201HvSaLDXELFW4nUJZamGQJBkk+buu2VTdtnH4qUXGCtfdxnc0V0/PpbXI7V7Y3wMvKw1rzXHss233Y+1xry3nbilPZ4UV37PZ89JLL3nulyQJkyZNwqRJk7Lqh06oPv74Y7NI9/79+9G1a1e8+OKLnkU5S0pKcPXVV+dskgP4DC8v7xLqAoFAIBAcc9Cintn8VEGGDh2KRCKBDRs2YO/evdi7dy82bNgAQghuuOEGz3NvuOEGvPrqqzkdjy+LTnmXUK8MclkMzS0k9FiEV/IgHTTEHHDqEPyElLPtZEt5WAa8qlObv3uYoNNpR+yp+9njdWiQFcVicbOvnL0sPlZdDZP8kSY/VLXk7xpkWYISUoKVHfD4ovZrlq/IZ5b7fvyVNuDpdNgEfzyLWNCSK676nRyGl9stOPbz7O9Ytf9ezVHUVVXjP//5D1atWoWTTz7Z3HbyySfj0UcfRbdu3TzPnTZtGi666CK88847aN++vaNi+cyZMwOPJ6Ooq/3792P16tVcRbQ9QZBAIBAIBAIOOcqMXNU44YQTkEgkHNtVVU0bpFRcXIx3333XnCTZxciZEHii8+abb+Laa6/FkSNHUKtWLccgxERHIBAIBIJjlxkzZuCvf/0rHn/8cZxxxhmQJAlr1qzB6NGj8dBDD3meO3PmTDzzzDO4/vrrczaewBOdW2+9FUOHDjXDzgQGx4SZ1YNMwsp50AzI1DzPy4jsBs9Un33Isf+q4u4CTO+K7kHhXadZMwsKiEQsbg1d00wxHr+Gl9WN5VWlOxQOQdc06DphBNLJ9pKZreWQAi3hFBO7ueDswmeipb8v5ela8qrNlYt+U/XN/Ac1+K57lXwvaA2yoO6rXOAlKnb7zPgNDql20OKc2ZxfBbn++utRUlKCLl26IBQyphmqqiIUCjkSAO/du9dybjQaTeveCkrgic727dsxatQoMckRCAQCgSAbqqlGZ9asWRmfO3r0aDz66KN45JFHcjaewBOdPn36YM2aNTjxxBNzNojqgrDqeCcjs2OviwXo0HRjO2vF8bLquNV/yhVeq2j7dQVKUsiEgtutF7x7xYZss1XgaRvQ5aQ1RoYkA7qaOldWFMu1GO+pMwTcy1pBLQq6phk1rhTr8yY6yTjhI9sGvb6qBC/UPlNy0YZdkGzfV5nfQW7JO92O85M48Fj+Tj1aGTx4cMbnrl69Gh988AHeeusttGvXziFGXrRoUeA2fU10lixZYv7er18/jB8/Ht988w1XEd2/f//AgxAIBAKB4Jgj2xDxKhpeng116tTBgAEDctqmr4kOLfbFMnnyZMc2SZKguSQLEwgEAoFAwCBJWbquqt5E5x//+AcWLVqEevXqYcSIETjvvPPMfbt378ZZZ52FzZs3O847fPgwatasifnz5+d8TL7usK7rvn7EJIdmwJVzmqfnaMNfbhDvDKisuZqfGZmYP0H2WccpWX5ygb1Nt7Z5mX8J0R15cBzn6cQQA2ua5RrpebIsQZYlhCLONQx7X3njcheQpt5nNa5yXYSG2y6V8drN/USvMVuUkMJ81nL7/MoLe5ZplqDuGftnQk+6Di1t+rjXrs+cKU3g9/PEuqPYd82R4yfpXkvntvI6RlA1eeSRRzB+/Hi0adMG0WgUF154IaZNm2bu1zQNP/30E/fcBg0aoG/fvpgzZw5++eWXnI4r8L/Gzz77LLeOVTwex7PPPpuTQQkEAoFAUO2heXSy+alCPPHEE3jyySfx2GOP4bnnnsPy5csxa9Ys3HvvvWnP3bhxIy688EK8/vrrKCoqwplnnom//e1v+Oqrr7IeV+CJzpAhQ3DgwAHH9kOHDmHIkCFZD+hox57Z81i38ARdIbutHu0iV9P6wfxkO66KyoZL4Y1bklI1sdj3hq6w3axFRvZjyVzZ6zqBHFJMS48123EqVFkOKWmtWqylBuBb2Iz9fKuC6/Xbx+XzOVKxen7NAoTCIca6k93zK4+K6H7ghfu7fQ7sx7KWHLsVJUhmafP9YkTyqXfHX20rLwuM9Zr4NQXZ9/2YseTQ8PJsfqoQW7ZsQdeuXc2/zznnHHzwwQeYN28eJk6c6HluixYt8Ne//hXvvfcedu3ahXHjxmH9+vX4wx/+gKKiIowePRoffPBBRp6jwHeJEMLNTvjzzz+jsLAw8AAEAoFAIBAc/TRo0ADbtm2zbGvXrh0++OADzJ8/H+PHj/fVTmFhIa655hq89NJL2L17N5544gnouo4hQ4agYcOG+Oc//xloXL7Dyzt16gRJkiBJEs4//3wzCRBg+N22bNmCCy64IFDn1REvy011Dz/PxGrlVYFaVzUzZJq1FFB9Sja4h7x7Vzz3YzVwqyLudgwvySEhOsCsXGRF4a7SU5XgDQuOeTxNvJg8Tw4pyRU3sehpjGtiNRGciurJ99aiwbAlvWOtPm51l9zIRLMTjkaghI3voEQsDp2Npy8n0iUM9K7x5P3e+Hmf7UkDWUtO0LYcbTPPiE1dYIxbZn7n9+OVWNN+jNdx1fn7kUs1KwFx7rnn4vXXX8fvf/97y/a2bdvi/fffR8+ePQO3GQqF0Lt3b/Tu3RuPPvoovvjii8BWHd8THRp5tXbtWvTp0wc1a9Y090UiEbRs2RKXXXZZoM4FAoFAIDhmqWYJA++44w58/vnn3H3t2rXD8uXL8dprr3m24abJkSQJeXl5aNeuHaLRaKBx+Z7o3HfffdA0DS1atECfPn3QtGnTQB0JBAKBQCBgkLLU2VSxiU6HDh3QoUMH1/3t2rVDu3btPNvo2LGjZ/HOcDiMq666Ck888QTy8vJ8jStQZmRFUTBixAhs2LAhyGkChuoqtgvqtmLN8F6hyNBlmLWUaF+SDAImUzCnZpI/V4B7FtdMhK3U5J/OFcNeL81abBflOsLObfWo2CzCtD9d1Uz3lT1Dbup+M2JVxoWVEoLqXHcU7Zei64T7Lgdxm2QqIJeTwmktoSavQ4aiKMk3gh/SXN4E7S/je2ZzX7mFcPtri1h/l/kuxnQZs41jUue5uaP9fEeIjMjVh7KyMnz11VfYtWsXdNZtKUm4+OKLXc9bvHgxbr/9dowfPx5nnXUWCCH47LPP8Pe//x333XcfVFXFHXfcgbvvvjttgVBK4BIQ7du3x+bNm1FUVBT0VIFAIBAIBJRqptGhvPPOOxg0aBB2797t2JcusfDUqVMxe/Zs9OnTx9zWoUMHHH/88bjnnnuwevVq1KhRA7feeqvviU5gu9fUqVNx22234a233sKOHTtw8OBBy4/AH9Up9Dzd+HkiRrs1xzW0mQmPZsNt7atGx+oU7sn7yiNRIIUN07X/2K9XDilmaLS9DfPa2XpWtuuj29lVuK5q0FXNJvykFi/GiuZ4Js6VuRJSDNFvSOGGqLP/d7sXbtv8WnM8ky7arFyKYtzPdOfZ22f/nw63BJV++sg16aw5fu+xvZ0gljb795dXcIF7vzr3JyjZfJ9W2vcx1ehk81MFueWWW3DFFVdgx44dgRMLr1u3Di1atHBsb9GiBdatWwfAcG/t2LHD93gCW3RoZFX//v0tfjQadi6yIwsEAoFAcOxC8+A0btw48Llt2rTBAw88gHnz5iESiQAAEokEHnjgAbRp0wYAsH379kBtB57oLF++POgpAoFAIBAI7FRT19Xll1+OFStW4He/+13gcx9//HH0798fxx9/PDp06ABJkvDVV19B0zS89dZbAIDNmzdj5MiRvtuUCCEVq9qrYA4ePIjCwkKc3fdthMI1Kns4aXHLNXE0CPN4Jl8vl4PpNmCyAdvdMo72qODXxYXlp/9c4DfrrOv5rlmI+e4D+7U5ct1IMkKRECRJhqZp3i4ll3xO7POjmahlRYGuaZAVBWpCdbi4MhHV+skv5HZ/JFk26nkpTpcf0XWjDpjPbL5+8XqvMnFbKSHFvK+amj4nVNDcPX5cT2xOJIfrNEM3ntdnke0nyLPxyrdD32M56VoNRSMIhUNIxOLQEs68SvZ+3dpWE0fw6dt9ceDAAdSuXdv3WINA/1369V9zUbtGfubtHClF40tGlOtYM6GkpARXXHEFGjZsiPbt2yMcDlv2jxo1yvP8w4cP4/nnn8d3330HQgjatGmDgQMHolatWhmNJ7BFBwD279+Pp59+Ghs2bIAkSWjbti2GDh0qMiMLBAKBQHCM88ILL+Ddd99Ffn4+VqxYYZG5SJKUdqJTs2ZNjBgxwrJt3759+M9//uNIRuiHwBOdNWvWoE+fPsjPzzdDv2bOnImpU6di6dKlOP300wMPoiJghYnZZ9X1V48nE6pzZmU2FNpOuqyz5nGEn70XKD/rjR94Ie3ZjMftXvEsOezvkfyokSk4aS0wzpFtlhd/75CReVczrSehcMi06rCh7EabHhXXbYJpem08qxghOpTk6s+1urUkJ/uzWpckWYakE8iyDq2cPyZ+31ceRn0q/5mc3friZaD2iyRL0NXs9JRe36fs54FnNfJu1/1YJRwyrXoUXSdQFAWR/Cjyaubj0J4DkGQZaizuu93KgkgSSBbup2zOLU/uvvtuTJ48GXfccQfkgPfdrTj4xo0b8fjjj2P//v2BxxN4ojN27Fj0798fTz75pFkGQlVV3HjjjRgzZgw+/PDDwIMQCAQCgeCYQ5KyzIxcNSc68XgcV111VeBJDgCMHj3a8remaTh8+DAkSQqky2EJPIo1a9bg9ttvt9S6CoVCmDBhAtasWZPRICqSikoklmmIpBvVxZqTiY6DFzru1U95woaKs7iFHbtXoSbcH6++vKw5gPGFkGBWsUFDZdl31l5bDDAqndMQblo7y+3avcbptg0wNEGyLDmq1VsqW3Prg1k/b/awfd79LW+8qsFn8/2Qq2tx179k1nbKgpOqUh5Um+PnfbVbcwBqCQyB6ATRgnzkFeQjkh+tVCvvsczgwYPx8ssvZ3Tuvn37LD8HDx7Er7/+igEDBphRWEEJbNGpXbs2tm7daoZ5UbZt25axUEggEAgEgmOOalbriqJpGmbMmIF3330XHTp0cIiRZ86cGai9hg0bYvLkyTjrrLPw97//PfB4Ak90rrrqKtxwww146KGH0LVrV0iShI8++gjjx4/HNddcE3gAAoFAIBAci1RXjc66devQqVMnAMDXX39t2edVx8qLgwcPokGDBhmdG3ii89BDD0GSJAwaNAiqagjqwuEw/vKXv+CBBx7IaBAVQbbm3szNzMGEeF7w2qkK7qxc1Llyq0/FmsPZLLZuGXaD1k9yg9e+Vz0gx/kBQoLdxmx3W6XrV1c1qDBq0qX60k23T6auA10nkBjhqiTJCIUli5ssW9j7lXonfLo5bVmgJRjhxrKsQze986kM20HcGZl+Z+TaZZI2y3CG771baLlXf86s5Kx7iji+8/wK4f1kWCc6sbhVia5bwvURDoEQHTrRDTeookALIPyucKqpRSebfHtLlixxbNu5cydmzZqFSy+91LK/f//+vtoMPNGJRCKYPXs2pk2bhk2bNoEQgpNOOgkFBQVBmxIIBAKBQFCN2bZtGyRJwvHHH+/r+D/96U+u+7799lvMmjULAAJVYsh4OlhQUID27dujQ4cO1XaSk61osCKo7HpZ6frNpH6OWd+JI+BNJ8jNBntdKnYbwKx2XSqUB6mvZPlhK5Uzlkfah5sA2t6mcb5RS4aXNM/Pe2J/31mxJ63PlbKsZX/vaZu0ppbChKyzolO7AFXXCXSNn2yPrewuM2OlYyfJc7PFzepxtApggyYKJJx3LPO+/b3f7HtuWisl2UgUqepIxBJIxBLQ4qr5jN0+k1XiOdHMyNn8VEFUVcU999yDwsJCtGzZEi1atEBhYSHuvvtuJBIJz3PttbHcfoKUmwps0Tly5AgeeOABvP/++47y64CRmlkgEAgEAkEaZNn4yeb8Ksgtt9yCxYsXY8aMGTjnnHMAAJ988gkmTZqE3bt3Y+7cuRU6nsATnRtvvBErV67Eddddh6ZNm2YsLDoayFVIdy51Ol59VDR+r8mZSI+xYCR96fz2rXoBN52KxSKShUaHtaC49WHR7LgkveO27TMEW4ka94JaInSdGNXIXcphsO0bK1e+jot9l/2812aYuaaZCfzodtqXLEsZJ+aTQ0YYuXlfdeK4x5YQd+Z3WgJCDinQ4qrF0se7z7IsWc6XZAnQZYeFkBcG7aYd4xGkcndFWxN4CSjTlSHh76PWVvf9uUoOmDrGfl9T77FMrTW6bFnhE6InrZreZWFylURWYOXFF1/ESy+9hL59+5rbOnTogBNOOAFXX321Y6Izbtw4/O1vf0ONGv7KNE2cOBHjx49HvXr1fB0feKLz9ttv4//+7//QrVu3oKdy2b59O26//Xa8/fbbKC0tRevWrfH000/jjDPOcBw7fPhwzJs3Dw8//DDGjBmTk/4FAoFAIKgMqmvUVV5eHlq2bOnY3rJlS24unNmzZ2PixIm+JzqPP/44hg0bVn4Tnbp16/puPB379u1Dt27d0LNnT7z99tto1KgRNm3ahDp16jiOfeONN/Df//4XzZo1y0nfAoFAIBBUKtU06urmm2/G3/72N8yfPx/RaBQAEIvFMHXqVNxyyy2O4wkhaN26tW8P0ZEjRwKNJ/BE529/+xvuvfdeLFy4MGsR8vTp09G8eXPMnz/f3MabBW7fvh233HIL3n33XfTr1y+rPo8m7JWi2e2VWdk8GzecPRSVKxK0uTC8hIR2k7MZZpoFFhGwvW89SKZh/yHB9r6oq0VzEe65heX7eRdca0gxLi3aphIOQ1EUx31gBalBoRmWuWNj7gnrvmMxa3Bxam25uZrs7iuzL529j5m7mIO4rYISxEXKwrqrgtbBCvJOsS6/8nRb2f+mrk9JlqEm4ub7YBEs27KxVwkB8jHAl19+iffffx/HH388TjvtNADA//73P8TjcZx//vkYMGCAeeyiRYsscwC/NG7c2PexgSc6f//737Fp0yY0btwYLVu2dGQ8/OKLL3y3tWTJEvTp0wdXXHEFVq5cieOOOw4jR47EsGHDzGN0Xcd1112H8ePHo127dmnbjMViiMVi5t8HDx70PR6BQCAQCCoKIskgWVhlsjm3PKlTpw4uu+wyy7bmzZu7Hj948OByHU/giY5XjHtQNm/ejDlz5mDcuHG48847sXr1aowaNQrRaBSDBg0CYFh9QqFQ2rLulGnTpuH+++/P2RiD1GlJ10Yuz/M7nlwJqnNhxUm34rOvJN1WsdxKznTlmn3UsLVdh2DV/4rQzepktqHLjoSERDcuwG7tYbfZ74vbmNh31yqwtVoDrckYZUdVa/pc7CG+WiK9xUqSjLBuXdVMsbSbNYdeGxWSuoWX0+O0uP9EcNYkc6nwczrGbKqRZ2MlcEseaU9x4NmGi7UmF8kzg1gInckHnZZoul0Jh1zTA3j3ZTwnJaSYVlBd1SzvB00q6FZjrkpZdbINEa+iGh2/FpqPP/4YsVjMdG+VF4EnOvfdd5+v41588UX079/fU1yk6zo6d+6M4uJiAECnTp2wfv16zJkzB4MGDcLnn3+O2bNn44svvvDtu5s4cSLGjRtn/n3w4EHPmaRAIBAIBJUBQZYWncxT4VUJ+vbti7Vr1+LEE08s137K7S4NHz4cv/76q+cxTZs2Rdu2bS3bTjnlFGzduhUA8J///Ae7du3CCSecgFAohFAohJ9++gm33norV8sDANFoFLVr17b8CAQCgUAgqFoQUjFh/YEtOn7xcwHdunXDxo0bLdu+++47tGjRAgBw3XXX4Y9//KNlf58+fXDddddhyJAhuRusDzJ1AeUyf07Q/r3GHMQlV561uowxON0ivNwo1IXCzY0RMJcOzx3g6gLIyq0hg+b9sG4zAiZ0lZ9p2dVtZ6t/xd4b57j5rkJ2eygcNtvRNM3M2UPdAtTNRN1OfusWAUA4GjFdV1J+Ulisaub99HJb2F1VLKwrL6hIlz4P1n3FEvwzltl74ZpV2T4ej9xO7P6guNWKcz2e813CEyF7uUhT25P5nnwEDdiFxPRc+n4a2b4BoifdqZpmCvglWYJEJEcb/Ovzny8pp1RT11VVo9wmOn4YO3YsunbtiuLiYlx55ZVYvXo15s2bh3nz5gEA6tevj/r161vOCYfDaNKkCU4++eTKGLJAIBAIBLlBkrIML69eEx1VVZGXl4e1a9fi1FNPzVm7lTrROfPMM7F48WJMnDgRkydPRlFREWbNmoVrr722MoflSi6EyRWFm/XEb1h6tuLjoG3RY9iQYiqUNfZbBcE8KwvRSdoVsOcYyiGCgRX2smGvxt9yMiRW4R5vGVsy+ytvu1u9Jxoy7bWdyBLC4TxIsoRYSSl0GCH61veEtm8XTruvgCP50eRq2xl27TpmFwuNm3WHa/2w3SN+RmCrVYfd7l/kn7lw2TPzcBphca7eUT+WnHTWO7/7eTXW3NIm8DCtvVLqO8L+fSDJCmjtLft3h70dv/0JKp5QKIQWLVoEqmPlh0pXMl100UVYt24dysrKsGHDBktoOY8ff/xRZEUWCAQCwVEPzYyczU82TJs2DZIkWf5NJYRg0qRJaNasGfLz89GjRw+sX78+yyvlwwsyuvvuuzFx4kTs3bs3Z/1UqkXnWCDbOlfZ6IL8+Mt552VCECuOXXtjJPVKrtoUIy9TKCxBTahmuLWjP6JbQskdYaRIhjP7rPqdbszpcL+n/PbZ6stAKqGdl4XGbZtbQkU3bRG7XdcJ4mVliBbkQwmHoTEWJVmWLHodavGgeh7ufSA68mrWQDgahq7q5jh0Tp0l1gLnBg0Ld7XqsDoljvWGvRZrvSu+VScdXvWh/FStz8SaE/SYdLD6nCD6s6A6xZQWzfouBuvTnjBQZpJlpiyGiqKASAQagFAydN2oEwdADmily3GKijSdZum6yvzczz77DPPmzUOHDh0s22fMmIGZM2diwYIFaN26NaZMmYJevXph48aNqFWrlmt7S5YsQd++fR259bzgaXkfeeQR/PDDD2jWrBlatGjhiNwOkquPUm4TnRYtWgS6YIFAIBAIBOXP4cOHce211+LJJ5/ElClTzO2EEMyaNQt33XWXmb144cKFaNy4MV544QUMHz7ctc1LL70UO3fuRMOGDaEoCnbs2IFGjRp5juPQoUOObbnM1UcJPNHZtm0bJEnC8ccfDwBYvXo1XnjhBbRt2xY33XSTedzXX3+du1EKBAKBQFDNIJBAkEXCyQzPvfnmm9GvXz/88Y9/tEx0tmzZgp07d6J3797mtmg0iu7du2PVqlWeE52GDRvi008/xcUXXwxCiO/cd3b85uoLQuCJzsCBA3HTTTfhuuuuw86dO9GrVy+0a9cOzz//PHbu3Il7770354M82gnqQsoGtn230GK348tjDDyo6douVGVrFwFAXkE+5JAMXdWhJhJIxOLmPramVTr3Qzr3TWqbPzdjJq4/1lUlyxIgK6arRY2rIJzsy27iap4rwOs67fusNZ5SxyqKgkh+HrREwrNmGM9tRYgOJRxGJL/ADEmP5EehJhKQZAkyZKgJFVZZoG5mh6aZkO2uGepysmdKZq+JdQnZ61l5YXdfsRm8ef14t+UUy9v3V0r4sg02U3X6zw1P/B4sHJ99RmYmY1gF+uw7yhWPM65TIClah1F/TVGUpHheghpLQFEUJGwBALnOlp5LclUCwl7qKBqNumYbfumll/DFF1/gs88+c+zbuXMnAGcdqcaNG+Onn37yHMuIESNwySWXQJIkSJKEJk2auB6ba7FxOgJPdL7++mucddZZAIBXXnkFp556Kj7++GMsXboUI0aMEBMdgUAgEAgqEHv2//vuuw+TJk1yHLdt2zaMHj0aS5cuRV5enmt7dmuMHwvNpEmTcPXVV+OHH35A//79MX/+fNSpU8fX+OvVq4fvvvsODRo0QN26dT37ykSkHHiik0gkzJnie++9h/79+wMA2rRpgx07dgQeQFUn11aX8gxNT29J4dekyZRs2iM6sVoNZEOQLIVDkEMK1FgcWrLdSH4UeTXzUXLoCMoOlZjWHxnwrFROdGIIEXWZWVk6LRmAe6VsHn5FmfZK4AY6NJ21askIRyOWVSwNj3ULKQeAUCRkjtVImOYMIwdSIdv2GmJs3SklEnJYHAjHikKTCdqFvYToiOTlGQkCZclcYRsrOxlawr0mFV1x0368BMVu2EXNwYTxmYmSgxKkkn15o6tass6U1YJJzPcul0lOnRZFOWnxo59d1yR+kvNza0fTNLAWYvrdoKuALOvQIUPyIXrnjblCyJEYedu2bZYqAG7WnM8//xy7du3CGWecYW7TNA0ffvghHnvsMTOB786dO9G0aVPzmF27dvmqFt6mTRu0adMG9913H6644goUFBT4uoyHH37YFDrPmjXL1zlBCDzRadeuHebOnYt+/fph2bJl+Nvf/gYA+OWXXxzJ/QQCgUAgEPDJNkScnuu33NH555+PdevWWbYNGTIEbdq0we23344TTzwRTZo0wbJly9CpUycAQDwex8qVKzF9+nTf46I6m99++w0bN26EJElo3bo1GjZsyD2erV5eHpXMA090pk+fjksvvRQPPvggBg8ejNNOOw2AEVpGXVoCgUAgEAi8yZVGxy+1atVyZByuUaMG6tevb24fM2YMiouL0apVK7Rq1QrFxcUoKCjAwIEDffdTUlKCW265Bc8995ypx1EUBYMGDcKjjz7q29JTWlqKhC25ZCb1KwNPdHr06IHdu3fj4MGDqFu3rrn9pptu8j34qs7RkPnYTpDsw9niJq62/u7MiJu+XQJd0xAKhxHJy0NZSSniug5N06AohjuLmqBpjSgerBuG6MTIqUOSQkdd4+bz0HR/94d112XynthN+UTXodpcgLIsQdNT18Lmr6Gw+WWM/Duy6f5hc+FEC/IRL41Z2qF9yZxnRHQdsqK4Zi6mbjUWWVFMt5VV9GzcXyoot143sZzPuzY3CNFN9wdLypUXPIM5+zwyfbZubRrtZpc/pzxg89AQ273zI54Omlmdl7naco5bfbfku2o+X5oHKPm3Bg3QYIrg/Y6RR1UQjFc2EyZMQGlpKUaOHIl9+/ahS5cuWLp0qWcOHTtjx47FypUrsWTJEnTr1g0A8NFHH2HUqFG49dZbMWfOHNdzjxw5gttvvx2vvPIK9uzZ49ifiZA5ozw6hBB8/vnn2LRpEwYOHIhatWohEolUm4mOQCAQCATlThUo6rlixQpbkxImTZrEFTP75fXXX8drr72GHj16mNsuvPBC5Ofn48orr/Sc6EyYMAHLly/HP/7xDwwaNAiPP/44tm/fjieeeAIPPPBARuMJPNH56aefcMEFF2Dr1q2IxWLo1asXatWqhRkzZqCsrAxz587NaCBVhaPRmlOReIVWO7KYJoWlvJpUgFNILCVXbYlYPBmWbKzcYkdKOfWKJEhQUoJjW7+Sksr8SvvU9YStDdm09BjHOOtS2cdM97nV9uFZuOhC1W6VYY81wn21ZPitjFA4bFpQzLHKqTZomynhsgwlWYkciEONGwLgRCxuhu3LybZZ6D77Kon+TS0n9DhdVy33IxQJIVqQDwBQwqFkPzIieRHEy+IWC5asy9CTz8TtPfKyblgtPZolwy/PClQeqRP84ppBuZKsN0DSgqnwx+CWssC9rcwsJQSaYcHjhJAD1rHRMPL0bTszPFORuyTL0DV/dbUqp3p5dq6rrITM5UhJSQlXvNyoUSOUlJR4nvvmm2/i2WefRY8ePTB06FD8/ve/x0knnYQWLVrgn//8Z0a1MAPfpdGjR6Nz587Yt28f8vPzze2XXnop3n///cADEAgEAoFAUH0455xzcN9996GsrMzcVlpaivvvvx/nnHOO57l79+5FUVERAEOPQ8PJzz33XHz44YcZjSewReejjz7Cxx9/jEgkYtneokULbN++PaNBVATCUpMd3v5499BgulLTNc1p8WET4+kEmq6a1hJjdaVb2mHbTq3WU0nn6HFu+gLeCt+oFq459zEGDstKkQnV5ifocw/PpVYZO7IsmQkDJVlGjULDF64nQ2c1TTNDuzXdsK6w/UiyDF3VENfLEK1h1KwCDK2OYlpirJoexxgk2axHRZhjadsUWkcIAJRwGPk1Cyz9AEA4Ek4mB3RP2EZ1MJnoYYhuhA3LSUueJdTdETKdPlzaPhb2nCBjc3sv2FD/ysBSNd7yGbJqiHJlzUmb5oLzHUFs754lHJ2tZ8VJI0DTC9D3lNjeBz9UljansjIjlzezZ8/GBRdcgOOPPx6nnXYaJEnC2rVrkZeXh3fffdfz3BNPPBE//vgjWrRogbZt2+KVV17BWWedhTfffNN3Xh47gSc6elIcaufnn38OJFYSCAQCgeBYpqKjriqKU089Fd9//z2ef/55fPvttyCE4Oqrr8a1115r8QTxGDJkCP73v/+he/fumDhxIvr164dHH30Uqqpi5syZGY0n8ESnV69emDVrFubNmwfAEC4dPnwY9913Hy688MKMBiEQCAQCgaD6kJ+fj2HDhnke069fPzz11FOW5IRjx441f+/Zsye+/fZbrFmzBr/73e/MdDZBCTzRefjhh9GzZ0+0bdsWZWVlGDhwIL7//ns0aNAAL774YkaDqAj8ChNzFVpa0eQ6o6kXbD9smK/dJM2GAStyyJHBNtWeNRwcVDCpOwXOAHUf6UlXkJHZ1hQmgzHD63Iy47K7WdpfSDlzvqw7wlvZ6/CDpeZV8npCYRmapiEUDiERN2p6UXcSDZvVVSAUTtaGguww3YdCEXMchguPCeFm+lKUlNhYVzVDaGzTfMpMbSJHCHLy+qMFRgp5JaQgHAmbaQCUsGLJnSEn77GaSEBP6JYMtkFdBvbPJuu2omH5dreeH9gaZGybmbqw7PesvNxWFreUhwvPjpcbmd9P+X0npstuzrpGeZ891u3lJky3t8m7/soRIyPLqKucjaRS+PDDD1FaWup5zAknnIATTjjBsb19+/b497//7Sh/wSPwRKdZs2ZYu3YtXnzxRXzxxRfQdR033HCDL5OUQCAQCAQCAwIZJHhMkOX8Y5Uff/zRkUzQjYzy6OTn52Po0KEYOnRoJqdXaY5Gaw5QfqG0bvWs7NWwJUm2iArtyb/sqyVD9GntyxKaLcmOPnjtWs/jVJ1OWnV4YwiKX4uNH4iuM0kKUytaNaECCdVigdGSfUdrGBaURCwBSdWgJkXb1HKmJ0XdRNfN+2UXCtPtVNhpiDiNfVTwDICbkM+ses1Y6hKxOMJRw5KUV2CtryMrNAbeGH9EiSb70QEFpviZHZvXapz9bFJBMoubKDkTgbIdP1W7HZbJCoBXwZ4kE0jyjvPCrzUnaAXzIH35torSGm7MO6Ql63el68ONqlJhXpB7MvrX8bnnnsO5556LZs2amaXbH374YfzrX//K6eAEAoFAIKiu0FpX2fwI0hN4ojNnzhyMGzcOffv2xb59+0xffN26dcul6mguoaGj9Mdt29FGZVhzJEk2V/VuqdtT1YmN/Voi4Z0sTncmF3Qck7RCuIWPs9YLdqzm7wGtMvQcnnXJdYwB3yPZNiaiG5YNndE0qQkV8dIYiE6g0OrgySSNRrVw2Qj9VjWoCRWaqrmOQ0+GrNPf2TFTy5yxLRlmHlIgM89YCYcRyY9ClmUzSWAinkDJoVKUHCpF6eEyUwfB0/gAhjVHltwtMjx4lgT759ZuubHD+9zbsT8Pt7EE1QGVN65VwDOwRLrd21xca3BdlvWzwP6ffk50xpJGf9hj07XPnlOR0KirbH4E6Ql8lx599FE8+eSTuOuuuxAKpTxfnTt3dlRFFQgEAoFAwIfm0cnmR5CewBOdLVu2mOXbWaLRKI4cOZKTQQkEAoFAIKje3HnnnahXr1659xNYjFxUVIS1a9eiRYsWlu1vv/022rZtm7OB5Rqi644Q2qAuhqoWel6eLitqpuZVYDZr5tjCaO11agDDfSUjKWRlXFmuNbOkVMg4Pdao8WQVCtJ+WTcDWxcq0+eUS8ExkBqfl1tG14klY7Hd/cbey3hpDEokZHEB0vdATah8kSwj2rSPIxQOMeLVVHZgXdMsLklJliARCZH8qNmmcX0y9GSfGpMNOVqQB1mSjVDzhAZN05LjS7rDJNmSeJSXhJTnOnV7tuyx7DHO/ztDi+n7Tp9DEKx9VZ6QNbBLVpJdw7rTiY/LC16tPMuYZIX7HvPE5Y5UF8nn7khBUclU14SBAPDdd99hxYoV2LVrl/kdQbn33nsBABMnTsy4/SeeeIJbT4tH4InO+PHjcfPNN6OsrAyEEKxevRovvvgipk2bhqeeeirwYAUCgUAgOBbJVlBcVcXITz75JP7yl7+gQYMGaNKkCSRmnJIkmRMdN95//328//773EnSM888AwAYOHCg7/EEnugMGTIEqqpiwoQJKCkpwcCBA3Hcccdh9uzZuPrqq4M2d1RRVaw52ayweBaa1N98awAARxVyM9w7aSaz1qAhlt+JlKq2nRqHMxGbJMuG8FWWoKqGhUhJJnLT4awTZbfmyIyVh02oR8PMzTG7JEfzs8KzC6/9hKRKUqouEwDL2NhrUBTFYtlgRdS6bgiMQ+FUrS0lpHBFx34tC7pOICv0HN0MEzcSF4ZNwTC9L4qimJWnjXupQGXyWBhJAGWEIxHoqg6NKXKlaykROU0sSO+d3bIQNDmfHFIQjkaQiMU9zw2yinezxPmxMlWlMGW3hJt23ELu3cTdbokUg4ftB/uH2m7JYTE+91bs30WCimHKlCmYOnUqbr/99sDn3n///Zg8eTI6d+6Mpk2bWiZJmRJooqOqKv75z3/i4osvxrBhw7B7927ouo5GjRplPRCBQCAQCI4lqmtRz3379uGKK67I6Ny5c+diwYIFuO6663I2nkDT71AohL/85S+IxWIAgAYNGohJjkAgEAgEGVBdw8uvuOIKLF26NKNz4/E4unbtmtPxBHZddenSBV9++aVDjFzVqSq5LrIh02vgmYd5dXFY8bE1D4psioHtIj+eoNHuHtM1zVX4aK+bRXQdiYRmjk9LJCBHI2a9J8d1cLLpUlcR6yKi29nxZytGpOe7tUPdHzSLqxJJfdy0uAotKfiVZMnIiAyr28rerhIyXFt2QWYQVxXreiHJzMqpbLpGziFNM8TD9ucoh5K1r5CqX8WKO3WiQ5FC0DTNFCmrSYEye4y1XT95TtzyLiVdeEk3WDgaQby0zNe94PUR5PNlz7xclWCfJ49UbSi7y9O/G4qfGdpvXTF/7jR72zxBf+rdNzKNA3DNsyWoOE466STcc889+PTTT9G+fXuEw2HL/lGjRrmee+ONN+KFF17APffck7PxBJ7ojBw5Erfeeit+/vlnnHHGGahRo4Zlf4cOHXI2OIFAIBAIqivV1XU1b9481KxZEytXrsTKlSst+yRJ8pzolJWVYd68eXjvvffQoUMHxyRp5syZgccTeKJz1VVXAbDOyCRJAiEEkiRxw0SrClV1BeZGLi04LHxrjrOabypDru6w5vitVeNVFdkubiREB9GcAkJaTykUjZgVvXXVeM+M43XLio8af+yi5ExxW22mE7eyAmlN00BiTPZhWUJINj5+ckixfBDVhIpQWEJezQLUrlcbRw4cwb6du0FoX7IhQqZjSEciFnes8s2Q6GSVeCBZgwqpeyvJimGlgWExCYXDUBMJyIoCWZGhJlSzXSUcQij5O9EJVM04zqg/ZFj1iE5Szy9Hq25JlpL1ujRHaDlLrlb4vNB1P33ZrYnlTXmETqcTJtPtbt9bfiw5XuN21iyzfk8EveaqYPUhyDK8vIoW9dyyZUvG53711Vfo2LEjAODrr7+27MtUmBx4opPNBQgEAoFAIDh2ICSZ38znJGX58uU5H0Pgic7Rps3hUdUS/1H8WnD4Ia7BqhOz109Dhh3HM6t951itlprUKheeFqKUPoC4jt+Z0M2w6siKAjls1HRKJPUmhnUkmYTO4x7wQn7T6QIAmKHUQa06vJWtGlfNNi31txKyqTORQwoKkkn5FEVBvCyOSH4EoUjItFgZIeXB6wW5jZeOh4aK05Bt+juRDH1OvDRmWHbyQtA1HWoskQpBD6f0SkQnxrNm6xMl9Tn28QCMpsqjDprXdVHrlgzjHdA8mmCrfNuRWSumi/UliBXHjiUBXjlZd5yfMYlrTfIzXjerjdex/BB190SAbsd4jYX3t7Gt8i00QamurisAePbZZ/Hggw/i+++/BwC0bt0a48ePz2k0lV8CT3SWLFnC3S5JEvLy8nDSSSehqKgo64EJBAKBQFCdMRIGZpMZuWpOdGbOnIl77rkHt9xyC7p16wZCCD7++GOMGDECu3fvxtixYy3HDxgwAAsWLEDt2rUxYMAAz7YXLVoUeDyBJzp/+tOfTE0OC6vTOffcc/HGG2+gbt26gQckEAgEAsGxQHW16Dz66KOYM2cOBg0aZG675JJL0K5dO0yaNMkx0SksLDRdW4WFhTkfT+CJzrJly3DXXXdh6tSpOOusswAAq1evxt1334177rkHhYWFGD58OG677TY8/fTTOR9wrqhs91UmQmM383CmbitTnJ10XdCwTLu5O2imV0O8nHJhsaHSshy2jMF0qbiY8iVJBmRjfPHSGIhOEIYRbm44LAyxrJt7iRUk0wzJXthDqv24t7yggmQaHk90pzuQ6LpxLRqAhAo1FkcoGoGaUKFpUYSj4eQ4NFMYng1295UxRkMIrusEiqIkxb3J7MCyBKiAHEqKljUdaiLltgpFw5BlGZqqWepd0ffGK0BBDhl9GfeEl6qAH0BgvwdGagKSJgSZtukvAzYdN3VD5vL7ItfiZPPzyxF560yqAPN9lo3PaMb92UTZflxWlv49jvHCzzOQJBmE+y5VnYzV1Z0dO3Zwc+F07doVO3bscGyfP38+93cvPv74Y3Tu3BnRaDTtsYG/xUePHo2ZM2fi/PPPR61atVCrVi2cf/75eOihhzB+/Hh069YNs2bNwrJly4I2LRAIBALBMQOtdZXNT1XkpJNOwiuvvOLY/vLLL6NVq1Y56aNv377Yvn27r2MDW3Q2bdqE2rVrO7bXrl0bmzdvBgC0atUKu3fvDtp0heMWLpnrtrMlG0uO7z6SFhE5zIiC7eXeLWOyr5KdK17jb2N1JRHJEBNTa1Hy/2oiYYYe25GZJIE0caGmaVCIjlDYeHV1M6TZvYYXj3RJ1egxXm0Gvf+0UjghuimglWgtL90qqI6XGtnHZUbUm401x5kIMmmdYdqj1idCdMu911UNcrLGliRLyZpSxKyDpSVUxG1WG1mXzdByt5U0tRoR5tqtNcrSVy1P7XMms0x/T7zTTbDPJV0NrYrAS8zMCpAt213eWwlK8nPDT/zHWrHcw8UzDyN3O84v3O8Lah0E33pTFa05hEggJIv7kMW55cn999+Pq666Ch9++CG6desGSZLw0Ucf4f333+dOgDLBLp/xIvC/xmeccQbGjx+P3377zdz222+/YcKECTjzzDMBAN9//z2OP/54X+1t374df/7zn1G/fn0UFBSgY8eO+PzzzwEAiUQCt99+O9q3b48aNWqgWbNmGDRoEH755ZegwxYIBAKBQFABXHbZZfjvf/+LBg0a4I033sCiRYvQoEEDrF69GpdeemmFjyewRefpp5/GJZdcguOPPx7NmzeHJEnYunUrTjzxRPzrX/8CABw+fNhX+uZ9+/ahW7du6NmzJ95++200atQImzZtQp06dQAAJSUl+OKLL3DPPffgtNNOw759+zBmzBj0798fa9asCTp0T6paiQi30M5srTjsatnht3fBWNlpDl2BfbXHrpB591NnVvhKSDH/ryVU7jm0L1lRoIQUUz8SL40hkhc1tD+aBg0a4JIY0FEewiOMnXfdqetJrRC5oeouFi1Jli33Vw4pILrkCKVmrQdstfN4WRkiyDMtQJnCjp21IhFdt9xbwJpCX9M0hKMRIzRcgymjIcnjadg4fa5y8lrZhICsVcde5Zv250cLxZatoOfTNjWkrGH246xtWMtPsEkGqVbJqSNJr88x9WzlWHuI1dI59vm0VthTRrhbYoNZud0+SxVhyUntS31OqbavKlpxrMhZJv2rWv9usZxxxhl4/vnnK3sYADKY6Jx88snYsGED3n33XXz33XcghKBNmzbo1auXWf/mT3/6k6+2pk+fjubNm1vERy1btjR/LywsdGh9Hn30UZx11lnYunUrTjjhhKDDFwgEAoGgSlCdoq4OHjxoyloOHjzoeSxP/lKeBJ7oAEYo+QUXXIAePXogGo1mnJZ5yZIl6NOnD6644gqsXLkSxx13HEaOHIlhw4a5nnPgwAFIkmRafezEYjGzujqQ/oYLBAKBQCDIjrp162LHjh1o1KgR6tSpw50X5LJUVJB5R+CJjq7rmDp1KubOnYtff/0V3333HU488UTcc889aNmyJW644QbfbW3evBlz5szBuHHjcOedd2L16tUYNWoUotGoJf6eUlZWhjvuuAMDBw50nRFOmzYN999/f9DLqhKkqwgcxORryTzLnGe4TmwiPUIzDHNEhEk3BxihH7uP53Ji/1aSomFTUEt0U+QshxRIsgyFCUu2tJM0eyshJSmOTWbAZaqGy8k6TEaV7KTLgnEjKIpxfTpj4g0qPE9dZ6qWE70me+0oHoToUJKF6aiImt6jeGmZtR6XrJhh8PQ64mVGRW63CvCBrgVGhXhVTbkQ2XGpCdXILqxplmvSGfG0JTQ9OUbq9tJdRLEsPBdgyn3lvEZ7eHeQLLrZunqpiy9dDS02o7LfjNt+Qswd7mIPt5W9Mr3jcxkwM7PfkHHemN3bLB+3FW//0eC+qk4WnQ8++AD16tUDUD5lHOwEESMHnuhMmTIFCxcuxIwZMyyWl/bt2+Phhx8ONNHRdR2dO3dGcXExAKBTp05Yv369I9EQYAiTr776aui6jn/84x+ubU6cOBHjxo0z/z548CCaN2/ue0wCgUAgEFQE1Wmi0717d/P3oqIiU8PLQgjBtm3bctLfoUOHfB8beKLz7LPPYt68eTj//PMxYsQIc3uHDh3w7bffBmqradOmaNu2rWXbKaecgtdff92yLZFI4Morr8SWLVvwwQcfePr3otGorwRCVQWvkNnU78FfZna1rKuaacmhvxsrdGblJRsiRXtfuqqBjpBdBdL6WET3tkTxQjyJZCR2kyUZUICC2jWN5HiJBNS4agpmqVA2FI1YrEmGWFeGziQBpKHbakKFZK9nZEtGZw8r5q1c7deUTpDqntjOsCaFkmMpqFXDCJFPqKaglybiIzpJhZUnRcs04Z5bCL4f5GQdLVpFXFYUs5YVALMuFTUn22tpxY6UmtYfY6RMAshkNXIKFShrsCfbI2AtMtQyZrcs0BBzFqs1x14pW+Kez9tnnJOywqULLweQNrw80yR01FKTzqqTzvJiva9UhO1SjyvZViQvD5IsIVZSyhXVc8fLivil7L6bMqEqW2UEToqKikw3FsvevXtRVFTkcF116tTJtyvqiy++CDyewBOd7du346STTnJs13UdiWRRQL9069YNGzdutGz77rvvLIVD6STn+++/x/Lly1G/fv2gQxYIBAKBoMpRnSw6LFSLY+fw4cPIy8tzbPcbwJQpgSc67dq1w3/+8x9HFfNXX30VnTp1CtTW2LFj0bVrVxQXF+PKK6/E6tWrMW/ePMybNw8AoKoqLr/8cnzxxRd46623oGkadu7cCQCoV68eIpFI0OELBAKBQFAlqG4JA6lsRJIk3HPPPSgoKDD3aZqG//73v+jYsaPjvPvuu69cxxV4onPffffhuuuuw/bt26HrOhYtWoSNGzfi2WefxVtvvRWorTPPPBOLFy/GxIkTMXnyZBQVFWHWrFm49tprAQA///yzWS3dfnOWL1+OHj16BB1+lSGd8Di1LfsXmeZyIdB89eGohcTU/DHHKVMBszO7KusS0Hi5bWCY0dVECHJIQUgOIb9mASRJQsmhI5Z+wlFDxJvQCaSkq0NWFEhSqn6UqquQJBm6rjJuiVQmYCAlKrXkq0ma+mX2Wj1M5MZ1WcWNfgXJ8dIYFEXBwb0HEMmLIhQOQdVTAmwqnDRz1gDQ1ZTbxM1078f1qWtGZmpJks2Mx9SlpOsEuhp3tsu4TKhrS42riOQroBmvJZpFW4NZ90rjvSugLp7UPbP3Ydx3d7G13XVI70mqhhrfTUX7TrXDF9xb2mYExez74oUp6C/HPDrcfm33xPtY435pmoZIJOXedw8qsN4rem2s64+b/yoHWeYzcVW5CcGrco2r6mbR+fLLLwEYFp1169ZZjBGRSASnnXYabrvtNl9tff7559iwYQMkSULbtm0DG1JYAk90Lr74Yrz88ssoLi6GJEm49957cfrpp+PNN99Er169Ag/goosuwkUXXcTd17Jly0DKaoFAIBAIBJUDjbYaMmQIZs+enVG+nF27duHqq6/GihUrUKdOHRBCcODAAfTs2RMvvfQSGjZsGLjNjPLo9OnTB3369Mnk1GOeVI2l8rHeUNxqR6WyE8uWY6VkjSOSXFTb61w5rDY0HF2zrtptPbqE5OqQ5GQ4sqohrmrQVR1KOITCBnWgJlSUHS6FTnToqp7MspsKGSc6QSIeRyQvmrLqJMPT2dBvwCagdrm/1NJDMxLrzP3h113yXiG6CZeptSNWUooYM0YpIZniYCpQNi0jhL9iT91zr3tsfcYEWvJ5Sclq37qjj3SoCTUpoLZazABrNmT7mHWVQIkka33pybrznHvIjpuXeZsXOk4tUzJj3dF0tk1nqgV7jTHzGph6Xyy8bMuZWgp44eLp6q5x20lrfXQeSwMS1Fjc83jXTMce1pxsLTmZ3AN2TDQlg0UsTUXfVdSqU90sOhS/Fch5/PWvf8XBgwexfv16nHLKKQCAb775BoMHD8aoUaPw4osvBm4zo4mOQCAQCASC7KiuEx0A+Oyzz/Dqq69i69atiMetE+tFixa5nvfOO+/gvffeMyc5ANC2bVs8/vjj6N27d0Zj8TXRqVu3ru/Qr71792Y0kGMBN/0Iuy1b3FYtbLVue3JAt1WZVePADymlmg8zZJhYV9xuxgJdtVa2LispNTQ9CRV5NfNRo7AmEvEE4qUxEJ2YIfG0D2rBya9RAEmWEAqHzJpZQSwUvKRq1KrD3W9LHuilzzGTLTJta5oGBal7pmsaoMtm+LxF/0N01/Bmr6rS6SA6gcbombxgdRk0lFlikkDyEgSmaiVZ30UtnrS6JRMo0v/rqmZea7raaX7qTvnR1NDj2ISA9u1sW/bQePazbNZW8iBIfSqetoh3TKYWFEJ0M4WA23tkuUbOtaWsW7qvZ5J2TLYknLzvSN9tBaxiL8g9L730EgYNGoTevXtj2bJl6N27N77//nvs3LkzbVFPXdcRTiZYZQmHw9AzfM98TXRmzZpl/r5nzx5MmTIFffr0wTnnnAMA+OSTT/Duu+/6KuQpEAgEAoEgadHJJuqqilp0iouL8fDDD+Pmm29GrVq1MHv2bBQVFWH48OFo2rSp57nnnXceRo8ejRdffBHNmjUDYKS1GTt2LM4///yMxuNrojN48GDz98suuwyTJ0/GLbfcYm4bNWoUHnvsMbz33nsYO3ZsRgMRCAQCgeBYQocEPYvJSjbnliebNm1Cv379ABhJfI8cOQJJkjB27Ficd955nmWaHnvsMVxyySVo2bKlmV1569ataN++fcbV0ANrdN59911Mnz7dsb1Pnz644447MhpERcCaQynlKU7z5RbIcVZRL7eV5TjCz4LsBq9mDM2Uq7EZi2UpWUuJPY5vYmczJ6uJhHlOvKwMaiIBSZZRs24tSDFD8EwF1FTIqsbihktLiSGaF4UuG2JmTdMAj5pQ1BXhFjZMr0GSnFl76fms+4peizOcOuW2Yt0/ITlkmuflkJGhWIurZo0pANDV1DOjwlqeeyB9OLG3eyuI+JP3binhEJBQHXWxPNthamNJsoRwJAJd05CIxQFo0FSNez/TCZPtrqb018MPi6bbWPeVM32C5Pg7SB0m032spEKinS5f71phdmG63/tPx87WTfPKEM4P16bvs/V8v/i5V0Hr+tFgCkHVoF69emaJhuOOOw5ff/012rdvj/3796OkpMTz3ObNm+OLL77AsmXL8O2334IQgrZt2+KPf/xjxuMJ7OSvX78+Fi9e7Nj+xhtviKzFAoFAIBD4hIqRs/kJwpw5c9ChQwfUrl0btWvXxjnnnIO33347NR5CMGnSJDRr1gz5+fno0aMH1q9fH/i6fv/732PZsmUAgCuvvBKjR4/GsGHDcM011/h2P/Xq1Qt//etfMWrUKHTu3DnwGFgCW3Tuv/9+3HDDDVixYoWp0fn000/xzjvv4KmnnspqMBVNNqvZXLSbS4KOkU0iR3TNIU5mLRZ09cdLIEYtNpIsG3WOkqJSuspTkhYMILWalyQZoUgISiQEXaVJDFMJ7GQlaTFSFNSsWwslB0uQiMdNIbKuE0TyjaR7cnJ1GQqHzFDzIzFnAjzAsCLIstUKQC0Axgo+VVmdWnbs95aeT+sx8cSslJS1S0MoHEYoHIYSDpkh/nLISOCnh0NIxIzyKZqtjIpfC0WusSeHM7fLsvmstYQKnejGvQ+HUHY4tVJLF4ZNrUAJGM9V1zTLtXrVbeJZfFgLjFe/duxJJC0V2z3WgemsDo7K7DyrKu9323jT1cJiLYipNrIQ49vE1jzcUgDkIlGgtR8Pq5bfKvFVMKScpaIzIx9//PF44IEHzDJOCxcuxCWXXIIvv/wS7dq1w4wZMzBz5kwsWLAArVu3xpQpU9CrVy9s3LgRtWrV8t3PY489hrKyMgBGoe1wOIyPPvoIAwYMSKvlnT59Olq2bImrrroKgDFRev3119GkSRP8+9//xmmnnRbomoEMLDrXX389Vq1ahTp16mDRokV4/fXXUVhYiI8//hjXX3994AEIBAKBQCAofy6++GJceOGFaN26NVq3bo2pU6eiZs2a+PTTT0EIwaxZs3DXXXdhwIABOPXUU7Fw4UKUlJTghRde8N2Hqqp48803zUWoLMuYMGEClixZgpkzZ6Ju3bqe5z/xxBNo3rw5AGDZsmVYtmwZ3n77bfTt2xfjx4/P6LozyqPTpUsX/POf/8yoQ4FAIBAIBABBdpFT1F518OBBy/ZoNIpoNOo8gUHTNLz66qs4cuQIzjnnHGzZsgU7d+605KqJRqPo3r07Vq1aheHDh/saUygUwl/+8hds2LAh0LVQduzYYU503nrrLVx55ZXo3bs3WrZsiS5dumTUpi+Ljv0mpoOKkKoLVMjs98e1nWQtnCA/6TCEiV4ZUjnupmQeHeoysB5viGipiwIwcuXYf5SkkJYVbMbLypCIxaHG4tASajKvjXVsSjiMUCRk5Kth6gkpybZkOi5VQyJmiJRrFNZAjcKaCIVDCEUjKKhdA3kF+ZAkGeFIOHldEmRFRn7NfPd7xXEB0D4BJF1uNteBLEMOKVAiIdCMwrKimK4yI++O0UYo7L5uUBMJlB4+giMHDqH0cAnKSkpRdrgEZYdLQHSCcDSMSF4U0YJ8hKMR81nR+5Frt0AQTHdViLluKpZO1s/SEqp5r1L/538eUm4xawZbt8zVdli3Feve4rmf/LiRfdWyYvIqGT/emYN5mbm9Ptfs55Lt0/75tPbl5VrjufysOZ3cvrssY3Bxm7m5FdPh15XEO44Q3fyxj62qu6jcoK6rbH4AQ8BbWFho/kybNs21z3Xr1qFmzZqIRqMYMWIEFi9ejLZt25oFsxs3bmw5vnHjxuY+v3Tp0sWsexWUunXrYtu2bQCM5IFUhEwIMTPGB8V3wsAdO3agUaNGvho97rjjsHbtWpx44okZDUogEAgEgupOrjIjb9u2zVJXysuac/LJJ2Pt2rXYv38/Xn/9dQwePBgrV64099uTAxNCfCcMpowcORK33norfv75Z5xxxhmoUaOGZX+HDh1czx0wYAAGDhyIVq1aYc+ePejbty8AYO3ataa2KCi+JjqEEDz11FOoWbOmr0YTNkHlsUKuKxf7CZeUbCt+tgaNXWCsawlznLSaOWCIjUnCOEdWFCBpXaEiW3soNl3Ra4kE1LjqubJihcx01R5KWiw0TTMtAGw2XRp6nYjHIYeMe9r8d42xY+selB4uRSgcMquap+4VQc3aBdj1827Xe8WGltsxLVPJel8pqxfN/GpkZ5aZVTfNDKwx94AKsoGUmJW9Nir8NiuH66op7lXCSXEyUgJtNZbZCiYbWCGyPUw+r2YBFEWBmlAhycSoJC9LkKEAjAXPmU07KVxNph9gLUJQkhYCpm6aV/0uXvZkz+txESWnC1m3t0GRZQk6+HW32N/t1hhWjM9+V7BWCq/xGmPmZ+xmr8lr7I59yXGwYwuKn6rpnvsz7NuR4R0Kx0It2d5J/niyycRcFaBRVH6IRCLmhKFz58747LPPMHv2bNx+++0AgJ07d1qS+u3atcth5UkHFRKPGjXK3CZJkjlp8rLMPPzww2jZsiW2bduGGTNmmPOOHTt2YOTIkYHGQfE10TnhhBPw5JNP+m60SZMm3BTOAoFAIBAIDCo66orfBkEsFkNRURGaNGmCZcuWoVOnTgCAeDyOlStXcnPnebFly5aMxxMOh3Hbbbc5to8ZMybjNn1NdH788ceMOziaybWFxtG+xyrCb/Ir+wrPbs0xkuolQ6Y5icnoMeb5RIeW0KEz124fic4kCQyapEtTNUiSUWcpr2ZBKmRc1aFpGiQ5GQYekhEtyAMAJGIJ/LbjAOo2rJ1MMKhCUQyLSDgaRiKWQCKewL7fDiAR54eWA1ZLDi8c2bovZdlJhd8b1gfAsEYpigKSSFondNmymqQ1swBYKmlz70kiYYZrS7J1tRMKhxFPhmm6kWnNK8A9TJq15tDPAa2wrjFWulA4BEIIVC1hhvdTdCbJJGvhoa+WLMlc64UsS4CsWNIUuF2n35pffqtXs1YdU7sFtnK5DsiKRwtMW8znzWFVSPO5sVpqva/ParVwVhWnY2H7pe+sfT87Rnbc/H6TaQZsCSODWEV4Yfbc2lo8fV1SM6Yma9wBhp6Qp2tKlwqArXJekSTfqKzOD8Kdd96Jvn37onnz5jh06BBeeuklrFixAu+88w4kScKYMWNQXFyMVq1aoVWrViguLkZBQQEGDhwYqJ+ffvoJXbt2RShknWKoqopVq1ahRYsWnudv2rQJs2bNwoYNGyBJEk455RSMGTMmYzmMqF4uEAgEAsExwK+//orrrrsOO3bsQGFhITp06IB33nkHvXr1AgBMmDABpaWlGDlyJPbt24cuXbpg6dKlgXLoAEDPnj25ut4DBw6gZ8+enq6rd999F/3790fHjh3RrVs3EEKwatUqtG3bFm+++aY51iCIiY5AIBAIBJVARbuunn76ac/9kiRh0qRJmDRpUsZjAtwFzHv27HEIk+3ccccdGDt2LB544AHH9ttvv11MdLxwC+vkmUTLw2XFy+TpKjgM6LZKCWZ5IuRUzSTCMVdTcy0r7GMFqJqqme4lFtMUHtBMTTQgoRMU1K6JeFkMkbwowmEjQiBWUma62fSkawgwsh5rqobSIzHIioyCvALULMxH6ZFYst2UWyAciZjh6aYo2MVNZa3TlQp1p+JrOVk/x3BfGUJiAJCSXy6Gq426ZIxrY+9N6v5aM02z2N09vJWOew2z3LynrPsqFXZsdVvxQsVDjA5PV5P3muhGyHlIBlQAirGNdd3Its+BlswUzQrejfdAs4h+eTWZlJBicRHx65fR490FzmyKATdRssQcw7btKWDWZau7iO5jXEl2YTJvjPzrSaZ+CCmma03XNFgF1pKlfSUctqVTSJd12XnPLW4qohvuK84405FtbSpd1aAyYzXfD042abMeVhUTG+cq6qqqMGDAAADGhOn666+3RH9pmoavvvoKXbt29Wxjw4YNeOWVVxzbhw4dilmzZmU0rmNmoiMQCAQCgaD8KCwsBGAsPmvVqoX8/FRes0gkgrPPPhvDhg3zbKNhw4ZYu3YtWrVqZdm+du1a3ylu7BzzE53yst7Y2/bqhxUF+1nlsJYc4/xUAjY3MZ2cTG6XiMWt4kVbKDFAxcBJywoNieZWMZZM64aflRJdTebVLEAoHEbp4RKUHjyCcDSCaEEeatatBV3VESuLQYaCeo0LsWfHfshKKsQ9mh+BrhNomo6CmnlQFAmRvDD27zpoWlhC4RBIUiSpq5qlvhW9Jva+WZLOcYSf7DOhlcWNVTQx75fOWS1aKqHLksWCZG+bWkK0uGp5FoTovgW3XgRtQ7ZZAgBDPJxXkIeykjIoyfeDWtPYY4z+iGWbFLaKrGnaAF01ro8Q3XzGxvPRLM/JzVqg6wTUKGa35tiFxax1iCfatVtq7H8b18WvGm4XG6eOSVp1oHGF327fC97Vy52V3S392Y+3WY1S1tiE2Rf3PMZSbHkfFAVqIgGi69B0QJLTPyf7eNLtT2flouiqZn5X0WuxkxJ2e9fOqgyqQtRVLpk/fz4AoGXLlrjtttvSuql4DBs2DDfddBM2b96Mrl27QpIkfPTRR5g+fTpuvfXWjMaV0UTnP//5D5544gls2rQJr732Go477jg899xzKCoqwrnnnpvRQAQCgUAgOJaobq4ryn333Zfxuffccw9q1aqFv//975g4cSIAoFmzZpg0aZIlL08QAi8TX3/9dfTp0wf5+fn48ssvEYsZOolDhw6huLg4o0FUFmxKca+foOd5lW/gr5wM33ralY5tVcImT+NpKNhx0JBLuvqxp3y3+/UVRUE4Grak++eNhz3H2p5VJ0STBdZuUBf5NQqgJ1d+kfwo1EQC8bIYDuzeDzWhIhQOIa8gD6VHYogWRFPWg2R/hXULUFg3H4oiIa8gjLz8MOSQDDWhQk2WjaD9yiHFtGbRH2eVa+ezYnUMKSuD8ex1TYMWVy1h9vRawtEIwtGI+TsthWAk1pPNH7b0hKwY1qFEsuo6tcxR3QqvwnTg8iMu1hzLc5PcLYL02EQsYRbr03Uduq6bVkK3doHUs6MWn0QsYep6aN8sPOtMqi1rBXqvMgXUymDXadktD36rxCtM2RP7uNi/eRaEVIh68m+X7xe3MfL260l9k8NC61JuguhGGgdemgl23KmflPaJjteuI6MW0fIqU+Jq9TJD961920P6A/dXwSHm1REa3dWsWTOEQkbZGPbHDVVV8eyzz+Kaa67Bzz//jAMHDuDAgQP4+eefMXr06MAZmimBLTpTpkzB3LlzMWjQILz00kvm9q5du2Ly5MkZDUIgEAgEgmMNnRg/2ZxfFbn++uuxdetW3HPPPWjatKnvCYq9IGjQsHbXdoOesHHjRvzhD39wbK9duzb279+fizEJBAKBQFDtqa6uq48++gj/+c9/0LFjx8Dn0oKg6ZIKBiHwRKdp06b44Ycf0LJlS8v2jz76qEoX8UxnJk53rh/8VhsP0m4686trFWWbmI/+rSiKRRibEianhJm6pkGTjRDhcDSSDP/VuO15jYcNWw+Fw5BDCmIlZUaNK0k2q32HwmEQnUCLq4grMcPNk590kyiKIUYOK4jmR1CvQQEO7CvD7p2HktVsCcpK4zhy4DB0VYfOSxfAhMkCANHgqN/FVsKmQlTTteQh8CS6Dj3p6qPXTOs/KYqCSL4R7n7kwGFH5mR6fCgchiRL0JL9hCMRhMIhyIUySg+WIC5LpluLuhT8Vs92I4iby1rNmphuR9MdlazvxQvftdSISqY20JPHsmHn9LNgfy7sNr9iV6tImBGSe4iLea4xu2CZ6EZWZDbrNR0XreXFXrfp/jEz7ibfMZ+uEa+6X5Z+qLuctqun3i2iE27AAR23rqZqr/Hri9HAB83XuLNNmeEGL2Tcsj/N+K3Hetf+Ku+M+CzVTYxMad68uSNQwS/ZFAR1I/BEZ/jw4Rg9ejSeeeYZSJKEX375BZ988gluu+023HvvvYEHIBAIBAKBoPowa9Ys3HHHHXjiiSccRpF0ZFMQ1I3AE50JEyaYaZzLysrwhz/8AdFoFLfddhtuueWWwAM4mnFLQGgmirMLAX2IjX31m2ZlxRuXxiTgM9pgEwymrBZ07ETXETtSZob9Ettq3VdldSb5XCIWBynTTWuEJMmoWa+2KUiVZAmR/KghytXihlUpoSEcCSMcDUGXZYQjOn795SDUhAZd0xHJC6OsNI5EzEgbZk9Mx4MVbcqy7il6pfu86mKx9zcciZh91yysgYJa+QiFFZQeieHwvkNGnyHFFHizImAlpEBKGAJdQnSoCRX50XyEklXaaWoAJOtHeVl1vK7f9XiPd5m9RsTiZlJHezVuexV7nhiZWtxkSeZa39xEwaxVJxPYyue8EHG7NYCtNG8fH7Xm0HcoZR31Tk1ArTqGFYWpR8dJbseO2w0zEMG02LgnRrSGYKcsVikLoJ72+4f9bKV7/8xzMrDkuFqLXb5Xzf3UcqvLFgujtaZf1bKAEGL8ZHN+VeSqq65CSUkJfve736GgoMBR5Hvv3r2u52ZTENSNjMLLp06dirvuugvffPMNdF1H27ZtzVLqAoFAIBAI0qNDgp6Fziabc8uTTDMYA8ipNoeSccLAgoICdO7cOZdjEQgEAoFAcJQzePDgrM5/7rnnMHfuXGzZsgWffPIJWrRogVmzZqGoqAiXXHJJ4PZ8TXRo/Qo/LFq0KPAgqgrpBG/0mHSYeRy4dWuC2RozcVNxx6LrAHWZJLP1qoz4lrqZiE5M14SR/VdCvDRmacsvtLYVWBEuk2H18N6DRp6bpICXNa9TN4mezPtRUKsAsbIEtISKcDSM/Br5UBQZhBCUHCoFADOvjeGOSG+mtruvvNwiRgZehetmoP3G1FIjj04ognA0jJq187B/zxEcPnAEkiwhHI1YBLtm/R2iQ0sW7ZFDMnRVhxKWES+Lm8fQcxOxOIiUEvBma453e3/oPWFTXujJumdhW6ZZOfktIisKNF21CHGBVE4d9rp1OZkJmmYMdvnssS5VVgBsvwY2szKbP8fqbmFda175a4jtd+t9ZuugGW17fwYt91jWATNDs2y5L9YxpPkeYtxWFsG3LEFLnqqErPlK/OYKSof9/bVvt4zTx3dqENzeVzPvFZzuK/PccnK1ZUN1FSMDwKZNmzB//nxs2rQJs2fPRqNGjfDOO++gefPmaNeunet5c+bMwb333osxY8Zg6tSppianTp06mDVrVkYTHV8O78LCQvOndu3aeP/997FmzRpz/+eff47333/frHMhEAgEAoHAG6rRyeanKrJy5Uq0b98e//3vf7Fo0SIcPnwYAPDVV1+lzZr86KOP4sknn8Rdd91l0ZV27twZ69aty2g8viw6tH4FANx+++248sorMXfuXHMQmqZh5MiRqF27dkaDqEqwK5Ag1pu0x5Wj0Ni1T5s4lBDdsObIclJomapjQ/cBqSzK0FI1rghxFyumFf7a9rOCQl3VktJJFZH8qNOqk0RNqKjToBYKakawb/cRJOIq4jpBzdp5KKiVj1hJDIlYghFaprI0U4uLXUydypRsrXLOW/kSXYeq60YoPGOxs9QQSoqu1YSKeGkMe3fus2SXZlfvNMTebhXRVT1VByqZ+Zbeh1Qm7GT/wYMPfGEJrya6JVwZMJ4FW+crdR4xr4Eeq2kaoBkV6CVZgqzL0JnaY6m6YUY/bF0y+hxks5gVtV64X3jqWbsfE8Sq6tdaxmbS9mwrWffKGIdh1Un97ndMvLpzqYzfrCWHvp+8SBU/AmS/uKUV8LLWpSNItXFJkjOKxuFRWXWvqhN33HEHpkyZgnHjxlmS/vXs2ROzZ8/2PHfLli3o1KmTY3s0GsWRI0cyGk/gEIZnnnkGt912m+ULTlEUjBs3Ds8880xGgxAIBAKB4FiDJgzM5qcqsm7dOlx66aWO7Q0bNsSePXs8zy0qKsLatWsd299++220bds2o/EEFiOrqooNGzbg5JNPtmzfsGGDmUisKmJPBGWftbMalSBWk3SrFa8VSS5CgP2eJ8m0MrRqTlJpRWd6jK4ZFaPpqlgOKQiFJXMlSkOb3a7BNVmYzZfPJjAz/s+/LkUx6lSd0KopNI1AVTVEIgrqNqiBwwdjSMRV6MSofVV6uAyJWBzx0hjobTJD2c1Q+lRCNUvYL6PxoPcF4K/O1UQCkiybeh3WSmb0ZdSt0okOSdOQiAFxEnPcL5o8D0iGXKup/ST5nCQ5lTOCXgv7zGQAUGBJRMiDl+aAtdRZPhe2Z8WGUxsWFRp6TYUgimnBIdDM8Wtaqlo3tVzJigIdmmHVIc7kjuZ7lkSWaSI8IySbar7Y50KtkVSbw6Z3YK89mwSK7L0xQ7dlxbw/RNcdVe/ttafYfiTCJA8M+J3p9llxS3/AWjnsIfa5sOZ4feYzgXe/vCqSO/t1fq6D9l+RCQP1aloCok6dOtixYweKioos27/88kscd9xxnueOHz8eN998M8rKykAIwerVq/Hiiy9i2rRpeOqppzIaT+CJzpAhQzB06FD88MMPOPvsswEAn376KR544AEMGTIko0EIBAKBQCCoHgwcOBC33347Xn31VUiSBF3X8fHHH+O2227DoEGDPM8dMmQIVFXFhAkTUFJSgoEDB+K4447D7NmzcfXVV2c0nsATnYceeghNmjTBww8/jB07dgAwykJMmDABt956a0aDEAgEAoHgmCPLqCtU0airqVOn4vrrr8dxxx0HQgjatm0LTdMwcOBA3H333WnPHzZsGIYNG4bdu3dD13U0atQoq/EEttHJsowJEyZg+/bt2L9/P/bv34/t27djwoQJnuXX3di+fTv+/Oc/o379+igoKEDHjh3x+eefm/sJIZg0aRKaNWuG/Px89OjRA+vXrw/cjx1qomRNlX7NrdRlka5+lpd4t7zdVjxBNTWVq4mEaeKnJm8jxFmDltxnZCZOQE2oljHISXcSK65lQ4ldx+OSVZma0U13WbIGVjgSQbQgD/k181FYNx/5NcJIxFTs/PkACAGiecYc/eDeI9A03RRgKpGQpb2UIFq2mP0d7jPO/WXdAfZaSBoj1NY1DbpqZJ4OhUMIR8OI5EXN0HHWjSFJRv2wSH7UOJfnvkHqHaFtmu5GRbGITiVZTol1A+BHcE/fF+oqohmzqduDuqhoRmoj1N7qkqJuPGvNJytsDSZ63WwaAup2VJLZVe0uH0sNqzTBBJb2mR9jn+zxY60hZriBU/3qqpYMv7eK4envckgx20p9hqzvZOp473HQempmTbWQ4vg+kyTZdKul7qHs+D0bePcwW9Km97A8L2ufsu09AoJ9b1aky4pSXaOuwuEw/vnPf+L777/HK6+8gueffx7ffvstnnvuuUDzhAYNGmQ9yQGySBgIIOsoq3379qFbt27o2bMn3n77bTRq1AibNm1CnTp1zGNmzJiBmTNnYsGCBWjdujWmTJmCXr16YePGjTkr4S4QCAQCQUVTXTMjU0488cSMin2/9tpreOWVV7B161bE43HLvi+++CJwe4EnOkVFRZAk95u7efNm321Nnz4dzZs3t4SvswXACCGYNWsW7rrrLjNp4cKFC9G4cWO88MILGD58eNDhZ0TgRHlp6i3ZYYWhbvtyAVvnhxWZmkJOdmVMw4MTCYvFwFERObnLHsrOw7JdNkS8sixBUsKW/RJT2VxWZJSUJMzTFEVGrEyFmjAsNgW18pCIa9i/a5/FukQTxKVbudqrZ9tJF24OpMJ546UxKJEQ5OS9MawvslkLiaKpmmEFYuo+AXyBJX0OSjgEiREmK0qyflEiAR0yFFmGlkiY+y0icXsYvOS0UPDuCVsHSdON90fXVWtdtGSINA0ZtycJpDWt3MSjsi0sOPXsSCqMX6Ni+YTlWVARcMpqwRcAs9eS+ptTl4pTydzehr3KvZeol7UUhcKh1DXJis1KlvpsstYjbpv03UqG5FNrjh17qLW9EnpQEbTbtRltpTcreH3H8Y7z2zZrDUxtSwUfBAlv96qjJQjG5Zdfjs6dO+OOO+6wbH/wwQexevVqvPrqq67nPvLII7jrrrswePBg/Otf/8KQIUOwadMmfPbZZ7j55pszGk/gpzpmzBiMHj3a/Bk5ciTOOeccHDhwADfddFOgtpYsWYLOnTvjiiuuQKNGjdCpUyc8+eST5v4tW7Zg586d6N27t7ktGo2ie/fuWLVqVdChCwQCgUBQZaiurquVK1eiX79+ju0XXHABPvzwQ89z//GPf2DevHl47LHHEIlEMGHCBCxbtgyjRo3CgQMHMhpPYIvO6NGjudsff/xxS7ZkP2zevBlz5szBuHHjcOedd2L16tUYNWoUotEoBg0ahJ07dwIAGjdubDmvcePG+Omnn7htxmIxxGKpcN6DBw8GGpNAIBAIBBVBdS0BcfjwYUQiEcf2cDic9t/krVu3omvXrgCA/Px8HDp0CABw3XXX4eyzz8Zjjz0WeDw5s9P17dsXr7/+eqBzdF3H6aefjuLiYnTq1AnDhw/HsGHDMGfOHMtxdlcZIcTVfTZt2jRLyYrmzZsnz9HT/pj9URFpGrGxG5mI87h5fbIwo9Lz2Xo8MhUuyjTzrrWmj5fp1rwfHqZkL1EyK6JUwiFE8vIQjkbMtimJWBxaQoUckpFXEEW8LI6t3+/E4YNlqFk7D+FoCA0bFaB+wxo47oQ6KD0Sw/ZNxoSYukisY7KLfeWkMFQy/58OWfYWq+rJe0eIIYLWNA26qkNLqMm8O5LpitMSqpn3RlEUI1dQSIYcSuVxYoW9QMqVF45GjHMiISiRkCnYZV1J9F47ng2nRpf9WfGOsd9LKk42r5lxe6Z+T7mS2DxAdnRVSz7vhFlHiwrhHWNhcuU4x+QthufeD48cNm7brYJ0p5vXiwbHNUTdJvURikbM5ymHlOTnIWz5vz1IAoApYg9FQghFQkmRepj7ebXUt0v+301Ynyl+gxDsBP1eC/T5ZD8LspzR2AS54dRTT8XLL7/s2P7SSy+lTfrXpEkTM6lgixYt8OmnnwIwPDwkQxNWVmJkltdeew316tULdE7Tpk0dF33KKaeYE6YmTZoAAHbu3ImmTZuax+zatcth5aFMnDgR48aNM/8+ePCgOdkRCAQCgaCqUF0TBt5zzz247LLLsGnTJpx33nkAgPfffx8vvviipz4HAM477zy8+eabOP3003HDDTdg7NixeO2117BmzZpABcZZAk90OnXqZLGmEEKwc+dO/Pbbb/jHP/4RqK1u3bph48aNlm3fffcdWrRoAcAQPjdp0gTLli0za1/E43GsXLkS06dP57YZjUYRjUYDjYPCih8t23OQVdX1XMmZpTdXWKuop0SLoXAqe61ZiVk2qpqz1csBq8DTzcJlrtI4mZPtx4UixiunRELQVc3sS9c0KOGwafkxKniHQPQyo3ZUWQJ16hUgEdewb18ZIhEF69dshZysx8T2a9ZOMq8hJRwFOKHmTEZenmWNrYwtM2HP1FpBt7HvgaZpCMmhpGCXGFW6iVHHyi4WDoXDRsh/MhQbMES69FjIOpq3boIDe47gwO6DIKUx6MSo/q0nx04fmZbwSHeQxmLHO4ZnuTDvrawwtbC8rUHsNp1jGQxiOWWFtby0BTxBq3s9Nr4Ambddt4nKeZYftuYUj/waBYgrMWiaBkUnIC5id9offf9CkZAZkm4fhxf28bCfg1wRpCaVeY7H95yb0NnP96wp8g6acbqSrDnZ6myqqkanf//+eOONN1BcXIzXXnsN+fn56NChA9577z10797d89x58+aZVRZGjBiBevXq4aOPPsLFF1+MESNGZDSewBOdSy65xDLRkWUZDRs2RI8ePdCmTZtAbY0dOxZdu3ZFcXExrrzySqxevRrz5s3DvHnzABguqzFjxqC4uBitWrVCq1atUFxcjIKCAgwcODDo0AUCgUAgEFQA/fr14wqS0yHLMmRmgXHllVfiyiuvdBw3cuRITJ48GQ0aNEjbZuCJzqRJk4Ke4sqZZ56JxYsXY+LEiZg8eTKKioowa9YsXHvtteYxEyZMQGlpKUaOHIl9+/ahS5cuWLp0aeAcOpn4k/3glpiKWhnSrULK25rDwo6FVgknRDeTj5kaCZsWwhHy7BKuKUkyJJfaS9QyoakalJBiWCPA1HFirl3TjJpJNWrlofFxhSgsjGLrj/tReiQOPZksUNMIZFmGbl/Ve2o1rFYc4/k462DxrgtI1V6i5yuwJr7ita8n6z/piVTYNU30Rt8P3bQeSAjJIdOaBRjh+zQ0ORRSEC2IGuHqCTWpSTIq0ROiQ1EUsyaUG25WDz/vnn11bVoDmQrntA/JEqIuGxYtXU9a2xhdj8dY2ZBku9XDzZrjdo3pUj7w3nf2OlhLl1vSQ/vY2XNiZXGEwiFEC6LIr5mHWFkch/cdAtElSBLhVt6m7wjV7XiN3963LBspAXIBez8tVcltSRHp9lyQ+iyl/x7Vk+kWMq06zquvVVFkW5izqhb1pMTjcezatctRB/OEE07Iuu3nn38et912W/lMdBRFwY4dOxzZCvfs2YNGjRpxP7BeXHTRRbjoootc90uShEmTJuV0giUQCAQCQWWjI0uNTs5Gklu+//57DB061JEGhgYSBZ0n8AgiTA480XFrPBaLccPJBAKBQCAQHDtcf/31CIVCeOutt9C0aVPPJMMVge+JziOPPALAsLA89dRTqFmzprlP0zR8+OGHgTU6VQ03k6WbWZ8nmrMLY90y3ZYnPBOuXSBJ3TWyHLb8LUGBnPTI6JpmZvW1u5e87okMxTVTMkmGJidicUTyo4ZpPmTU/ymoVYAatfKhqhoO7TuMUMgI3d7xy2HUqBlFNBqCpuvQNILSI3EkYnHTxeMchz1jLitElmzmcL5A0/58WVcK0WAKqeWkKw5ICW11VQORCSQiQdZTJn9Jkg3XnWIcn18zH0TXUXKoNLlfQqQwgnhpPNkXQTgaRkFBBGWlCUTyIoiVxKAxNci8nocb2WaBpfdUh7VeGpByJdDjiK5ZXBt+3FbsOFkcouE0brpMr9Euzua5jnjC3lQWaWK+30TXUXa4FAW1aiAcDUEJh5CvKIiXxhErKXW9BuNdhVkbiL5XvOuzu46oO1pNqBa3n6Io0BBMrMv24ZX13O7KsmcdT+ci4rmojOftI9zf8n2TWUoQk+yNDb6prmLktWvX4vPPP68ycwLfE52HH34YgPHFO3fuXEthrkgkgpYtW2Lu3Lm5H6FAIBAIBNWQ6jrRadu2LXbv3l3ZwzDxPdHZsmULAKBnz55YtGgR6tatW26DKg+CJvFLF/5oJszyUeMp2/7M9jkr1HSr4pTglUAJy5YJqp5McGdPhEb70ZNiXfsq0mu8tD9ZDqcEo7J1jDRBXLRGHgpq1TBDqhPxBPb9FoeSFEbv3nkAeQVR1KlfA9FoCLIiIRbTUVaawNZvf0Yk3xDmmqJNyRC9GuHp7HXxkuXp0FXCJA2UGbFsKgkdr1IyDcM3ttPaQ0YouAIFRCLmolBJrqxpVfNQOFXnKL9mHqJ5YZQeiQGHSiErRiI5SZIQjobNfgtq5ePggTKjfUVGXo08SJKEeFkMCTVV8E7jJNpjsYhzOakC/KQ6cIafG1Yd+zLYMQ6dWtKs1hx6L7xCst2EyEEtQjTUn4cvkS8n6R7PqkNrWwFJa0zyfS45dARRLQ/5NWXIioyC2gWQZAklBw5ZaqqxNdoURrhuT5tguU6bUJyOi72vsqKgbpP62L9rH7REAmpc5TVlacdSe8wm6HYmlCSW89wtVXzLkNPSSrdb0wnw6ltRYTw9nq11BTjffbPtSk4SqBMJehbZjbM5tzyZPn06JkyYgOLiYrRv3x7hcNiyP9uC4EEJrNFZvnx5eYxDIBAIBAJBNeCPf/wjAOD888+3bPcjRt66dSuaN2/OrYiwbds2M2Lrz3/+s+8Jk6+Jzrhx4/C3v/0NNWrUsGQd5jFz5kxfHVd1vPz7uqb5tt5kq8mx+OFdViW+2kmuBKkeBjCuQwWgxVVzlWR0kayMDAVqIlU53C2El796N6p6G6tUoz9FSWl3NDV1D2MlRlJAM6GcqkGJhBAKhxAvi2O/kQ0cdRvWRDyuQZIk5NXMRyKWcGiirLoaes3OBIj0WGqtMsPtmRBotg077PFEBxI6Ma0wSjiEiGwkrZQVw4oWjobMsHIFQCisIJoXhprQcPjAEXNsRCcgcmr1HC+LQ1d1hCNGiHkkL4z8GlEc3HcEhBjHJWLxZNkJ/peHXysgr+wCPZ93TupeOvex2h2zLV12WHLM45kVOTtmQ2vCHKdpgcOmeckuHZ8l3fnZsmjSOFYEOl49TSUdOSQnq69r0DXdUs0+ryAPpQePmEkp2X1y0grdsHljHNi9P/kZsV6X5TrNz7BRNV7VdSjhMELhEBKxePJdSSQtpjoAlWtdsVtw6Dbj/2yf1qrxFHuSUftY6fdMOl0cvQep3lJ6HWr1CoVDFquaPVSfe31VqNRDdXVdZWMQKSoq4kZ27927F0VFRebztZeK8sLXROfLL79EIvkP3hdffFHpCmqBQCAQCI52qutEJ132Yy/calkePnwYeXl5GbXpa6LDzs5WrFiRUUcCgUAgEAiODfbv34+nn34aGzZsgCRJaNu2LYYOHYrCwkLu8dRbJEkS7rnnHhQUFJj7NE3Df//7X3Ts2DGjsQTW6AwdOhSzZ892ZCY+cuQI/vrXv+KZZ57JaCAVgZfJMp0wE/Cuu5LOHOpXJGo/3mufH+g4dc2oFC3JEmSV42rQNIAx+brV3+H2YbtXRhVvw8gsh2iFbuP/NPxakmQzNFxXU6JooutQIiFDWKxpkBISlLAORZFxcG8JNE3H/t8OmDN+XdUdtZNYkzitYsyKinkuHvYcXXW6JlnXBXUNAICe/F0OyQiFw5AVa3/haNjpa9YJonlh5NeIgOgEpUdiKDlYYlYxVxQZuqpDTaiQFcMVES9LIBRWUL9hDYTCMvIKwtityDhywNgfKymtkORhQcz+7DtkZlD22Qe9f6zbkX1ubH0ywN3dxHOjcMeqaZbPtCQZVe51NbU9kh+FGos73GwsbCg40Ql0WYee0JMuFuMcLaFBSxjXkognoERC0JLCYEkmjBtGTrpnrOJ3olvvA3VXWa4nea1UzEzvka7pXDcci/3d1zXNfCZUNM1mpnarTUWvgUUOKZ4uP7s7i73Xsiw5ztE1zdEKDaGn70uuszbnEpJlUc+qatFZs2YN+vTpg/z8fJx11lkghGDmzJmYOnUqli5ditNPP91xzpdffgnAsOisW7fOkpcvEongtNNOw2233ZbReAJPdBYuXIgHHnjAMdEpLS3Fs88+W6UnOgKBQCAQVBUIkUCyiJzK5tzyZOzYsejfvz+efPJJhELGNENVVdx4440YM2YMPvzwQ8c51HM0ZMgQzJ49O6eRWb4nOgcPHjTEj4Tg0KFDFl+Zpmn497//7RAPVSXYZG8sbgn9aL0mexIsurLJtFpv2nDwLPanS06oqxpiR0ohyakwczYhGr/ejiEApFYYN0GnvbaPKTpOGNaaEAmZq2O6mtQSKrRwCDXr1sKB3fvR4LiGpuhSSYZjK4ph4ZBkCYf2H0G8LI6Sg4dRULtmMlw7BE3TECspc1hyjHtCxYvW7fZ7qsaMGlzsNbKrSaKBWTmmwtgVRYESDkFJhpADgBRORRWoycR+iqIgBEAixgrdiDzQ8eu2vdAZC5tR6TxV+4o+p3A0hFBIQVmZipAqIxSSUaNWHnRNx+F9By3n5zoppd8UBtZttpQCunHvzfvJeVYAtQIlK7+bz5BY/s8LH7bDWvC8jjETQcrOek5sO0CqmrgsO+8HtXRomsZYdXRIcsrCY1yfblpb6HOn4nstrkJRFKj0nSU6iJ4KO5clmer6LRYVcwySbFo3FUUBkQnURAKSZlgb1WT/qRBta+oEt+8PCUzCQtuz4J3HCvXZ/eFoxLwues+Me2LsZ5MZsiH2ACNOl43afLStWEmp8X2RtFzRMbN16HJdrV2QnjVr1lgmOQAQCoUwYcIEdO7c2fPc+fPn53w8vic6derUgSRJkCQJrVu3duyXJAn3339/TgcnEAgEAkF1pbqKkWvXro2tW7c6MiNv27YtbUHuI0eO4IEHHsD777/PLQi6efPmwOPxPdFZvnw5CCE477zz8Prrr6NevXrmvkgkghYtWqBZs2aBByAQCAQCwbGInqVGpwrKjgAAV111FW644QY89NBD6Nq1KyRJwkcffYTx48fjmmuu8Tz3xhtvxMqVK3HdddflrE6W74kODRfbsmULmjdvDtlDzFaVceSeUPjHyWF3gV06t5Vr5lCOCyBdbpyg9Xrc3BY0QzHRACkpJgyFw1DCYdOlpCRrVFGXDRUdsu2yWYHdroWXj0WNq4YQkUim6DleGjPNzTXr1kJ+jSjyazTG7l/2AgCUZD2ospIYDu09iEQsbogPFQVlJaWGmZ+p+RQKh81sz6n7YXdhOXN/yIoCTdWg6wShsGTme3HWB0vljaEiZ+rCovdIkiUzSTBb/yrVhg5dl1FWGseenSX/3963R1tS1Od+VdWPvfd5MTPCDCMjjIpGYcAIBCEoRAGDBlFzE0FiMCYqETTIUpeGe3ViEAjXqOFyI6J38biRRUiMgMvIwyuOEiUXRALhEiCKPKKTEeZxHnvv7q7H/aMeXd177/Oec4Zz6lvrrDOndz+qq6v3VH2/7/f9dC0iIV3tKz8MpKQCGJC2UoyMNZAkDO12AUJgnKIpiqzQ/izW0XoWIvnpxlz9Gc527PUTpvaDH/ogXhiLUOrGGzM+RvbScRqjyAojDtbhC4lq+Mr3yrEOyPXwVY9o3nP99RHFcd8wrr9fP0EyNaHtfscoYhzKhYAoqHve7nxceOJnWnH5zbu6ppuSCqKw3jf6vqKa4ywlFJJWw4JKSoAxty+LI8g8rxw3KPxUfi6dkFgal2a7vdcxWRqBdOlMTqju+7ED1mLL0QfjX+55ApO7xt17ZscvpQSgzI2FHu8ixty2tNXQ3wWTbf3cwSrXpIpUa/UNEE0PcmQOmD8++9nPghCC3//93wfn+js6jmP88R//MS677LJpj/3Wt76Fb37zm/j1X//1RWvPnGcrBx98MCilaLfb+Ld/+zc8+OCDlZ+AgICAgICAmWFDVwv5mQsuvfRSHHPMMRgZGcEBBxyAt771rXj00UdrbVLYunUrNm7ciGaziZNOOgkPP/zwnK6TJAn+6q/+Crt27cIDDzyAH//4x9i5cyc+//nPI03TaY9ds2ZNJWK0GJhz1tUvf/lL/MEf/AG+9a1v9f18Omvn5cRMta7mwtrMNPPvd+xMbM605+upL9R/9Txdu+qfsYihOTqEtJFiYrcWs0oujPBQVFKDZ7ta73td4whLmFm1JialXOoK17zgiArtdtxt50gbMVjMILlEt50h72ZutUUjVllp8qJ0dlVSOhGnbrNdVZYVyu12CyFE5W86QLhqV++uorVhxVhSpscrqWppuBSKaVEo9Z6ddU/O2pkTG9f71bJUURyBxcwJsrsdjrzL0RESe7hEnnPk3bziMl3HXBjB2VSnnwnTWTD0Vvr26yhV07utEJdQPRb6OebWWZ3KvQwYqz7zYx3C7fb6+QG4a8wWTtxvj/dSnKlJh7csAyEEUlp2ULp7gUCFaS0ybdZq2RwqqXHPLt3OreMxAFcrruwL6kTSdnsUR1DNBkRRlO2puR/7jMqgdHQ/WWEQrEM6i2MwxpCmhpEZamhGkou+Au9B11RSWy+QboYojpE0U2OdUXVfpoDHDO2bbM1Sa3S2bduG8847D8cccww457joootw6qmn4v/9v/+HoaEhAMDll1+Oz33uc7j22mvxspe9DBdffDFOOeUUPProozPqayz27NkDIQTWrl2LLVu2uO07d+5EFEXTZlT9+Z//OT75yU/iuuuuq3jpLARz/ja74IILsGvXLtxzzz1oNpu47bbbcN111+HQQw/FrbfeuiiNCggICAgIWOmwGp2F/MwFt912G9797nfjsMMOw5FHHolrrrkGTz31FH70ox8B0GzOF77wBVx00UV4+9vfjsMPPxzXXXcd2u02brjhhllf58wzz8SNN97Ys/2mm27CmWeeOe2xf/mXf4nbb78d69evx5YtW/DqV7+68jMfzJnR+c53voNbbrkFxxxzDCilOPjgg3HKKadgdHQUl156Kd785jfPqyF7G9WYcT9It99SpCPOqlq5x6T0rVxe03P0W7UM0s1IqZA2Uoy9YAQ0oti9Y1flmtO1Z67w2yVq1dIl10aGlDEUuV65xkmMjGfoTnZAI+rSR236NlCyHqUmofrcpl+BAkqKHgOyOqPhVrhEOQaAF9yxO1ZPISCgCqNhMMdJSkA4hYzMqptRJI0ESSM2/SAhRJ9aQTXNGKUEcRrhl78Yd/sDugYWAEzu2oPZVvKuY29VcfZ1Mu78tXFa17FZ2wHHUvhsCyWIWeL6XFkNlNFzlAxJ//ejkgpd0+j426lhPHhR1FLhq++Wvo7oGcvT9onU5oEMTNfK866nz00dgxKniWMhrHklYwy5yqAK5VU0r+pLnBZsGlLdt5OI01j3O+EQQpS6IMN61euV2c/q7IsEBYuqmj6gWqeKmnvJuzl+9WUS2/6x7d4fa/44aAxbywFKiZfqLt13AKEEcZo4hreEroVl9+uXkm+fjf29rzI/M2F8fLzyd5qmM4aIAM28AHChoieeeALbt2/HqaeeWjnXiSeeiB/84Ad4//vfP6v2/PM//3PfupcnnXQSLrroommPfetb3zqra8wFc57oTE1NOb+ctWvX4pe//CVe9rKXYcuWLbj//vsXvYEBAQEBAQErEYsVutq0aVNl+6c+9Sls3bp1hmMVLrzwQpxwwgk4/PDDAQDbt28HAKxfv76y7/r16/Hkk0/Oul1ZljkRso+iKNDpdKY99lOf+tSsrzNbzHmi8/KXvxyPPvooDjnkELzqVa/Cl770JRxyyCG46qqrcOCBBy56AwMCAgICAlYipNQ/Czke0P40vu5lNmzO+eefjwcffBB33313z2c9ZWsGFNochGOOOQZXX301/sf/+B+V7VdddRWOOuqoGY/fvXs3/v7v/x4/+clP8NGPfhRr167F/fffj/Xr1+OFL3zhrNthMeeJzgUXXIBf/OIXAPTM641vfCO++tWvIkkSXHvttXNuwL6CupBtOsw1tDWfsEL1el6qLKFQ6HVtru83EyQXmNozCRpREEI8V9Iq712vrdMPPemZklY+q9Qkkgo2TAiTKipEKbqM4gh5N4cyS5Wp3RNojQ7rfWQZ8ojiSAsZbRo01cJVe2/1/vHrU9nrQVLYCIkvxLQUt3WQtinrSqpK+MymQNfTYAc9B6UU8m4BXggnILZp/VbEb+/H1UmSChO7tCO0FBKEECdontw1AZ7zBY+vxYQTbPcR0M+cEDAg9ZvBhK1MP3sJDzrEWI6perjMjt/62PRT0e156vXSbFjTrxVlQ2oMDIoSF76q1vUqU52lKMzWqkMyAEjzHut3T7jxq7fF4EVRcWinhIKmtOKkbccN9UKtSqpyPJm09cq+UfV+CSWIaOT2k1xU3g0/rFUfa5SxMrTbJxTsh+iUkuBFgf/3ZIQ4SdDJJivPcq6oW0QQIXq261phkU7r90J9dTxfQ1YWo6OjcyqZ8MEPfhC33norvve97+Gggw5y2zds2ABAMzs+cbFjx44elmc6fOYzn8HJJ5+Mf/mXf8Eb3vAGAMD/+T//B/feey/uuOOOaY998MEHcfLJJ2NsbAw/+9nP8N73vhdr167F17/+dTz55JO4/vrrZ90OizkH5s8++2y8+93vBgD86q/+Kn72s5/h3nvvxdNPP413vOMdc25AQEBAQEDAasRSp5crpXD++efjH/7hH/Cd73wHmzdvrny+efNmbNiwAXfeeafbluc5tm3bhuOPP37W1/n1X/91/PCHP8SmTZtw00034Rvf+AZe+tKX4sEHH8RrX/vaaY+98MIL8e53vxuPP/54pdTUaaed1rdG1mwwZ0anjlarNW8l9PMFc0ovXYBVZU8tqTpj46Wu2urI06aU1+pP1c/TmZxClMagVFfNlmaVC5S1e2w7Bgk6AZNu7Zm01RkeX2haP4/k5vxm1Se4cEaA9ni7ihZC10ACtNkgjcp0WeWl6VrjQACV1G7Xp8KK01E5FjBpt1JVmCIGBpFzl+KujynZHAtaETBTUzuLgEbW+LDbt03uOoyBMgopJLjkUFKhPdF2qetKKtCIIu9myDsZiizvOc98McggcJDJmn9cv5pn/T6bzqbAHy/WekBvr9ZmIsrfR+9EKYGQveJ8+6yiJHKCZb+d08EXI1sDO1/0TCiBKFQlFdseV96TZjOkszHQwvl+Y5J5RpxSlRXGI2+8Jc0UvCjA4ghECHceFkcmHb/8TmBg4EXh2lFNAJAgVHliXlNHytTK8t8f9355RqKVZ2yYGll7D61g3zFmRkgsucTkJMfImmEQStDeM9G3//3vH//ffnsJJeAFR2yqXDPGBtbrq6eaL+R7ejGx1Onl5513Hm644QbccsstGBkZcZqcsbExNJtNEEJwwQUX4JJLLsGhhx6KQw89FJdccglarRbe+c53zular3rVq/DVr3512n0uu+wynHvuudhvv/3ctnvvvRdf+tKXevZ94Qtf6No7V8xqonPhhRfO+oT9lNYBAQEBAQEBy4svfvGLAHT2k49rrrnGRWo+9rGPodPp4AMf+AB27dqFY489FnfcccesPXTmgksuuQS/+7u/W5noNBqNniwyAHj00Uex//77z+s6s5ro/PjHP57VyRajJkVAQEBAQMBqgMQCa13NcX81CwqIEIKtW7fOmLW1GOjXnjPOOAOf/vSncdNNN7n2PPXUU/j4xz+O3/7t357XdWY10bnrrrvmdfKVgro4eVAoa2/Rof3qD1lB8nQiTz+EMMjTpDM+haSZakGiq6dTlOcwtYekVKXI17gdV85Voam1W2rfezGUvKWjGTPUsglDZO3MhXoA7arKIl2Dy/cHsXV7BEp3Y5+i9x2H62E+n7q2ImZKSlF00kiNa7JyfRenmh6XLkRQ1vOZzqGaRtQJmO01KdP3zwtRCZMpqVCIAkVW6H+bekTK9D2NGIosBy+KinfOfPw/FkPA3C9ENZvzDhRr+6EnJQFJS38YrvuSgUHFMaiUzokaKEORfm026yxcior1uPSP63tPsvSFYYw5oa2Q1gdKgSqit/H+YtrK+HLC3zJ85YeqCCW63posnY95wSG5AEsifQ9GiK6kAqgOv1i3Y0IJGI0rVZ6lECBC368N6RKqQ1Mu5FVz5aaMORsnasa5gG6D5AKEVMNYAJynjnufozLMp8X8ZZ/EaYIiy1FwhQ0vWosnH8vRHBl2taqA6ndd3YfHf2Y2ScDeSxRHKJTUfScLVzfMfx51N23/OS3E/X0hUErNavIx3fErDZ/97Gfxpje9CQcccAA6nQ5OPPFEbN++Hccddxw+85nPzOucC9boBAQEBAQEBAQsBkZHR3H33XfjO9/5Du6//35IKfHqV78aJ5988rzPueomOtMJi2frcjqI4amvEubcthlWw/6Kxooc53UdqaAgHIviVp1WwGu3EwV4K1q/dfb6FbGhx9T0VB2mZVVioBST0oi5laV1MbUMjL1nyih4mxtmo1yNSSVdWvxMoFGZTmvdlJVUbkVoU2yBMg2XRQyAdt4tRF5ZIep+tD2i09BZrFfflFIXxrX3QhlFYzhF0oihpEK3nYOIsg284BBKp52LglfqcNnq5EII14bZMjJzdTyeS22s+nHzuXaP0F2WVcvt3y7F3E/NFtV+sKt/0adbLCtpP7eMpO++7LdZKekYCfsc6iJjnapMHVvif6YdhXvdoX1WR0B44z5Ga6QJKRUmd2txLlHEsVLdyQ7SVgNKKddmpSSiWKdp84JDQoJakS6xFgzKvE+9naKkciJmC+HVjrMssbU+IJSCRsSlnverTWXZL6Am5vauuf+m9fj5k7ux4aAxvGzLQfi3Hz+FxnDLsTq+c7Nz2O4zJi37qtkuAQ7ve0vYxIhSKO6zUJZ16idMXmqR8lKLkZ9PeP3rX4/Xv/71i3KuVTfRCQgICAgI2BegFmgYuA9ZaC0IV1xxBd73vveh0WjgiiuumHbfD33oQ3M+/6qZ6FDayyoAdZOy3jo406ZvD6jsa7UC861BVDnXNKviMnV1sOZhOlgDr0SmIMyYblEOyT0jrohByXKV12PSZZgc5q2OKfVWT2YfKQRYHCONIx2nz3IQo11hcQRqVs8AtBGgEMjaHURGG9NoNdGZbLv7ohEFkf2rVlv2pq5f0ivkMu1cUlmJ89tzWa2EKDjiNEHS1G0okEPk3PWd0xMYQ7ok0unhztzN0+d0292+K1xAM1NCCHBTpdpPG7fsgr//XMbUfBmanvPM49r92gL0jmmrpxj0rimprfWYVwhskCbIZ1j888k+42QQfE0NixiIMe8buH+f+ng6Fbv6Hvj3Y1kdKikkk+CFvv84SZB3M81uem3Vpn29ddmU8tPyNctj2VERR6BZgSLPnWWDyLmuw0Z9JtarRWfS1u37Y98PlxYflYaC7n48rRbgVX43fWD3tdo7ISTG93SRdTle+OID8LN/ewbpUAN5J3PfmZbV8e+12ufEtdcySbYOltXvVGpYmRpd1LDIkgvHlNrq664f5u9hOGesdkbnta99LZrNJj7/+c/j7LPPRqPRwOc///mB+xNCwkQnICAgICAgYHlx//33I45jbNmyBQBwyy234JprrsErX/lKbN26FYnxPvrHf/xHALqYqIX/78XC4pUsDggICAgICJg1pFr4z76I97///XjssccAAD/96U9x5plnotVq4e/+7u/wsY99bNbnWWhWmsWqnOhQStyPTV9mEXPiQh+WwvV/ZjqnPS+NGFgc9xU9zle86R+vlKzQzo5u5sLUZpLTiq8tfZu1O+hOttHeM1GpE2WFwjQqRZPU3Jf98V1QXV8wpvuAla6uLI5dOE/Xn9Hp4fUUV79vCKGe+ytzNZ7sOV2/+WmohCLvZGVdH+al8RIKFke6dpUXsrKhozJ1XIs4hRDgRQFR6H5ijCEdaiBOE7A41qE8c2zeydBtd5C1u+hOdsALXhGCxolJh+c6TJF3cxRZoa9j0swB6NRx82yrjrP9Q0ezSS2v2Ax47tcz7W/PX+nracaoDTf0c+LuSR+uvFOlEzBQphL7LttAWQcsiiOXdq1rLZnn6MLNvW2klKDRajo7gJnS4e11pQmlWDFz5b5kmQJdFysrKZ3LN629o3YfyfWYEwVHx4wZe0/KivVNP9BaqMkPOTGm39M4jRGnMaI4cmHTKI7QaDWRthpIWw13X0rqsHWR5S6cy4y42aX0o3T7tqFYSvS7a78fbF/Wn7mfdGD7uMgKTOyaAC8Edu6YAGMUu56dRBRrgX7STHuc4QeHM8sxad91LfpniNK48r1S/46URmhetcOA+/dsk1IWA0tdAmKp8Nhjj+FVr3oVAODv/u7v8LrXvQ433HADrr32Wnzta1+b8fj/9b/+Fw4//HA0Gg00Gg0cfvjh+MpXvjLv9oTQVUBAQEBAQMCiQSnlfJ2+/e1v47d+67cAAJs2bcKzzz477bH/7b/9N3z+85/HBz/4QRx33HEAgB/+8If48Ic/jJ/97Ge4+OKL59yeVTXR6bfS9OFEdKibj/VJlR5w/gqzYfejJbMx2xTy6czY+tUjsqu0fvC311cvSionfiWEgkamng3KtG8qtQjRZxX8NFx7f74wWXgrUMsSWRbHbtcMkW6DhDZEs+nl1GOSLDOUthrIO7lLg3XXlMQYB5ZVm0XOIcBBstyt4n2GCdBmg/U+UrS6RLLMjF3ZSi7dNWwtImEqiPMsdwLSvJMhThPkndy1sznchBC6CjcvuPsycGJKj0WwafoVgXw/FnCWBmdzFREPGmv+th52ya/FJqqfV+phDTBrs6JQX8SqxwDcfpJqUzh9nlIMDtTrs1UFwlIq5N2uV2HbfCb7r94di8SFTgiPWOUzvy6XTV/vl9puRcwsKvuhXpNLEQUJAVEIEEKcQabfP7woECdJTz0nQogb29KknNv7FpCO9pdCp5+nraYzorTjtpAKVDAnZKaMuUQDfaxwzA2Lqfm7jzmo15c+iW1ZT6UkupP6vhqtBp7LCiSNBEkjcSaYSaOBvNutPIPe5yLdd5drI5eIUua2MWvSSay1qnRjUgkAxhqjtMOw36EC07Hgi43pogSzPX5fxNFHH42LL74YJ598MrZt2+ZKTzzxxBMzVkH/4he/iC9/+cs466yz3La3vOUtOOKII/DBD34wTHQCAgICAgKeL1iozmYfnefgC1/4As4++2zcfPPNuOiii/DSl74UAPD3f//3M1ZBF0Lg6KOP7tl+1FFHgXPe54iZsWomOiyKK2ZYNuUQ6F2ZVuO7dUOwwSOrJ9XVW8VGsWZAZltx2m9b3URrQSm+tdWKXRkBAKiuJo6IARAoTNzc6VlYmbppU0z9lSqhFGmrgeZwE3knR97V6aKIUNHD2Ov6RoUEzFVTtlbxfkpunEbghUDSTJCjxnRBVEwAnTFgxCCKAsSuzqmoPM/6s1RKgkjVd/VOI+raZ/vRslc01db6PMsr1vh5twsmtGZCFQqFVwrCLzEB6BWpVFUGwm+D7ePFKN0wFwxiZabdX/ZqNtw5pmGgfP1KyYLW71c/Z3sut6qXfkXtcoz55UFsKYiS1QEsi1Q/X71MRJUV9W0NDHvCS5bPwte71Z9d+T1Ups7nncyZTtoyL06PQ0r7BUqpCwv4TCUlFEVWIIq1do53c8cYAjqcoLWIKQDo98jT9BVSau2d0eNYhsa2XXomfX4flPdc9mWpmymrmdv7lkIgMyn0WpuTIBUNZO1uRaNUR9XSoTTr9Jkn/1jKGBS17BaAChNW3hul0rF8C2VYAjSOOOIIPPTQQz3b//t//++V7/V++L3f+z188Ytf7CkQfvXVV+Pss8+eV3uWVYy8detWTb16Pxs2bHCfT05O4vzzz8dBBx2EZrOJV7ziFY4CCwgICAgIeD5jpYqRn376aTzzzDPu7//7f/8vLrjgAlx//fWIPQmDxYUXXuh+CCH4yle+gsMPPxx/9Ed/hD/6oz/C4Ycfji9/+csVL6m5YNkZncMOOwzf/va33d/+bO/DH/4w7rrrLvzN3/wNDjnkENxxxx34wAc+gI0bN+KMM85YjuYGBAQEBAQsCqTRpC3k+H0R73znO/G+970P73rXu7B9+3accsopOOyww/A3f/M32L59Oz75yU9W9v/xj39c+fuoo44CAPzkJz8BAOy///7Yf//98fDDD8+rPcs+0YmiqMLi+PjhD3+Ic845ByeddBIA4H3vex++9KUv4b777pvzRMemQ1pU6clSTEsJrVSotinRQEnj1wdXP3HyIBHnXMMPfrhqplRiv7bLbOHX8VFS18BSSkISLQTN2h19L6aCcek2rKleSmMdHqIEcRpjeGwIvBBOVAyg0qcAjEurTm2lEUOcJJBCIIpjCC4qnzXSJpih4uOUAhnQaDXQbXdr965F05LKnj5yIQ0jQvTpbZvCbSfYQggIIZyjsT4302LHOEJh3IulECBSQVCC5lDLVZsGRPXLqyigpEQUx8hMm11KLiWQhYKQOiQmuTDPuVpbqe5I3fsM5169fNB56qik5vYJY03nIO4Enp6weaCLd038bCvbl+cqxe0WjDGQmLiwn+QCUnIXsqr3I9D7rtqq53Zs23uq13Lz96/XSPLT4nnOe56Xq3Dvhdf8vnDhK3NNar6PqBWpe31NKHFhK391a0NFSZzosSf1/VBaTdO326yLsq0dZ+/fOidHiEFo9VnV+14RVQm3AmW1dO2oXrrD23fMCe5NfSrbT2lDG8hJLrHuwHWY2DWJief2VMZQvR+sMFlJnURAKIFE7f2Wyjky2/cLqIbB9G8rsO79/giYO/71X/8Vv/ZrvwYAuOmmm3D44Yfjn/7pn3DHHXfg3HPP7Zno3HXXXXu1Pcvuo/P4449j48aN2Lx5M84880z89Kc/dZ+dcMIJuPXWW/Ef//EfUErhrrvuwmOPPYY3vvGNA8+XZRnGx8crPwEBAQEBAfsaVmroqigKpKnWgn3729/GW97yFgDAr/zKr+AXv/jFkrdnWRmdY489Ftdffz1e9rKX4T//8z9x8cUX4/jjj8fDDz+MdevW4YorrsB73/teHHTQQYgiXQ/pK1/5Ck444YSB57z00kvxZ3/2Zz3bmTHPAswqwqwWrfjNh11B+PVe9ApBr1II6RWxAnWmp0x5tbBpjINSWn1UVhVmJTgb8yx97NyYnd7qzJrZseI+GjGIjk0R133o1yZKGtqIrDUyhM5kF0IIFHnew47Z1bDwryMV8m4Gxhi6RceJIwFd36ox1NACSqIFonEao2tEi45dUuW/qaRQtGTjKoJSs7IkpFxl+p8BqIgmLQtIjdGgfS62fXGaVEzsVDPVjI9JKfbPz4vCiZcBgPjpt0acTCgFhHAr1R7zymmYwLmyOvUU57medybjwrmuiqvCX7NSN+9K3fDNr3NEzedUUlCT+gygp6adhb+tUpPJYyDsdXxWR3kidT0ey8rmrso8KKIkMpXPiRvvkguo+neMtWjwU6SVTp0XkjsWwsIaFvZjc3jBS5sGURVNE0mM6Sd1+0quU80ppeAo3D72vi2rSRRx/dvLUuk221R/6b6ffGND02Yu3Hem37869dt8j2T6HSIJweSeKQBAc3QIeTdziQ+VlPx+jJl33p7EE/MuS46+rI5vTbCUWKm1rg477DBcddVVePOb34w777wTf/7nfw4A+PnPf45169YteXuWldE57bTT8Nu//dvYsmULTj75ZHzzm98EAFx33XUAdEXTe+65B7feeit+9KMf4S//8i/xgQ98oKLpqeMTn/gE9uzZ436efvrpJbmXgICAgICAuUAqteCffRF/8Rd/gS996Us46aSTcNZZZ+HII48EANx6660upLWUWHaNjo+hoSFs2bIFjz/+ODqdDv70T/8UX//61/HmN78ZgE5Ze+CBB/DZz34WJ598ct9zpGnqKLOAgICAgICApcVJJ52EZ599FuPj41izZo3b/r73vQ+tVmvJ27NPTXSyLMMjjzyC1772tSiKAkVR9KSTMcYcfTsXtIZbiNMhR81KIUEZdb4wPZ4qTqyq3Wv9cJZfW0VJ7QGjPPGkHxbx3W1n689Q8Qcxf1d9QhZHfOqjn3AT0PciitLxtshyR6PHsa6fY9FtdyGMkzBQOg8PcmbW/alDUjYcZO+RxTESI1CkrPThSBu6ZhZjDJ3JTknBm3ARoD1JhLkuS7RXhygK55lRD1P56HHPlppepxF1tbcUVaDQ4dAkKsMCyOHqcfl+SaWoVTrLWOc344UElKyF07xw30yohI1mIXifb5hrpvNM57XjhwpmQl18rIzHC9DryeRcjGvn999HAJ7HUbXNVUflWoiGUMRpUhlfzrkZ1TCxkhJClg7gSml/FiWFcxH3hcvV8JXxmDFeUNa7ilACUAnB689Y/9u+a0opsLiabEGJDudp8bupwccSlyygvwMZwPT+1hmZFxw8K1xNOGiNfSW85fe57mvm2q+FzWVISYeMROUYBub8s6yUQEkFLjjiJIYUsjwnE65uXGt0GEWWV+rI+fcMQAuSYepwgUHIMjGi57u0Hr5a4iCHkvpnIcfvq2CMVSY5AHDIIYcsS1uWdaLzkY98BKeffjpe9KIXYceOHbj44osxPj6Oc845B6OjozjxxBPx0Y9+FM1mEwcffDC2bduG66+/vsdIKCAgICAg4PkGhYVV51bYN0NXgHZBvummm/DUU08hz6tGuffff/+StmVZJzrPPPMMzjrrLDz77LPYf//98ZrXvAb33HMPDj74YADAjTfeiE984hM4++yzsXPnThx88MH4zGc+g3PPPXfO17KCOsooWMxQ5EVZGZsxCAhXg0gaMZ6qra71715BXv3fkLRa64USCC6c4FHvX2cOanW3vH3d+T1R8lKxOk7QZ2vEeNu67Q6EqepNKNFMmecQW3eUtvXD7DX0Krpkclz1a09YGLdipI0YlFFIIRHFDFKlyHZOuDRzZlLUecEBs9Jm2sYZNKKQXK+2peeMaqFr+th05P4CXS1AlmCxFiVbBke3OXKp55ZJYYxBegPAf05WcAoArgpPxTG3vkqdO5szHerjZjFdYPulYgOysoKe1Xn6pID3/VygUoUeAJJmiiLLp70vW0vMh13N+6njzmlXScPq8L7nsGwQi1ilWrfdXgqUqRv/9ng77q2433aTS5l2gmDzb8YMg8kds6qkgpAly1wfwxGNIIWEMqJ9yihiGiPv5I4x56Ioq6dTU6kcpVja2VzUmBzlpY3HaQLBBXKZuX6q21HYbcqKk4mCopolj2jk2Jw4NcxtPISpPVNI40h/L3OBtNVAYpIYKnW/vBR6RSUY1aywkgpZN4NoV52RS+Zd6Pp+hvFdyurlKxVXXHEFLrroIpxzzjm45ZZb8Ad/8Af4yU9+gnvvvRfnnXfekrdnWSc6N95447Sfb9iwAddcc80StSYgICAgIGDpoCSwkBqi+2ro6q//+q9x9dVX46yzzsJ1112Hj33sY3jxi1+MT37yk9i5c+eSt2ef0ujsTaStFGmjAaUUBJco8qKSpioK0VOHyje4gtHyWPRje3q2e/u79NABMeB+qwh/BeiYILt6pYNq7ywM/Rinil7IruyM+Z7P0FB/Hyl6VvE2tZN4bfVXxr5mIYp17auxNS3st7aJbpdDCIU0ZZgcpxjfOQFh0s3tvcdpjCIrXI0gfU1Z0WD5lcEpJcagrTSOs31QphtL2PpKMs8r1/L1WoB+xrzQjAAzBotRHDsLg+5kW2sV7Oq8Vktpvs+wX8X7gfvuBTO0Hl2T0R+5qtZ9MJd7rbdZCF3bzGpGrLmkrwOx7bAsoaixef30OvUaWJB6LAouKvvL2liilLjaXP1g62DZd6uS1j4Nu2aNDBGh1MlIBcWYYY+M6Z+Qpo3S1bay6eZKKQiq+8u3yiCUIGkm+n3xUumVMO+7NdNj5Xiy9beAmiZHSYBDp6qTXt1ZmXLu1QHzdDpSag0RLzgSliAyWiMWR6BSYWTNMNoTHXevzeEmkoZmfnZu3wVRcK+GXsnqCC5QZAXiNEacxsi7GeDVtKo/z1K7N/BRLjqUWmDoah/Nunrqqadc8c5ms4mJiQkAwLve9S685jWvwZVXXrmk7QkcXUBAQEBAQMCiYcOGDXjuuecAAAcffDDuueceAMATTzyxLJOzMNEJCAgICAhYBki18J99Ea9//evxjW98AwDwh3/4h/jwhz+MU045Be94xzvwtre9bcnbs2pCV5RR8EIYobFEnMQQhYBUUv+u1a9hjBmhaq8rq001t9vqAj0ryPUdkAelNM/kxlkJW/muvbUU4v4i2v6C59mkLNdTwh0VjVoIAAIwYQHZI0ati0qrAkx3jj7hKyEEjjj2EGzckGBySmKqTVFwI66MtVuxTmWVboUgCmHCV3CCcmlFoLWUf/+61om3jn7hRBsu4QUHJRTCpvc6qt5Q4iYNvbdf7bV0+6vbB6OeFuu2e+LtuYp+54J+4vdBwmc3Nj03W79m22ycwZWUANVCcT/E54co7LsYpwnyjhXA2lCqDq/WQ1YzwYYy3Dnc+y2dI7JNLfdrmtnxW3fY9UXOVqzsh7z8ml79Qr36d5mWziXX4SulU8N5wRGnMQgh7j1QSrn3QkrjtoyyTp2AgCoUWqMtxEmMIi9MunZZy60icEcZlmNUi4JtLTvf1VkWJmxGqLOW8MPv7nzedxWLIycR0EkPClICjAJJEoFzARZRpEIiaehQGy84xtYNI0kYoohh93PjyNpdV7fLickhUHh9GieJDnNR4tyWgV4bgqVE3eV5Psfvi7j66qudDcy5556LdevW4fvf/z5OP/10/PEf//GSt2fVTHQCAgICAgIC9j4opcjzHPfffz927NiBNE2dye9tt92G008/fUnbs2omOlJIJCk1IlcBpRSKvNB1X5hJd/ZWf3GalMfWauBYIyoAzugKAKhleaxQT/nHEXeNudZUGcTA1Os4zeY8ui312lYzszv99veZHqCX7SGqXM3r4wQk7IpO9GVMpFQYXjOElxy+CYdsSrQBW0SQJBSUKSgJNFsxWqNNdNsZODhEodNOqxXHq3WvCNEp//1FqQLUtJU6UzRZqXYPaJbGppYTSapp4yYV2dUAYgyRESz7xo9VEbupuMxnZh18w0q/nbM5rsIEzlGM3M9ywAlVpxHB+6xOzzlnYRxIKDXCdAlJS+E2JaU5JDNmc/Vn6qwCzDP3xbRCiKoYXfZPNQds4oBX805qo8DSYE72fZf7ns+Ile01+9VZ69dPAJzw37J3AqbvTYp21u4iaaQgqD1bWYqG9fkUlDAsD6WY2jOFOInBYoY4ibXpINPWG8KrZWdT0H3WiEnlWCILazFBa4Jk+0z8cWT3kcaegvWw5xLdTo5GM4EQEsOjLex+bhzMsFi/fGYn1qwfAwAMjw2h0Wpg945dSBqpSTgR7vvcsl5JM4GImGb/oiob0hoZQpHnyKa6fZ/F3sJKrXV122234V3vepfT6fgghMyZaV0ogkYnICAgICBgGWAnvQv52Rdx/vnn43d/93fxi1/8wmUD2p+lnuQAq4jRCQgICAgI2JewUtPLd+zYgQsvvBDr169f7qYAWEUTne5kFwQNF17oTHSceE3T3ARxkgwcOLNxk7WUNhd5ZT9CCRjT9W8EpSC89JiZzYy8HlqaNmTQ57Oe+j09TrOzFydrvxnrJDydX4sX1qLVUEUZzrOCRU3tCy6w/6YNGF07jEYjwrO7bB0d41UiFKamCkQRRdrUoUVeROi2u45Wp6a+DgFz1zRSaVgXV14UWuTaR1zrPzPf9dW2mzKGKNb1s6yLtv1M+qE7quv4RHHkHHWt14vfnwB1tbCmCz8qX4Q7C/fj8jn0itRng0EO3nGaIEoTiJyblVn/ekNAr79PZb8ZwlelQLVXjGzHFpfchGbK99h/foQax2HTt8L4PkloDx6l5MB6Z2V/++ErXcuKRcZRGwzAzKtTNw4HrGTr4uXp2mMdxq1zuw2l2tp99t/WTwco/zO0XjVKSS+sU4Ca0FFkXL8bcQNZO3NiZisqtSEsSqkLzwvv/t2zZ3DJAsoIu7VgmjrPG+sQbmtrEUrAwMp7kAqQAt1OjtZIw7mP2/C0EAJFzsEY1bXwpMLwmhHknVzfu3WNNgL4IiuQNBPESazff0kAVvZjZ6qNOEmMA3YIdCwU/+W//Bd897vfxUte8pLlbgqAVTTRCQgICAgI2JewUot6Xnnllfid3/kdfP/738eWLVsQm0K3Fh/60IeWtD2rZqJT5BxxIZAw5lKCy1Rx5aoB29+6wnm5Wre/rcB4EJvhsyP9hJJupWqElH6qaj8Mvs7sWJ1BQti5Yq71X6rtps6tuL7Kr7IoFHk3d23udASEUGCMII4peKEQJwxSKLSGEjBGUeTcsTmdyQ5EIZA2UkizimNxBKkkorhMQbZsTj8Wpewv/RwF4FyM7We2NhqhBBBa7MgYqwgxJZcuVdc/d7XatXaAlrzXRXq26dzzZWxmOqaeDmyFsK6Ce9TLjFkBa/0dmE019fq17Xn89OXe/Yh5trFjBoQRKlsBb5Qm5n0loKysKm/fS38cVFLgAfdM/TpNgH5XCdHPx4rC+9VR89tp2cF+ldQHVVW3qDteS1PJXFFbR4qUzsiGHQTQl23xmSH7W3IJFduECn2sdhLOHXspTJ0pez/uR/V+r+g+K7937HVoTMDiCPC+fwmhYFFZwZx674h9r6f2tDG835ATJMeJ/k9zfOcERteOgBICxihaI019HaHr21nESeLaICDQGhlCe2JKj2XjMt2ZbCNrd0Ajptu4RJBKQS4g/LSQY/cmbrjhBtx+++1oNpv47ne/6/5fBfRzDROdgICAgICAgOct/ut//a/49Kc/jY9//OMu5LmcWHUTHb3q87QhQE9aZpEVjvWppohLl+bbD/7KjDKmVweJ7mJuVpK2TlSdwakbjc3F3A9Az6q5Xxpxv20+m1K/dnW/uukXHbhv3/bVDAF9ozsWMbA4RhpHoIyiM5nhFxnHphevBTP7cK4gpEKRCyhZrmQoo2i0EqOf0SmzlmlpjbQw/uweRLE2QvPTxZ2BY616eb/7tfWGqKl9xAuOpJmgOdzE1J4p14++lsS2oXo+5mpkaV2C0Qh4q/yZ9F/WKK5ud+DfUx39zjlbBqjC5hjjRV7YStd+FfpyTFBKQFjsNDz9rjXQbJASo8XQq/akmUJwAaqkq1tW1+NIKs2zka6tdYaFUK3Lsdvdu2r60qXM+3oYo+GxBoIlSyXBpa5oPjQ2AgDoTLUd0+uzJ3UbgJIVKZmw+rvf77vBh1LSMMJad0QlRZQy9x9K3bzSH+u+qaRlqAFA5vr7iSkGQvQzaI00IaVCd6qrGSnD4ilRGlVSWWpxXPu8+lb2mVotDIDSosGxhMSxc0XGQSMKxijg9XnWyREnkTN6JcZyYHznBNbsP+aYpdG1wxjfOQkAiGkMXnAUeQ5CKJJm4sbN0NgwJJfIupmrGWYNRpfShG+lipHzPMc73vGOfWKSA4T08oCAgICAgGXBSk0vP+ecc/C3f/u3y90Mh1XH6AQEBAQEBATsPQghcPnll+P222/HEUcc0SNG/tznPrek7Vk1Ex1Ln1oK1aZekrikhYusQGEoXJ8er9Z9IlroOA30TJs7oSOhBMwIJl2oyBOg9nNa9VO4Bzoj19PGB6Tz9ks3HnQOe219XP08c5f423CRDRFZMTaNmEnn1+cc3m8EUuh/F3kBQglGhiOYbFN0Mok4IqCEodsRKDJRps2ae0qSCHK4ibyTO4fX4TUj6La7iGJVS/Mu+0ZJARoxEIqaS3FJyYucA0kEIgSEuV6cREgaiRaCGpdYqSRUoZzbqw192pRoQmjFQVpyARbHTiTrP49BTsZzCTvN91h7vB9idE7CDC5tfpC7sN0f1NR34l4bBoTYaKRTnBvDrZ57j+IYggig4M4Z2Q+lWtGwFIV7P32hu5ISBa+GrQBUxLvuvmth4Gr9K3jvpBbpRqZeE2rO2/61nY2Fb81g3JIH9V8dlTR0LyImlQTPCtCI9rhWKzf+CLgnjq+H5H3hN430vUmiIIVE2kp1CCgrdL0oIVxo3/VZTRRfT0awoSnncM10qM2mk9vjecFBBAE3IUxCtLVEkRVIGjHSZoKO6Fb6edcv92C/daPgSiLrFhjZbwgTu6egiEJrpAVecOTdHHknR5yW/+GymAHdMl2eUAIOgBdLl8q0Up2RH3roIfzqr/4qAOBf//VfK5/5wuSlwqqZ6AQEBAQEBOxLUGqBRT330ZnOXXfdtdxNqGDVTHSYMR6z4jubAqkKPdAck0OswJJ7lZKrqyS7/usR+9VWZbaOEkT5GTMUnmYQqt2vpAL1BM8SM4t/+6UX96RwD0pbra2aBxkLzofJ8dtCKAGLGKI0Mas0UzU4YgAY0pauT0MZdatnUXA88q+/RKOZIE4ZGKPIuhyUAFlWXU26WkTGJkAI4cSJJCZotBrotnUNG2tO5pv32Xu0YttKRfBa39i08s5kBwCcuLjb7qIQJSsD9BrEWZFs/YvN9q906dnTWwHU2+hYQpsmvWArgbJGWb0fojhy1cItO8di6tK6K+0wtaUso+E+R8nu8aIAixgawy1sfPGBAIBnf77TJQQoIyD2a4n57yNQmtMBqAi1WRJVGFlCdQX4uqWDb144qO985oqw2PWzKKxpoTKp7qVBZHnP9txVpkV4Vcmn01rUU9H97xlb2VxSCSIJFITrA8vmOFayT00w90w8ATeVFIooFKLQz5iQillfkRX6fvuk1Ov78/8uBf22nRTUsTlWVOzux2NRJZeadYF+rt12Dimkfuc6VeuO3c+NY2S/YVAKZN0CzeGGFjCnEaKYIW0mGH9uAlKYsciBOI0wPDbkBNdSEkQAZFENswQ8/7FqJjoBAQEBAQH7EtQCfXT2VUZnX8OqmejYlXJEI0guTSqhx+4Y4yrKqFuRAb4Vfbl6Lj8vqyT7GMTwAIAoipLlYOXKQSpt2S6dNoiAkF7DwUFp4NMxO/V2VbY5TdDix00JpU53EcUxWByZVHK94tTsgO6DONErL18bxWKmq8xnApxKZO0cnAsILhGnZrVuWJwoZqCyNG6zmokiK9AaaQEAOpMdXXVZVO0Fyr4omRLLdlmNkTYBFAD0+GBSGxTGaQzGGJrDTZC2XuE7RsFodHwm0eo6KlYFpsI3jVgfXdQAnY6xKZipHMTsnlOvMaFvnGjHMSHUtNEa1ZUrcj+tmkYMoqgW77PnsWzD0H4jzmBQSYXRdaM48IUjyHOJ57bvAqEEw6MjphSBdAyCfm9KgYrtV8cKROU76xs29mMf/PezzurYZ1LX6lTS0M2z5EXJ/nLz/Ot2DPV31ZYomanAYU/Vb9OGfu9ttb/L90gqCYZSM2ZTqFkSVdgUfT2FIisQDUeajDYMZNJMQBlFcyhF1snRHu8g62YQBdcp5n2+W2jE0BoZcno5XhTu+1JKzdZYg03Hzilt9pd3MzSHWka3R0GoQmTMXnkhQCNq7qV63ZGxJibHNXurjQD1v5vDDYy9YBR5N0fWzUEjCiEkGCu/97UeiIIvoWGgz7jN9/iAmRHSywMCAgICApYBZcLL/H/miu9973s4/fTTsXHjRhBCcPPNN1fbpBS2bt2KjRs3otls4qSTTsLDDz+8SHe8PAgTnYCAgICAgFWCqakpHHnkkbjyyiv7fn755Zfjc5/7HK688krce++92LBhA0455RRMTEwscUsXD6smdJW2UsRpCikkBBEuLGJFpUkz0c6rQroK2BGNXBokAF1LBmJgDRxfFAr0DxW5ejoCKLwQgKXjKaEAA2BoZsJ7xZFKyUq6q752Kbiczl13tu7JdVHyfAXJlBJEcazdTk3YijEGmlA0hxu6Tk2sxcaMlUJcqYC8WwCgSBIKqXTaq8y5qxrO4giU6no4Rc4huHR9GcUMQkg0WimKvEDaSp1zsg0dRXFcSbPV91qKgn2UAknh3K6VVMg7ph6QUk6sWREcC7jwVZTG4Flhzk1BKCAKaUIz01Qun4Uw2f67vI/ZhSIHha3s2PKriNswFY0oIsSVdOH6+fqJa61b+NgL9kPSSFBkBYbHWsi6BYZGGtixfQpFzl1YkxcclOlrAfDSyr3QoqwKkxn0uwlRhhsJpcAMIaJ6CNCK1SuVzPuIs0XOdWjSczx2YUnZ/5r+O0opqbglu+vXUtr9Pq2ZLcN3IrY2GrYfbD/ZEJb06lXZZ9tvfFnRPqDHb97JnaMxYxSt0SZYzJC1M53Iwav3Fqexc7cu8gKUUcQk8WqMUZcsYN2RAS12Zw2KVKYuI8naTth3hDKqkxcIhaIlqzG1pw0ASBoxipyj0UwghNThqnaGpJGAMoZGq6FT5dNY970USBoJpJDgBXfv8VJAKv2zkOPnitNOOw2nnXZa38+UUvjCF76Aiy66CG9/+9sBANdddx3Wr1+PG264Ae9///vn39hlRGB0AgICAgIClgHLEbqaDk888QS2b9+OU0891W1L0xQnnngifvCDHyzqtZYSq4bRSdIYcRIhz/XSozPZcSsPJU0FX6Ng10K5yK14gCpbQ6gqV44G/QbcoKrN/gpcCUAWHFY26Qs/+8Gu4CPP6FCnPU+fBj4du7S3QChBlCZ6JVlII+TWgtS0kZoVnakkXktzZwAazditWOzH1KSq84JDmHRufS/VlTZlDEXGIbnUTJCQOo251YAoOHRx6zKd2zJqQmjGRnqpv2W7tCGdyDlUpMCkMqJGoUWM1pDQCKGlEE78TqgWOrLYmA4aZhCwJoUzuFC6++x9ZovxDOtMjhuHlCBOk77p9pY1sfWcLOPCGIOKI50WLpWrZUYowYGbD0RsGLF1B4wgThiyjGPXLyeduNyu4G2XSFkyKgBAGCBRFd7a3z7zBpSGkIPueRAqJn99BLsly9Wbtg1YQXbRcx0/jVvfm+oZZ3a7bYc+jlZE2JX76HO8ZXMc28PgGBDpicB7z2VYHCEBAScYBjTLwwvNYA2NtdBopWARQ7dNIQoBXhSavbUsILHsnnT1rCLPUsOyT1RWBcllCj2BJMrVg5LS1BE0nzFGQQriROEA0J7ouAQFAf2ckkaCvJtDCDuOCNJWCuGxN/qZUMQ0huT9+3lfxvj4eOXvNE2Rpumcz7N9+3YAwPr16yvb169fjyeffHL+DVxmBEYnICAgICBgGWAncQv5AYBNmzZhbGzM/Vx66aULald94Wgnj89XrBpGJyAgICAgYF+ClNObRc7meAB4+umnMTo66rbPh80BgA0bNgDQzM6BBx7otu/YsaOH5Xk+YdVMdCijkIYW58bNtBAFRCHc5wTEiZEpo5VwRt2Yqe6a3E+UDPSGGiqCUesQzEqBsXR0cz/X0bImlhK9L8hcRcPThTwW6pJMqK670xoZgjIhHiUVkkaC5nADjFFEcUkRUwIkjQhxxBDFliqXsKw/IQTDSqHb0T4anEv9uxBGiGxFjgTpaBMAnFgyQgRBBOJUi6KTZgpeFNp914QyJdWhqijW/jzUtKHuD+LCjlJCUgJZSFAukTRT597re98oF4JQ4J6HkqXw4zTWYUsT5hgUc7chy0F1zPznNR9PJBuKqXvmtEaGzPWVFuObkIgNjQiIUmDqeez4YlvKGJJGirEXjLlzEUKwZ1cbSip0prpgjOqx771nlNFK/9XbWx2f+jqcl3WwXPhqQN/5feU/M/se2WQD/zr92qF/M+P0bMaTFf363jzo9fOxouNB8GtjcSOgj9PE1UbTbZLe+1mOAcmF84GyNbmI8gX/2l/Hvp+VEBvRIn/JpfMmsuF6IfQ7F8UMSSNG0ojRnugg5jGybubaIZwrfClst98DPny9if++WeG7zyQIod2n3dgojLcSmDtXt52hOdQw/a3PF6cxeCHcdw4hBIwlUEpBcImkkYAXoq/f0vMBo6OjlYnOfLF582Zs2LABd955p6tVlec5tm3bhr/4i79Y8PmXC6tmohMQEBAQELAvwQ8/zff4uWJychL//u//7v5+4okn8MADD2Dt2rV40YtehAsuuACXXHIJDj30UBx66KG45JJL0Gq18M53vnPe7VxurJqJTp4VoDQGZRQjQ0PY+Z+73UpBCy5jnVIpiU6ftSI1z3mTUgphhI1+fR19DuatVGopy95qslKBmPZu0+ei6OeqbPerVF/ukwrdL0V8PlhoqrldTSqlkDYSsDhC2ohd6jcvSlFkFFG0J3PEiU41B4BmKy4F4kL/jhOGOGEocgHZiNBtFya126xcuWHGhBaX04gi62aIVYxGK0XSSNCZ7GgnbMa8VGAtWlVeyq1dKRLrRquqrJ11ddVusnlFaCqLXiZCM0UEStS3y95Vrpc2DgwWzvoOuP51ZsPquJTsOK4wOX46uR+bt8JcalKCJZe9KeaGpLMV4mnEsGb9WjRaZbowLwTybqFZikKAMorC1C9jMXNsgr0nxhiEqQ5fZ2UqzA7TFgTg0GxCrT9n0xf6PqdnOqv7WZdz1iNK7vfM/DpUg+Azyfqa5TsnhADMWCvbRJ3rsX32fh03ez6Xtg9U0sxtMgaNAEivijnTIn7LzlCi6wUKCHQmO2iNtNw+jZZ2TG5GTUztmdQXNueijCJO45KZoXDt8cetHUv2vm1dLMAXxzNzT1pYXR+Htu2dqS6GR1uuvIIUEo1mgm4nN2y9SWsHcULpOI1QZHBp9EuBhWZOzefY++67D7/xG7/h/r7wwgsBAOeccw6uvfZafOxjH0On08EHPvAB7Nq1C8ceeyzuuOMOjIyMzLudy41VM9EJCAgICAhY7TjppJOmZYIIIdi6dSu2bt26dI3ay1g1E53hkRRJYwiT4110pjJXY8mmmNu0SRePZlTHbFXvahsoa1PZc/Sr9QIMXkn6sXm7WpFSuZVWv6MGmdgN+ttvw0JSyeer17Epuowy8EJrZISQLs2TMeoYs86UXqU2mjEo0/fJuQQlBNKjd4VhdqSpgWU1VsKkcPOCu/RzW3dIsywx4jTCfsMpdu/Y7apP04g5nY5SemUIAcfo1Zm5KDbp4nHJclh9g+1fP9217Avl9BBWxzFIfzLoOc3l+VU1J4NNJLUhZm+1cs0ywTFVvtaEUgrh3YOAQNKoih+ZuV6cxkibCQA49gYCyDu5S+/3zemSKNF2AFx6bSmrjNsVcL93wZoxEkpAlMd4DBj7ts7YIH1Tpeo5etO4rYGin2KviMKgN9hnXmy9KY1yrGgDTNnDBvksb70+mk3Ttvfe7178voyTBEigjf5qfUhmkVlttUi6DplCnEQocq7f74IjaRhjVi7gMxbMMrxSs64+s2O/PxMzVgQXmNw9ARHHGN5vGMywLEVWOLYRsvau1do+Od7G8GgLnAtXKT1OIvBCQECCoRzv3HyPRDFbUsPA5WB0ViNWzUQnICAgICBgX4LEwqqXS4SJzmwQJjoBAQEBAQHLgMDoLA1WzUSHUOLCI5qeZJoGjakRRerQVZzokJYQJU3up0RKKaEK1eOaXLqQloNPO+bWHHsHiIyt4ydNosp2Pzw0nZPpdGErt28fceRswyH9wh/TCZOtwJYSiiIvXCgiTnQIKU4iNFoxeCEdbWzDhVRRUEIQRwTCuqoSK4zVwuRuu0CRc5MSampFCS18LrLCha1c+Mqko2ddTbHnJg1Wi8o9EbFxRJZcIkpjsESLTOsC0SiOwWLmQmcAQFlcefZSeNQ9K11xfddeW3druudhQxmDaqhNF5qaaR9CqRdCLW0LfBdeQnSdMismtWESACBKh2+kEEhbDSfKdaFBxhBFDJ2prn6nMlU5h3UkpyaMkHdyF5qqhKdMN/dL3bfw06UBm+4uXdp/3ZHYholQq5dl+8V/n61btv2s3rc2LCNh6kyhN7RrU8R16IXCfx2Vki785a7vp1rXXJFtG1ojQ3qM22QHLk2SRO+7aUOQhBKkjdQT3fcJ2ykFAl2Hzr7Huk+970Il3bsWxRFEwUEoRaOVojPZ1fsIAbgwsL537ZysdGjLYyQooZjYNeFCY3a869BmbBzUdbq5fnekszkAAC65rqkHpkOkKMNXLGbaHZ3R8rudKhdhpEY0LYVElKya/xZXDcITDQgICAgIWAYsR3r5asSqmuikrUQbSnVyFBl3q7wi4ybVWKclU1bWLbLiQQCOHagzObwo3HZfOAmgR3Dssyr10jW+qZjwVv3ToX69gfv1ETja9uwtVgcAJnaPO/YriiNIJlBkQJxE6Ezl6LZzUEqQNHQqOecKvGMqf402ECe6ynyeC0guIYTuZ1HolRylBEoSwNSasqmmls3RYugIQ2NDGB5tgFCC5nATRVZA+SJQVhUKC0oglUSj1dQGkpFlUxQopZBSQnRK1sbvH5vqyuLI1WWy7A03Rm9+LSObbjxt7SXv83pFbcuezJfGtivtssaQ/5mpMG0YNUDbLEjDyPh1iixzpavHx65GVbeTu/v1V+BWiG5X35T0Miu2DRaVelZeart9R4Uo06Ats0Hr5yDUmXT65633iQ+/9lm/9glj80AU8b4jekX71sbAnqcU1tKKsNbZW5hnIoXoqZ5uRcg2sUILdVWP16hluvw2ZN0MlFIQRqAi5lVQt99TVVGzn3zhs222VlUhC20bwQVYxNAcbqDbzlBkWvQcp3GPWFjfV7WdURzp7wpELm2fUgJRcCimmRpKCYTQbJJjBBlF0kjc94KENAyW3jdOI3SmCiRJBMYoCsEhuHTsftYtILh594taB+5FKKkW5IwcQlezw7LWutq6dasLS9gfa0Ft8cgjj+Atb3kLxsbGMDIygte85jV46qmnlqnFAQEBAQEBAc8nLDujc9hhh+Hb3/62+9vXBvzkJz/BCSecgD/8wz/En/3Zn2FsbAyPPPIIGo3GcjQ1ICAgICBg0RDEyEuDZZ/oRFHUw+JYXHTRRXjTm96Eyy+/3G178YtfPK/r8EKCxeaaMXMiVgshBNJGAimVoz8tNSyFFsRSSiGhRa+WIieU6DpHXBqBJVwdGie+q1HdlrKui5d9saSt1TNTSAOYvaC4Hu6YK/q9VIPCVsSEN7KpDuI0AY0Yuu0usi5Bo9VAkWsRY6PVgBRAt52VoYyIgjGKrKtDWH7/Wb8cHe7RIQP7HG1YxDr66mMpWMzQaGl/jpGRFGm6Fu3xNgoT4ori2HmbQOh70qfMMZVz0Ig5oW3eycCLQouKa2JxX6SqBZVFlf7vc0zF0bhex2oRn30dg0I1ErSy2JBKutBdpS4cp268sjiqhPdoREGKMrwreLVWnH12QFkl2YZHnOiV0IHeVLZdAHr8igBUHMv7wX8PfPTzh7L1rmwb67CCaytq7hdmG5goIBUAWbkGVcaF2wtp9IjDvXEmTDidRQwsMu0Q5XeP/t1rjqM9c8owlR8SpJRW2q7fERtKKsXrNsGAWKdsE2YjhIDGEZrDtBL6r15fVl3ibQiSSsRJDEEEmHE7t8kKREi0Rprao6fgEIVw4Wkb/mQxcz5agA41O/8mwHnqAEYiYO6JUgIh1YI1M3NF0OgsDZY1dAUAjz/+ODZu3IjNmzfjzDPPxE9/+lMAOrvpm9/8Jl72spfhjW98Iw444AAce+yxuPnmm6c9X5ZlGB8fr/wEBAQEBAQErE4s60Tn2GOPxfXXX4/bb78dX/7yl7F9+3Ycf/zxeO6557Bjxw5MTk7isssuw2/+5m/ijjvuwNve9ja8/e1vx7Zt2wae89JLL8XY2Jj72bRpEwBgZLSB0bEUo2MNNIcSPYs3NVgawzYtViJrZ+CFTkG2qyjKqlV0dZq0dnD1Bai2yrB2VtYri4rrsRGd6nRnLWSVphqwMAJk+2PZHACV3/VK6PNiZlR/RmHO55lGhGz7QgpRcShWUiHv5sg7uakUrh1U4yTWKzPTz4RSJxwkRK8WBdfnE8b1mBfcMUNWmGirjwNwVY6bQ03ESYQ4Mc+TELRGWz1tppF2RbWrY2nEoaIo0J1sI2t30R6f1KxOzivPUJo0cftTZLlpY4Eiy1FkeflcnRB5/n3fV1juOSHPqtYVsZWx1UDmQXJRqR5tV9mEEs3kRNSxZnESI2nqd8uvVWXrJRGi2bzhNcNl/Syzn+SyIiQvr2+YDlqm19t9qokBg5hFgrTVBEsil6Lvp+qX+5Wiap8xqbNvfg0papgX5xJt323zflFCK/v3g7WlsCnnLI7dPTnLCe+59rtXzRRaGwZqqn7b50T7Plv7rtnvMJ/FkV7tNcs4OKG/x8a537VzK6XAGEXSiDG6dhija0cQxcykllOkZvvQSNN9t7KYIU4jd99JM9HvrzeWbQ08QCcPJM3Ec1tWyNqZ+zxp6OPtWJRCC4+l6YuGcWDOuznynCOKGFhkU9fnx5LOB/53xnx/AmbGsoauTjvtNPfvLVu24LjjjsNLXvISXHfddTjzzDMBAGeccQY+/OEPAwBe9apX4Qc/+AGuuuoqnHjiiX3P+YlPfMIVKQOA8fFxN9kJCAgICAjYV2AXwAs5PmBmLLtGx8fQ0BC2bNmCxx9/HC94wQsQRRFe+cpXVvZ5xStegbvvvnvgOdI0RZqmPdt37+pgWKROR2CNo3ghKjVZojhCY7gBKaQzwrL1eAC9sqyvOP0VplKyJ6Xc/lu6NNR6jaqqVmeQaVypP1nYLH6uTMKg/evGaf3A4till9sfKSXiVJvrCeiVaJHr9FTKmEv5FMbgSyoFqggkdFVwaYzCynZUGQxbX4uZczWHU5O6LtFoMEwJiaHRJsafGwdMGqoqSu2M1TD59cikEChmSOW3KcDub28137PqldNXsJ7Ns+6nteqrI7FGg6ilENd+A6isoAFtjGjrD1ndjH0XojhCbtkETiCZdCtsAIYVK1kOykqzN1vPqq5RUEaP4j9f+7mtvG0/s9XD+/WdvS9qzA4BfQ910z9/RezrRPoZ7omicPoZy/bWq7cTSlx6t60T5jNPfvv0vdl6W/DOof9WkvSMk37vXFmviZdGjZL2aJW0Lqd6LCW0mvZNdZ0pRVWFyVNKVYwi66hrfgBtIZEk+h0c27wGnCuM7+lqvSQjACIMoQnOBZJGXLH8cAahlIJIXRfLslPS9Gd7TxuEkIp+qcgLSKG/X2xdK903AmkjLrV9QqI51MDURAdZO3MM/0InHgH7JpZdo+MjyzI88sgjOPDAA5EkCY455hg8+uijlX0ee+wxHHzwwcvUwoCAgICAgMWBnegv5CdgZiwro/ORj3wEp59+Ol70ohdhx44duPjiizE+Po5zzjkHAPDRj34U73jHO/C6170Ov/Ebv4HbbrsN3/jGN/Dd7353OZsdEBAQEBCwYIT08qXBsk50nnnmGZx11ll49tlnsf/+++M1r3kN7rnnHsfYvO1tb8NVV12FSy+9FB/60Ifw8pe/HF/72tdwwgknzPlalFoquwyhWFddFjHEaYy0EYMa8Vp7oqvDJkQPpDiJIZmm7YURCtuUct/d1qYPD3KaBTBQoNg3ZNUn5GHhOzTPRnw6V/S7Vr82zQaU6Bo3tsaOdTjlhQCoDks0h1LtcGpEw5xLZN3CpCjrvvEF3v3aZR1SpRBgcYQoZkjTCJxLJAlDlgkoqd1PG60Gsm7mxKT+vdlwD/Xof0fdy8Hp+dOlhM/aBqAmVp7u2c7XKqDnPCYkIqWCn42s+zACIQS5zF1YxoZwfQdkK6wt06J1arp1vI3iyNU9c2PWNF3XhdPnTEdSFHmBvJO7dthzAai4HtfbX/6twz5cFs7VlxIKCT/sVUvVtm7P3vkHiT39MI5UEiLz/jbvN3VhvGpo2of+jpCQ3A8lWmGwuQ9R3o8dWr4Ttf2tQ7axszXoN3788alDxwJFVjjhvk3X9vvbtVVICCqMyJdVzsHAdO0oEJfSHadarP6CA5rYf22E9WsEOvko7n1gClIoxGmE1nCCbocjiinSNEK3U2gn4yRyteyU1I7ouiahTeDQz9QPz1nhur1vISTSRozcnCeKPXdopcC5MHXvchQ5RxQzMJOgslQIE52lwbJOdG688cYZ93nPe96D97znPUvQmoCAgICAgICVhn1KjLw3QRlFt1NUWQpCEKeRY3LSRoQo0vt12zkkAEa9WkCiZBV4Ib2U8iqbA1TrB1n4+/bDoOrUlX2mqQM0G/Q3/evPHAyqEj1X0IiBRnqlFKeRY1ooqTIzSSNGFGuzQC1gBRrNxFQt1zVrbExacgnORV/hd5xElZo9UgFJI4KUCkUuMTGRgXOd9k4phWIMCWMo8hwi9ypB97lvZ+4mBz+resX4Qen8MwlV+53X1jua7TPpJ0C17SrvZzD81a01WhPUsCJ99AFSarG4ZQR8QStQrrpd2zxjOomynlIUR9oywJzLtduysZ7Ytpf1lIYNoe7+rIDZsix+7arqsWpaw8G68J0S6rG6vfvbd96vBzZofJX9odkk2z7m2umnE5d1r6wZJSHa0DSKYxQe+1a/BmjV3NDW1bJ9b+0ghCxZKlvfTWYSotBmfv73g6QSRBJIohDH1LEj1NkIAEOpwIGjk5j6lTE8/R85uh2BggtEsRamJw3djm6nAKUEcRLptPBWiiLjZb9bVjGiILJ8hyxTyBq6aj0Y1ULnJALnApN7Omi0EmdEaoXJhBDH1Nu+WCpIyGmNMWdzfMDMWDUTnYCAgICAgH0JSi7Uy2wRG7OCsWomOu3JDEmaVFbD1tRqbE0DjFGdejxVgFCCKGZQjGr7cGtcRfT29kSn5/yUMQACspbI1lO5uGY/XzcArGMm7c3e0OYs5Bp17YM1ULRGZkJIANyV1bC28nGkV2+FVKANgvZUXtrJMwrGCOKUYWJ3B0XGK+Zf1n6eMc0G2WccJxEYM8ZohIBziYk9Xex5dkJrQkxZg0aroQ3RhICKlEvrtRWufdaIEAouBzM2Pf0xQwq5/T1d/iZ9BwAAH6dJREFUHztGYKZyEN553L60yoYMgk2lr2vK8m4GZszZAM3qpK1Ur4CNtT4hpDTPVPbdYj1p47YNVgdS306p1sdl7cwZE8qaRsYaQioqAaNrUUR5Fg+D0+1t2rrup/6anpJNKfUyFqNrRjG1Z7JyHUV779G/rpIKLIkqRpF+n/dDqdGp7e+Z4/W9ptHr2Mrd9fIL9X0dy0Vp+S6Cmf5VznYDgGN37L6SS1OqpdTJ1MtxFBlHFFHs+M82pGiikSbY3YiQxsDoiGbPOWfodgSkySAaGk7RaMWGfdW6ms5U5jSVlGlmnZixKoluq7UsAGCqmRvzQcNC2nR1rStjKDJu/pbmvFGZyRR0LysOq2aiExAQEBAQsC8hiJGXBmGiExAQEBAQsAwIRT2XBqtqouOLP+NEC2JHx1KMjSVQSqegR5FOb2aMgntivCLTAjZeiB463Q8XMFZ1bq0Lff3ww2KkBVfaMSCMMtjZeG7p6dPtVw8ZuGrYQqDb7oBSgqzdcfWktANy5Ch22jY1abzq5L7Y0ooErWuydTzV19BhMEW14ymLGeJGBEpKSwGpFHih01Ote61NRwdgxNKJSZcFlBQ996O16KW7sO1XylglLNmvv/17me8qrJ663i+V3XdU9sOjM4W9AFQcZi14wdGZaruwAKDDAJRQKKbK52cqzgtT14pG1LWFuf7R/U1E7xjyQ11SSRBhQi81MbKSulK34AChpcgXXDsa+8Pfd0627txUUghUXbV9lCHXXtF4a6QFxhjaE1POHdpvl7+v/luPZZFX9+2Hatp3GT7z2yFy7o0jWk0vB/S/VSmUpxEFRSk69n8rah2Zy1RyXnD3LIus6B3PApAmhMoiBlEISCJLgbgRZtuK6oTqkGaKCBMTBZ76D2Dd2giNFGg0CKKIQSoGPhxhakqAc4mpqcKEnRlog4AXEkCqw9oZB/dqr1nndIBU+kFJ5eoVaqG0/t6IU1MHT5h3RJQhTDv2bAgvYGVhVU10AgICAgIC9hVIKXsWznM9PmBmrJqJjmVwdG0UiuHRFK1WZERxBFmuwAyjE0XVelbWUE7P/o2AjzGg4GZlNft08L2Ffiv7afcfYLo3CP1WuHr79C+aL8KkjIFGzKX2KmMeKKhwIkP/xY1iLVC2rEsUR+hMdnvaZc3bLOtjzb/sM88kN0JlguZQiqk97co9WTGlFdUWWe4JNb0UWnMdm+JNI+aJr7Wx20z956cZD+rfmeBYmwHX81kdt22W7GG/sUAIRd7J0RptIU4idKb0M7ArZvvDDQtm6z+RuMrMCWOkFyexNp9DtXZSxfCNoawC7lcTV9VxWPm3qIqHbXVnV5mcGGuAfn0lS6PPQf0ytWfKVb3vTLUdy6uPGyws1mnhvq3FAObVsDG+6Ni2yV6jPI9hTA1j5lLMzW8lFSLzfIhhevw2aDExtBmhSUuXUjp21J6j3k+2nVKW4nHIqgi629YCdhYzNzaE0OLidjvCiw9pYnSIIOcA5wBAEEUERaGwbl0CKRR++WxmqszbOl6AlAx5znvCPbZ/aKRZqbLWWAFlrCwEJBpJAs4FGHSSiW99cMALx5AkDON7MkyNl0aVextBo7M02KdqXQUEBAQEBAQELCZWDaMTEBAQEBCwL0EpuSCt5mLrPFcqVs1EhzEtfoti7YCcpgxjYzGGmgSNFJhsA3kBNBoUQISkEaM92dUUu3FEJka8al1b65hOaNoTqphGNDxXkXD9fHMJW80VVTp7trWbDP2udE0fSQkozEsutGCZcFq5bwBO8EkIQZEV7m9KaEUMqpQChK5fJY1vT9JMXJgraSTlftBicRsmcbWNbJiEMSTNFFm7o11+pdICTUrAc91WOCGndsm2x+WdTItKZzEOBu0zaHtdZKyk6glX9jt2NrWwtI8IcyEewNQmi8qQoXVIzrt56ZtDCAjTQlAppA4NUwpk1ZAQIQSg+vkAADOCcv++KKNQsULeySttkMQPv/Xem94uTfuJc/XV/dEbViaUIKKR89OxbbD712HHBwBk7S6KPEdrZAhpqwHAughXfaNce50guX/4yrbd31Y6I1fPUd6PqAiO6+B96rZJIUz/KK+/mR7LABQEiOr/neN741Bp3bT1c/W9dQQ3/1baQVlJ5d6pbhsugaALIC8UkpiAEqCRAlwAaUIQR4AQQLNFER/YwJ5xgcmJAtI8d6W067YLFxNSeWaElOPfCs45dH+wSAvlo4iBc1H2g/GPmtjTRaMZgxIgTftYie8lhNDV0mDVTHQCAgICAgL2KSxwooMw0ZkVVs1ERzMxFHGiBclr9osxOkww3NQDpUMJKFFQCkhTiuZQDMa0m+74zkkAcKmzQLkS06ub3uv1W0nOhWmprzbrn8/2PP75FlsYPZMQ29+v3zafVQE17I6XXk4jiij2ai0ZlkHXvRIudbma0qshuXSi2CIva9vYFWrSTJwYUSkFcABRNZVdu/8WZuUXgxCKrN3R16ESShJIUFOZW7ezyHK3Up4O0zE+M42Veur4tOeZBbWtmYSyMjhQjtekkbrK1n5lckJIxdmXUubOUVopEJcqTihxK3wiCOI01YyZEbBaR1rb/z4j4DNDznk5YuBFlVW17ts6zbyXpZmJbbOwDsoWdhwBelx1213EaVw+c6lcxfJKe6hmHBhjhl+QPde2jFu/9H/L4Pj3QSjRdarMMb7Yv/5+SyHA4kinhZv3RQiBJNbPNGsL7RBOqHcOVWF3/N8Cwgi+y/cOkkJIUe5H4UTK9rjWSAPSCJIJldi1W2BkKEIzVZASkJIgiQHOCTpda+Og2fVul4JPSBQ5R5FxPQ6JV+XdGxN1xs8KpBEDgutzSEa103pEzZhWoBToTGbotnMkSRTCQSsQq2aiExAQEBAQsC9BqgUW9QyTsllh1Ux04qTUBUQRxfAQRSMBhlKJdk4x3NIaHaUAqZSrmUQZRdJIwAsBXgjHJFDGwFxq82yZjXI1Od2KfDrDufliMY7v3665Je7RiJm6YCj7UlKnsYiTxGlDRCF0vR2jwVBSgSq9QrYsA4tYpWaWNQi0bdZpxSVzwwuBzmS3sgq0BmOEEjRaKYSQiNMYWTtD1zA4jDEwxhxjo1eLAhRwdbJYHINFzGN85mkMOIfjfK2Fved+qeu9xnh21S4hoJ+LKIoyxdpWiLZ9bfa3/Q0AjVYCISTybsmsxEmknxnKyti84Iho5JgavV33EwevrMSjOHJmnX3ZTOmbu/Xqj+x4krX+9/ugn3GgDzsu/eNcyjwlENZYj1FE0KxO12OXnIGk0dcIrx/qRpT2PuqspFJSC1YAo8ep1SzzNDqlxQFz5oxSycp3lR2zlr1RUlXeQ9c/QmtxBqfLE9cPhFAkzcRpr/p5uiilkHVyxIkeQ91OgSwTmGwzjLYUNBFmGUCtpcwy6f4dRQRJoo0jVcyQNGIUOUfe7WVxrI7PGl8Koz3Ku7lh9Jk2gfUsKwglYOa7OGnE4IVA1unVX+4tBI3O0iCklwcEBAQEBASsWKwaRicgICAgIGBfgjZyDOnlexurZqLTaERoNCIkCUWaMjAGEKLAJUHBCeJImVpXBFICjWakadcuR6OVoMg4irxARCNILpE2UnDGkLW74FLXZ5nLoJvLvktZe2UxqNB6mri/rdxu758CXjanEMLUTWJOmEzAnEBYh63K8JcVFdbTlaPI1DYiZTgnzwWkUTpKLp3g1G5TQiHr5k5ombZSCC48Z2yCdKiJ7uSUo5wlBIhUkAB4zqvpwrUw0nTOu7NBvxDUtKJl3822dqz924ZdiyxHnOo0fCc0hR6nWTeDVBJxEiNiOhyYJBHWbxzF9mf2uHujjCHv5i4cKCGdHYM+L4UkpcA1TiOwiCJOIhcazrs5pGtbNZxTcUImxAiSTW2t2KQ5exYENnzl94ENkRJjKTCbBAErNI6akTtPkedIGil4UehzemE0KYQLR9m+0fcbo/D+nu45zsYWoH6c5MJYAWihfWeqrcOGpv+FEKZ+mEAuhG6/OZZL7u5TUQXmvZT199l3BxfGYVi4cK6um2XDyVEcoTmU6u/PjIPFDFkmMD4hEUcMa0b0PeYFwLlCnksUhUTBFYZaDM0mQxQ1sXMnwdRE5kJVVkisx1opkqdU19tiYC7MZlPhi5wjTqLyO0B66faUoNvOdb22YuZkgsVCCF0tDULoKiAgICAgIGDFYtUwOv/583GMromx39omGCOQkmHPJMHElDYMzAr9Oy+APFegBIhjBiF0WiSNKJpDDXTbmRPLUtVftLcQKhJYWIXr+WIxrzeIySnTYTWzEaeJFgN6Vcz1ijQCiyOM7DcEqRSoWR1SRkGNuNiyNf51SqM5K0LWn0mhIKDr+Agu3YrON4Oz/05bqatyrGtm2fpZORiYqe/UrKSRSyF62JLBfbM4rI4zDqyLcQmtCKEHCXLt31HMoIxpmuQCjeGWq2EFAM3hBrJubu5TQkUKkWHT8tzW/iIghikglGpjzahccQO6vhUvuDNoAzTDE8UMI2MNdDscU+MdvVJXytSkY9OueAkhiOLY1dCyYth6JoqSCpJKx1Iod30GLrkn5i2fC/UYHz/ZwO9fK2KPCTU13AY/MyGETrWnBHp92SfVvM6cmOdb1r7q/V6xrJz9XHKJQuZIWw1dK45L3e9mnNt0ckIJ8m7mGC6bAq+8PqQmXd/+7Rg2UlZNtwyOFVvb5xCnse7fgmN85yQo09XDZc6NIDlGp6sr3hcF0M0UIgYUhf6+lUJhcpKj1YqQphSjowmUVJiazPR1jXEgZQy2F62ppW+aaO0oLPPDCwFmtjFGIMxzEI4dWnwbjukQnJGXBqtmohMQEBAQELAvQfsIzX+RGYqXzw4hdBUQEBAQEBCwYrFqGJ3hkRRJI0IUUVBG4JtoxpFCDCAvCFoNgjSh6HYl0pSBc4muVOhMZihy7dMQJzGUUo7Wna0QuRLSmcHZ1g9f7W06dSFhq7m0y/rhaC8WiqSRojXaQnOogdZIA0nC5nQ+7bNRztWF6FMjSmkanFCCpBE74bJ1ubb+OYAWOI6uHXJhKyGk9n5RCkDiwkVJM9XiZmFda424dQZH5IWErOx1LKxXi++o69Pgg8Kf/cZS0mggbTWw7sA1WLf/MHbtbKPIOXgh8MKD1+CZJ3aiM9VB3s11WGC4CdKIMTmeeaJlLfR1/kQu/KKFnkoppM0EgksAWnQMJGi0EsQRQxdluIEQYkITve3XIeSm8UTiyDs5WMRc2Mr56KhqeNKGoRQtQ1C9wu7yXZTmOC4Lcx7r5C1LnycrwK2HLu07bfxorKDZhqDcfdpQkF+/zAtL2na2RobAC44iz03IrH89LULNfRYKxISlAEAWpo6b6QepJCBgxrbvIq1d3vX5tZjbfse5EG9sXMlN/SzXX+Zd0eHJ0vUcAuCFvpYNbXZjhmd3TCHLGnjBugRxrL1zVKzDSXmhWQ7OJYRQGBrWtQmHhhPsenbSiIj1+XnBwSIGCunYjdTUtpM2HOVq3GnRshT2fWcmdKtr2tn8iKWUDWhh+gJCV4HSmRVWzUQnICAgICBgX0LIuloarJqJzn7rWmgNNZEkFFGkZ/ScK6QJQRIpEAIoRSAVQDhBmlLs2aNFmLYWD2MUklOT1sp7RI+DYq2DBuNsXZGn227bN1/M9kXpd43ZpsDWrxelCZJGitG1o2iNNNAaSpCmESgjRmzsVUj2WBrrzksI0GpFkErBXp4x/ZkVj3MuoRTACwmSEAghQQ1TMLJfE0IodKYyxGnknJQBwJjDmtRYBhYzLcT03JUFB+JUMzxFplfZoEYYWasivxBhuWWK7Aq/mipuqqczXfPJsjv9x9RgATSNmKkppr8K4oTioBeNYvfuDEoB++2XgLx4HZ752U7H6OQdXcG8OZQi7xZO3MlNqnGcxigyzYSU1d1tJXQG1ogxNdHR6b5phIILrFnbRJFzZB0vPd3vS6VATd2o1oiuHJ539X3ba9l+dpXoa/WjpJIgklTGsmUxqv1OIXIOJOXXo2UrCCWgoI7NiNMYkkuTzl6zE/CqjCslIQpbZb1kgv19fVbQf46Tu8aRNFMtziYK0jBEVcG5NKyTZk14wdEy6ePWwb2nP7jUtbBqtcEsS2BF3BX0IS2l1IJkVzme2rR86TFa+h1iFG6cdLsceREjirQDcsGV+24uCuHeYykUopgiTSlO+o0DsXtC4dlnc+za2UF7ogshJAqurSMoo5BSgZqUcUKZG//aZb38TuGFQJETJI2k7EulZlWrbrEQxMhLg6DRCQgICAgICFixWDWMThQRUAq9QlAEz+3Sq4ehFkHEgCSS6OYUjALKhJ6HhmLkhdTsgJQoMq41OmmkdQTcWwkRCkqlS3W1GJRC2m/VMBfWpp423G+fmTBflsjXhcyG1bFsRNJsuGrYaSvF/hvHkMQMlOnYPGPEaDpQqUps2ZQ4tqyK/mGU6NWjTSM3zYhinS7LuV4lC6FT1BHpmmeAHgdpI0K3rdmAOGVIEm0nQIV0999opZphYGU6MYu0zojFEVicOQNB1Fa/fm0lv68pY2iMtFxNHmBmZi3vdhEZQz+e5Xq8GVPEOE3AiwJFlrvK1vXr+inUtq32uVDGkHUz7HkWKHKO9ngHNNI13sZ3thGnERqtBJQSdCY1O9CZ6iBtxKbf9Yq7OZxCcomsWzhNhl1FR4igJDHWAcx93p7oghcCzU37Yf2BIwCA8Z2T+ryeqSP1WBApJBrNGKIQRm+lryEhdeVtUepRfI2JTZH29S+UUChaaj7iVK/ubV0zGllGgJTaFS5BqAIFM8aD3Otb0bcSuYUU2mASKFfjJRNcfif4leGVksg7GWika1lRQkFjbYznTP5kacJp29memMLQ2DCkEBXdkmO+qITMc1BCK/W9qrX7qvdS2jA0XI03e07L3qSttKJ/cynq1qhP6NpV3XaBX/4S2H//JrJMIooJUsPMMkohTV0wISWIALIM+M9nBQ55IcWBL0iweyLFs7s4du/KkHU52hMZ8pxDFNxp8CjT7I6S0lgboLQ4MLeWd3NTh63UOi0VQuhqabBqJjoBAQEBAQH7EoIYeWmw4ic6lhXIOhNuG6W6wnUUEXQSijaR4JFEZyoCFwAXQLctwLlCwSWyTo4im9CMDheIsgJSaht4nnfBi9xcS5qsEu/6S8DoDNpnJiwGowPMHCcumQMOQgsoFYGyHFknhuK9jA6hAAFxFbCJqW4saoyOZXJ8RkcIBUIBXfxZOs2OFFa/YeLz5jnZyttKMSihGR0pJXghUeTaNr7IuqVBnGEoAEBwAZ5n4EV7xsy4CqMjGXguIT1GBzOszHjRBYhhdArD6MjS5p7zwml16joh/8vQrlYts8FzCUJ1H1CSI884iqwDKigISQAZQSndL3lWoMi6EGalnXcJuM08kkyv1Ll0mhkpRJn5IjULqhBByQhF1nVZOCAxsg4FIUDenUSRTWqjOy4qjI5UFBQUeRegJELe1e0p8hyikJBSahbJGOT5jI7uYgmlosr4lQU3jJDpI5K4Z8GLHFRq3RVhBXiRaQaTMcAwYQDA89z19SB9R6U0SC3jst//VXVSwT5v5Y0ZIURP5Xp/f0IJilyhyDMoLnsYndJgs2R0VI1tqr/rdrwVuagwOr6GLMq4e1cIBSg8U05GQWgCJSMoyUBpjG67QJ5L8IJAcYqsw5F3BQpunz2BiLS5YMwitKf0+TpTBN02R9bJkGcceTdHUdQZHVphx6x+x45L93xkyegU2aTpg73Plgg+tazHrxYQtRRPcxnxzDPPYNOmTcvdjICAgICA5xGefvppHHTQQXvl3N1uF5s3b8b27dsXfK4NGzbgiSeeQKPRWISWrUys+ImOlBI///nPMTIy4rQei4Hx8XFs2rQJTz/9NEZHRxftvAEaoX/3PkIf712E/t272Fv9q5TCxMQENm7c6LRhewPdbhe5YQMXgiRJwiRnBqz40BWldK/NygFgdHQ0fIntRYT+3fsIfbx3Efp372Jv9O/Y2Niinq8fGo1GmKAsEUJ6eUBAQEBAQMCKRZjoBAQEBAQEBKxYhInOPJGmKT71qU8hTdPlbsqKROjfvY/Qx3sXoX/3LkL/BswWK16MHBAQEBAQELB6ERidgICAgICAgBWLMNEJCAgICAgIWLEIE52AgICAgICAFYsw0QkICAgICAhYsQgTnXnir//6r7F582Y0Gg0cddRR+P73v7/cTXpe4nvf+x5OP/10bNy4EYQQ3HzzzZXPlVLYunUrNm7ciGaziZNOOgkPP/zw8jT2eYhLL70UxxxzDEZGRnDAAQfgrW99Kx599NHKPqGP548vfvGLOOKII5xp3XHHHYdvfetb7vPQt4uLSy+9FIQQXHDBBW5b6OOAmRAmOvPA3/7t3+KCCy7ARRddhB//+Md47Wtfi9NOOw1PPfXUcjfteYepqSkceeSRuPLKK/t+fvnll+Nzn/scrrzyStx7773YsGEDTjnlFExMTPTdP6CKbdu24bzzzsM999yDO++8E5xznHrqqZiaKosBhj6ePw466CBcdtlluO+++3Dffffh9a9/Pc444wz3H23o28XDvffei6uvvhpHHHFEZXvo44AZoQLmjF/7tV9T5557bmXbr/zKr6iPf/zjy9SilQEA6utf/7r7W0qpNmzYoC677DK3rdvtqrGxMXXVVVctQwuf/9ixY4cCoLZt26aUCn28N7BmzRr1la98JfTtImJiYkIdeuih6s4771Qnnnii+pM/+ROlVBi/AbNDYHTmiDzP8aMf/QinnnpqZfupp56KH/zgB8vUqpWJJ554Atu3b6/0dZqmOPHEE0NfzxN79uwBAKxduxZA6OPFhBACN954I6ampnDccceFvl1EnHfeeXjzm9+Mk08+ubI99HHAbLDii3ouNp599lkIIbB+/frK9vXr12P79u3L1KqVCduf/fr6ySefXI4mPa+hlMKFF16IE044AYcffjiA0MeLgYceegjHHXccut0uhoeH8fWvfx2vfOUr3X+0oW8XhhtvvBH3338/7r333p7PwvgNmA3CRGeeIIRU/lZK9WwLWByEvl4cnH/++XjwwQdx991393wW+nj+ePnLX44HHngAu3fvxte+9jWcc8452LZtm/s89O388fTTT+NP/uRPcMcdd0xb6Tv0ccB0CKGrOeIFL3gBGGM97M2OHTt6VhUBC8OGDRsAIPT1IuCDH/wgbr31Vtx111046KCD3PbQxwtHkiR46UtfiqOPPhqXXnopjjzySPzVX/1V6NtFwI9+9CPs2LEDRx11FKIoQhRF2LZtG6644gpEUeT6MfRxwHQIE505IkkSHHXUUbjzzjsr2++8804cf/zxy9SqlYnNmzdjw4YNlb7O8xzbtm0LfT1LKKVw/vnn4x/+4R/wne98B5s3b658Hvp48aGUQpZloW8XAW94wxvw0EMP4YEHHnA/Rx99NM4++2w88MADePGLXxz6OGBGhNDVPHDhhRfiXe96F44++mgcd9xxuPrqq/HUU0/h3HPPXe6mPe8wOTmJf//3f3d/P/HEE3jggQewdu1avOhFL8IFF1yASy65BIceeigOPfRQXHLJJWi1WnjnO9+5jK1+/uC8887DDTfcgFtuuQUjIyNu5Ts2NoZms+k8SUIfzw9/+qd/itNOOw2bNm3CxMQEbrzxRnz3u9/FbbfdFvp2ETAyMuL0ZBZDQ0NYt26d2x76OGBGLF/C1/Mb//N//k918MEHqyRJ1Ktf/WqXrhswN9x1110KQM/POeeco5TS6aOf+tSn1IYNG1Sapup1r3udeuihh5a30c8j9OtbAOqaa65x+4Q+nj/e8573uO+B/fffX73hDW9Qd9xxh/s89O3iw08vVyr0ccDMIEoptUxzrICAgICAgICAvYqg0QkICAgICAhYsQgTnYCAgICAgIAVizDRCQgICAgICFixCBOdgICAgICAgBWLMNEJCAgICAgIWLEIE52AgICAgICAFYsw0QkICAgICAhYsQgTnYCAFYiTTjoJF1xwwXI3IyAgIGDZESY6AQEBAQEBASsWYaITEBAQEBAQsGIRJjoBASscu3btwu///u9jzZo1aLVaOO200/D444+7z6+99lrst99+uP322/GKV7wCw8PD+M3f/E384he/WMZWBwQEBCwOwkQnIGCF493vfjfuu+8+3HrrrfjhD38IpRTe9KY3oSgKt0+73cZnP/tZ/O///b/xve99D0899RQ+8pGPLGOrAwICAhYH0XI3ICAgYO/h8ccfx6233op/+qd/wvHHHw8A+OpXv4pNmzbh5ptvxu/8zu8AAIqiwFVXXYWXvOQlAIDzzz8fn/70p5et3QEBAQGLhcDoBASsYDzyyCOIogjHHnus27Zu3Tq8/OUvxyOPPOK2tVotN8kBgAMPPBA7duxY0rYGBAQE7A2EiU5AwAqGUmrgdkKI+zuO48rnhJCBxwYEBAQ8nxAmOgEBKxivfOUrwTnHP//zP7ttzz33HB577DG84hWvWMaWBQQEBCwNwkQnIGAF49BDD8UZZ5yB9773vbj77rvxL//yL/i93/s9vPCFL8QZZ5yx3M0LCAgI2OsIE52AgBWOa665BkcddRR+67d+C8cddxyUUvjHf/zHnnBVQEBAwEoEUSEQHxAQEBAQELBCERidgICAgICAgBWLMNEJCAgICAgIWLEIE52AgICAgICAFYsw0QkICAgICAhYsQgTnYCAgICAgIAVizDRCQgICAgICFixCBOdgICAgICAgBWLMNEJCAgICAgIWLEIE52AgICAgICAFYsw0QkICAgICAhYsQgTnYCAgICAgIAVizDRCQgICAgICFix+P/k38TB0ZX5qQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cams_AOI.isel(time=0).plot(cmap=\"coolwarm\")" ] }, { "cell_type": "code", "execution_count": 28, "id": "fc0463f4-4ef6-461f-a6b1-76440d8403e7", "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import cartopy.crs as ccrs\n", "import cmcrameri.cm as cmc" ] }, { "cell_type": "code", "execution_count": 29, "id": "88840e6f-638a-4837-97e5-c30a60ae59c7", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABFYAAAM1CAYAAABaB3UcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hUxdrAf2f7bnohCQkh9N6rFKWJiFhQ7GLDhuX62XtBveq14bVcy1XELmAvXAVpSu9I7y0BkkBIz/ad749lD7vJ7mbTCMj8nmef3T3T3jNnZs6c98y8ryKEEEgkEolEIpFIJBKJRCKRSGqMprEFkEgkEolEIpFIJBKJRCI5VZGKFYlEIpFIJBKJRCKRSCSSWiIVKxKJRCKRSCQSiUQikUgktUQqViQSiUQikUgkEolEIpFIaolUrEgkEolEIpFIJBKJRCKR1BKpWJFIJBKJRCKRSCQSiUQiqSVSsSKRSCQSiUQikUgkEolEUkukYkUikUgkEolEIpFIJBKJpJZIxYpEIpFIJBKJRCKRSCQSSS2RihVJg9CiRQsUReHjjz9ubFEkf0MWLFiAoigoitLYokjqkRtuuAFFUbjhhhsaW5SwyPZ3cuO7NgsWLGhsUSSSoHz88ccoikKLFi0aW5QaM3XqVAYMGEBsbKza1/797383tlgSiUTS6JzWihW3282MGTO47rrraNeuHfHx8RgMBlJSUhg8eDCPPvooGzdubGwxJacQDz30kDrRGD9+fLXxf/jhByZNmsQPP/zQ8MJJ/lb4P9wrisLEiROrTfPKK68EpDmVFJ8ff/wxkyZNkg/L9cTs2bO5+uqradOmDVFRUZjNZlq0aMEZZ5zBHXfcwVdffcXhw4cbW8zTAp9CsfLHYrHQsmVLrrjiCmbNmhU07aRJkwLSTJs2rdryxowZE5Bm7969VeKsX7+e559/nlGjRpGRkYHBYCAmJoYuXbpw9913s3379jqds+/lS7jP4MGD61RGKNxuN3PnzuWBBx5g4MCBJCUlodfrSUxMZODAgbzwwgsUFhY2SNmnOq+99hoTJkxg2bJlWK1WUlJSSE1NJSoqqrFF+9sxadIkJk2aFLR/SiSSkxRxmrJ06VLRrl07AagfvV4vEhMThUajCTh+ySWXCLvd3tgin1IMHz5ctG/fXnz33XeNLcoJw+l0irS0NLXdmEwmUVhYGDbN9ddfLwBx/fXXnxAZ/y7Mnz9frefTFf86AERcXJyoqKgIm6Zjx44BaaZOnXpihI2QRx55RLRv31488sgjVcKGDBkiAPH000+feMEqsXz5ctG+fXvRvn37xhalxthsNnHZZZcFtAONRiMSExOFXq8POH4y1HVt8F2b5cuXN7YoEeG7D2g0GpGamqp+Kl+Pm266SXg8noC0Tz/9dECcc845J2xZBw4cEFqtNiDNnj17AuJ8/vnnAeG+8cU/ncFgEO+9916tzzkrK0sAIjY2NuCc/T8XXnhhrfMPx80331yl/cfHxwccS01NFUuXLm2Q8oUQYurUqQIQWVlZDVZGQ+Cb49x9993C4XA0tjh/a3xtcf78+Y0tikQiiZDTcsXKzz//zNChQ9m+fTtJSUm8+OKLbN++HYfDQUFBAQ6Hg5UrV/LII48QGxvLd999R0VFRWOLfUoxd+5ctm7dysUXX9zYopwwZs6cSW5uLp06dWL48OHYbDa+/PLLxhZLchrQokULiouL+f7770PGWbZsGVu2bDmpl56/+OKLbN26lRdffLGxRQlLv3792Lp1K1u3bm1sUWrMgw8+yNdffw3AhAkTWLduHXa7nYKCAmw2G1u3buWtt95i8ODBp+xWJ9+16devX2OLUiMyMzPJzc1VPxUVFSxbtow+ffoAMGXKFN55552gaZOTk4mKimLOnDlkZ2eHLOPTTz/F7XaHHQecTidGo5Hx48czc+ZMiouLKSoqoqKigjlz5tClSxccDge33347c+bMqdM5v/HGGwHn7P/58ccf65R3KJxOJykpKTzwwAMsWbIEm81GYWEhpaWlfPjhhyQlJZGXl8eYMWPkqi0/Dh8+TG5uLgC33HILer2+kSWSSCSSk4vTTrGyY8cOxo8fj91up1OnTqxbt45HHnmEtm3bqnG0Wi19+vThxRdfZM+ePVx00UWNKLHkVGHKlCkAXHfddVx33XUAfPTRR40pkuQ04frrrwfCtzdf2Mluv0TScJSWlvLf//4XgNtuu40pU6bQvXt3dDodABqNhvbt23PXXXexcOFCHnroocYU97RHp9PRv39/Zs6cSWJiIgBvv/120LhRUVFceumleDwePvnkk5B5Tp06FQg/DgwYMIDdu3fz2Wefcd555xEbGwuAwWBgxIgRLFy4kLS0NIQQ/Otf/6rl2TUet99+O3v37uWVV15hwIABqoIgOjqam266iZ9//hmAo0eP8v777zemqCcV/i8Yo6OjG1ESiUQiOTk57RQrTzzxBCUlJZhMJr7//nuaNWsWNn5iYiI//PADcXFxVcJyc3N58MEH6dy5M9HR0URFRdG5c2ceeugh8vLygua3d+/egH3NO3bs4IYbbqBZs2YYjUaaN2/OxIkTOXDgQLXn8sMPPzB27FjS09MxGAwkJCRw1lln8d577+F0OoOmGTp0KIqiMGnSJJxOJ6+99hp9+vQhPj4+wNifv/FZh8PBK6+8Qvfu3YmKiiIuLo7hw4fz22+/hZQtEuO1y5cv58Ybb1T3+MfGxtKpUycmTJjA7NmzA+JGYuitct1WZuvWrdx66620a9cOi8WC2WwmMzOTM844g8cee6xOb58PHTrEr7/+ikajYfz48YwbN46oqChWr17NX3/9VSW+zz6GbwL8ySefVNlf7m9Lwr8+KyoqmDRpEh07dsRisZCens61117Lnj171PhHjhzh4Ycfpl27dpjNZtLS0rj55ptDtksfu3bt4vbbb6dt27aYzWZiY2Pp1asXzz77LCUlJSHT5eTkcO+999K5c2eioqIwGo2kp6fTu3dv7r33XlauXBkQvz77AcDOnTuZMGECmZmZGI1GmjVrxi233FJterfbzccff8yoUaNITU3FYDDQpEkTRo0axbRp0xBCBE3nfz3Kysp46qmn6Nq1KzExMUHb39q1a5kwYQKtW7fGYrEQHR1N9+7deeKJJzhy5EhE5xiOyy67jOjoaObNm8e+ffuqhFdUVDB9+nQURVGVMNXx3Xffcf7556v1kpqayvnnnx92VUxl47PffPMNQ4cOJTExEYvFQo8ePXjjjTfweDwRpYfjff+PP/4A4JlnnqnSVyrXt9vt5qOPPmL48OEkJydjNBrJyMjgsssuC2ujJdLxMZzx2spj1erVq7n88stp2rQpRqORVq1acd9991Vrw+HPP//kggsuIDk5GbPZTPv27Xn88ccpKyurteHLrVu3YrfbASJ6YWA2m0OG5ebm8sgjj9C9e3fi4uIwmUy0atWKm2++mc2bNwdNU7ne1q5dyzXXXEOzZs3Q6/UMHTqUNWvWqHHWr18fVr5rr70WRVE4++yzA45HYrx29uzZXHnllWRlZWE2m0lMTKRbt2784x//YOnSpUHT1Ha8qCspKSmMGjUK8F7DsrKyoPFuvPFGwNsGg8myaNEitm/fTqtWrTjrrLNClte+fXvS09NDhsfHx3PJJZcAVBnbTwX69+8ftm0PGDCATp06AXU7v2XLljF27NigfTgcVquVn376iVtuuYUePXrQpEkT9Z46duxYfv3116DprrzyShRF4bzzzgub/86dO9FoNBEbePb1W//xpmXLlmo/CzYOLViwgMsuu4yMjAyMRiPJycmMGDGCqVOn4na7g5bjsxc0dOhQAL799lvOOeccUlJS0Gg0TJo0KSB+cXExzz//PP379ychIQGj0UhmZiZXXXUVy5Ytq/a8ajIGeDweFi9ezCOPPMIZZ5xBs2bNMBgMJCUlMWTIkLDzboDCwkKeeuopevXqRWxsLAaDgbS0NLp168bEiROZO3euGtd3H/QxbNiwgPtd5fqu6fxLIpE0II27E+nEkpubq9pPuemmm+qU14IFCwL25FosFhEVFaX+T0hIEAsXLqySbs+ePWqcadOmiZiYGAGI6OhoYTab1bDExESxevXqoGWXlpaK888/P2A/cGxsrFAURf0/YMAAcfTo0SppfXYKHn74YTFw4EABCJ1OJxISEgL2cvr2P7/11luif//+qg2a6OhotQxFUcSUKVOCyuhLH8yGg8vlEnfffXeA/FFRUcJisQTs5/Ynkv3I/nVbec/47NmzhdFoDLCnU3lPdV3sCbz44osCECNHjlSPXXfddQIQ//jHP6rEX7x4sUhNTRUmk0m1x1J5f/nixYvV+L76/Pe//y26deumpvFvM02bNhV79uwRu3btEi1btlTbpcFgUOO0bdtWFBcXBz2H6dOnB9RRTExMwP/MzEyxefPmKunWrVunth9AaLVakZCQENAeK9uQqWs/8LcvMm/ePLVdxsTECJ1Op4alp6eLnJycoOebm5urtm3/duf//8ILLwxqX8l3PV599VXVVpPBYFDblH/7e+qppwLqovI1adq0qVizZk1QGcPhXwd79uwRN954owDEM888UyXup59+KgAxfPhwIcTxvdvB+qfdbhdXXHFFgP2BhISEANtTV111VdD99f42g+68886Q9guuu+66oOcUzObQtGnTAuxNREVFVekr+/fvV+MXFRWJoUOHBrTH+Pj4gGvwwAMPBC0/0vExnI0f/7Hqiy++UOWOi4sLqMPOnTuL0tLSoHK8+eabAfLGxcWpbaZjx47i9ddfr5V9hhUrVqh5/ve//61RWn9+/vnngHuBXq8PuP8ZDAbxySefVEnnX2/ffPONWjexsbHCZDKJIUOGCCGE6NKlS9jrJIQQZWVlapkff/xxQJivjGC2CcrLy6vYmKk81nXv3r1KurqMF9Xha/fhrueDDz6olnPgwAH1uM/GSlZWlvB4PKJ169YCEH/88UeVPCZMmCAA8eyzz1YZP2rKfffdp/bH2hBujnAy0KtXLwGIMWPG1Cr9lClTAvq7fx/u0KGDmDx5cshr7htDfB+z2RwwPwLE/fffXyWd75pqNBqxb9++kLI9/PDDAhDt2rWL6Fx885Xk5GS1/OTkZHX87dOnT0D8e++9V42nKIqIj48PsM8zfPhwUVJSUqUcX1seMmSI2r4URREJCQlCq9UGzNGWLVsmUlNTA8Z53zzCl+6FF14Iej61GQP85yy++0JsbGzAsTPPPDOonbPs7GzRvHnzKvdU/zrxjX1CCHH33XcHnFtCQkLA/c6/vmsz/5JIJA3HaaVY+eqrr9SB5pdffql1Pvv371cfFDp16iQWLVqkhv3555+iffv2ArwPhZUf6vwH57i4ONGtWzfVwJ7H4xGzZs1SB+DmzZsHvfmMHTtWAKJNmzbiyy+/VONYrVbx448/ilatWglAjB07tkpa34NDdHS0iI6OFlOnTlVvBEeOHBEFBQVCiOOTnoSEBJGRkSF++OEH9UFq69at4owzzlDzKSoqqlJOuEnTQw89pNbBhAkTxLZt29SwvLw88cMPP4grrrgiIE1dFStt2rQR4DXst2HDBvW41WoVGzZsEJMmTRIfffRRyLyro23btgIQn332mXps7ty5ajuw2WxB00VqvNZXn/Hx8aJFixZi9uzZwu12C5fLJWbPnq1OeC6//HLRr18/0aNHD9XwnsPhENOnT1cnZo8//niV/FevXq0+5AwaNEj89ddfQggh3G63+Omnn0TTpk0FIFq3bl3lYXDEiBECEL169RJLly5VjSva7Xaxfft28eqrr4qXX345IE1d+4H/Q0FCQoK48MILxZYtW9Ryp0+frk6yrr322irna7fbRd++fVW5Z86cKcrLy4UQ3ge2Tz75RKSkpAhA3HPPPSGvR3R0tEhLSxPfffed2j+ys7PVvHwPwDExMeLFF18Uhw4dEkJ4lYurVq0Sw4cPF4Bo1qxZyIfsUFR+MFq4cKEARMuWLasYuPQpGj7//HMhRHjFyv33369OTJ988knVAPPRo0fFY489pqZ9+OGHq6T1teeEhARhMBjE5MmTVUXekSNHAoxGzp07N2T6YP0hUuO148aNUx/u33zzTfVaHDp0SH2wBMS7774bsozqxsdIFCsWi0UYjUZx8803q4qf8vJy8fbbb6t97cknn6ySfvHixeoD2ciRI9Xx0el0iq+//lokJiaqE+maKlYqKirUcSAjI0OsWLGiRumF8Bru9T0g3nbbbWLLli3C5XIJIYTYt2+fuOOOO9QHj5UrVwak9a+36Ohocd5556n9Vgghtm/fLoQQ4qWXXhLgVYy63e6gcnz22Wfqg33lvuMrI5hi5fLLL1cfbh5++GGRnZ0thPCOOzk5OeKLL74QEydODEhT1/GiOiJRrPgeBBVFUcsWIlCxIoQQzz33XNA+VFZWJqKjo4VGoxH79++vs2LFp3g444wzapxWiONjaOfOnUV6errQ6/UiISFBDBo0SLz44otBXwydKA4fPqy28WCGtKtj9erVqoJ/6NChaht3OBziq6++EvHx8eocMtg1//7778Wtt94q5s+fL44cOaIeP3jwoHjmmWfU8ePHH3+sktZnoPypp54KKpvD4VAf2l999dUanVe4OZaPt956S41z6623qve8srIy8frrr6v1UnmOJ8TxtuxT2j700EMiPz9fCOE1ur13715VDl/9XXrppWL16tXC6XQKIbxzyCeffFIt5/vvv69STm3GgOzsbHHRRReJ6dOniwMHDqjjUmlpqZg6dapIT08XgLj33nurlHfTTTcJQLRo0ULMmTNHHS9dLpfYu3evePfdd4PeT8ONYz5qM/+SSCQNx2mlWHniiSfUgcr/jU9NmThxovrw4Ltp+JOdna1qsu+8886AMP8bU1JSksjLy6uSfvPmzepNvfKA+MsvvwhApKWlhXwTn52drb7JW7t2bUCY78EBED/99FPIc/RNeoxGY8DE10d+fr662sL3sBYsfeUHt23btqkPDQ899FDI8itTF8VKXl6eevzgwYMRlxkpf/zxhzoZ8J/wejwekZmZKcC7KiMYNVWsmM1msWPHjirhU6ZMUc8xNTU1YDLm48knn1SVI5U599xzVWWd/zn4WLNmjTpReeWVVwLCfCtMlixZEvYc/KlrP/B/KBg2bFjQh68333xTrTPfpMvH22+/rU7qgykvhRBi1apVQlEUYTAYqsjnux5arTbkapPDhw8Li8UiFEURc+bMCRrH6XSK3r17C0C8/vrrQeOEItiDkU/BN2/ePDXe7t27haIoAV6DQilWcnJy1Ov86KOPBi3X9yZRr9dX6U++9hxKaSOEUM/35ptvrhJWV8XK8uXL1fLff//9oHF8ipfk5GRhtVqDllHd+BiJYiVcv/bVYZs2baqE+SbKnTp1CqqQnTdvnpp/bTyKPP/882p68L49v+mmm8S7774rVq1aVaWvVManYAimFPLhW5F40UUXBRz3r7d+/fqpDxiVOXDggHqfmDVrVtA455xzjgDE+PHjq4SFeiCZM2eOGvbOO++EPU9/6jpeVEd1ipW9e/eq9/TKb9IrK1b2798vNBpNFYXTRx99pCrrhAg+fkTKtGnT1LShVq1Wh28MBe/qy8qr2tLS0gJeWp1IfHM8nU4ntm7dWuP0o0ePFuBdERJsBcNvv/1Wpz78yiuvCECMGDGiSti///1vAV5lfbD+9c033wjwKp4PHz5co3KrU6xUVFSIxMREAd5VjcHw3ZeBKopXfw9X9913X0g5Lr30UgHBX5r48K0IqtxfajsGVMfKlSsFeBW9le8rPmXXl19+WaM8I1Gs1Gb+JZFIGo7TSrFy++23qwNV5YEvUjwej3rjCPXgIcTxVRlJSUkBx/1vTMFWDvi4+uqrVS20P77VKg8++GBYOX1bhf71r38FHPc9OHTu3Dlset+k55prrgkZZ9iwYSEVJKEUK7433klJSTW6BnVRrFRUVKiT9FDbq+qCb8vPDTfcUCXMd77+W4T8qaliJdhDhBDeB2LfuYd64Fm0aJEap6ysTD1eWFioLhsN9TAqxPG3PJXbpG81y7fffhv2HPypaz/wfyj4/fffg6bdt2+fGqfyFqYePXoIQPznP/8JK6dvS0JlxZjveoRbJu6b4Pbt2zdsGa+++qoAxLnnnhs2XmWCPRi98MILVSacPoXabbfdph4Lpfx444031AedUFvGjh49qi6ZfvPNNwPCfO05MzMz5EqDZ555Rn2wrkxdFSu+JejNmjULWf7mzZtDKk8iHR8jVawEU4IKcVwZCwQoMgsKCtS+GG6LxJlnnlnrhzIhvA83vvtY5U9cXJy46aabxK5du6qkW7dunQCvUi3YSkUfq1atUh8y/B/u/Ovt66+/Divj2WefHXLMO3jwoLqMPpjiJdQDiW88qe76Vqau40V1hFKs5Ofnix9++EFVmAJVtlhVVqwIcVzp5K/08LWZr776SghRe8XKtm3bVCXI4MGDQ/az6rj77rvFjBkz1BUJQniV0a+//rq6YiEuLi5oO2xIpk+frtZLuDleKAoLC9X5xgcffBAy3oABA2rdh31jmMViqaI8KSwsVFelBVMOjxo1KqziIxzVKVZ+/PFHNdx/JbI/LpdLnTNUVp742rJGowmpnCwoKFDrd9OmTSFlPXLkiCpLbm6uery2Y0Ak+FatVXbT7bvWr732Wo3yi0SxUpv5l0QiaThOK+O1oh4My+3Zs4ejR48CVDGY58/IkSMBKCgoCDAq6s/w4cNDpveFrV+/PsAg1qJFiwD473//S1paWsiPzwViMEOWAIMGDQpZtj/9+/cPGeYzbuerj0hYsmQJ4K0fk8kUcbq6YDabGTFiBADnnnsuTz31FMuXL8fhcNQ575KSEr755hsA1ROQPz5DoXPnzg15LWpCKPehqamp6u++fftWG6eoqEj9vWbNGrVvRNKmK7fJ888/H/Ce6/33388ff/xRI/fktekH/oRqo/7GF/3baGlpqWoU88knnwzbj7Zt2wbUrh/5+urGjRvDlvHss8+GLaMmXHfddWi1Wr799ltKSkoCPIT4DFuGY9WqVYC3Dfk8gVQmISFBdf/qi1+Zvn37otEEv73UZtyIFJ88w4YNC1l+x44dycjICIhfmUjHx3AkJibSpk2boGH+bdPfiO3atWvVvjhkyJCQefuMO9aWf/zjH+Tk5PDNN99w55130rdvX9WYZ3FxMVOmTKFr16788ssvAel8bdrj8dC+ffuQbfrcc88FoLy8nIKCgqAyVFfHvvH0+++/p7y8PCDsyy+/xO12k56eHnbMqozv/nPBBRdEnKY+x4vq2LdvX4CRypSUFMaOHcuOHTtQFIWHH3446H2mMr6+7vMEtnPnThYuXEh8fDxjx46tlWzgNVg8ZswYioqKSE9P56uvvgrZz6rjjTfe4LLLLqNJkybqseTkZO655x7mzJmDTqejuLi4isHShmThwoWq4ezhw4erY3NNWLNmjWqcO5J7Wyjy8vJ4+umnGTBgAElJSeh0OrVd+AzrVlRUVDGCHR8fzxVXXAHABx98EBC2b98+fv/9dwBuvfXWmp1YBPjG08zMTNq1axc0jlarVc891Pjbpk0bUlJSgoYtXbo0oH5D9cXOnTurafz7Y23GAB8Oh4P33nuPc845h/T0dEwmU0B/zc/PB7zGZP3xzZEeeeQRbr31Vn777bewzgBqQl3nXxKJpH7RNbYAJ5Lk5GT199GjR8NavQ+Fb+AE1Ml5MPy9DeXn59OyZcsqccKl94W5XC6OHj1KamoqTqdT9SBSXFxMcXFxtfKGGmBD3bQqExMTEzLM56IznCX0yuTm5gKQlZUVcZr64MMPP+TCCy/kr7/+4rnnnuO5557DYDDQt29fLrroIm666SbVnWVNmDZtGhUVFTRv3jzow067du0444wzWLZsGR9//DFPP/10nc4j1PXwXYtI4/hfs5q2af82CfDyyy+zc+dO5s+fz+TJk5k8eTJarZYePXowZswYbr311ojaeriwymX6U9Pzzc3NVSdmkT7c16YfHTx4EPB6eLBarbUuoyZkZGRwzjnn8OuvvzJ9+nRatGjB/v376dSpU1glqQ9fWwh3TeB4W/BvO/7U97gRKTWR/8CBAyHlj3R8DEckdQCB9XD48GH1d7j7U3XnFwlms5lx48Yxbtw4wNvHVqxYwX//+18++eQTKioquPLKK9m5cydpaWnA8Tbtdrur9TDmo7b3oEsuuYQ77riDsrIyvvvuO6699lo17LPPPgPgmmuuqdGDfW3uP/U5XlSHRqMJUDSYTCZSU1Pp168fN9xwA717944on4svvpiEhAQWL17M9u3bVeXq1VdfXesXGvn5+YwYMYKdO3eSmprK3Llzq/WqWFv69+/PFVdcwRdffMFPP/2EECKoB676ZOnSpYwZMwar1cqgQYP48ccfA/pppNRmjhhMlvPOOy/gBUh0dDQWiwVFUXC73epcsLy8PGBuCzBx4kSmTp3K//73Pw4cOKDK8eGHH6pK0boqZ4NRX/ePSO6rQK3GoNrOQfPz8zn77LPZsGGDesxkMpGcnIxWqwW847fH46miCH7wwQf566+/mDFjBh988AEffPABiqLQuXNnzj33XG655ZaQiqjqqOv8SyKR1C+n1YoVfw322rVr65xfpDf6UPFqOlHwd1Hnc+1Y3SeUu2PfjaCxaOhJUmWaN2/OmjVr+O2337j77rvp3bu36j7voYceok2bNsybN6/G+U6ZMgWA/fv3q+4LK398bv+mTp3aYO44TzT+1y8+Pp558+axcOFCHnroIQYNGoROp2P16tU8++yztG3blq+++iqivE4E/v1o2bJlEfWjUG9Nw/UjXzkTJ06MqIxgLsJrg+9t9dSpU9U31pGsVvGnrmNbY1NX+RtrfPQfH8KdQ0OMIzqdjoEDB/Lxxx/z1FNPAd6HtmnTpqlxfG26Q4cOEbVpIURIl9DV1XFUVBQXX3wxAJ9++ql6fMOGDaoL+0hWb/jjq9OatNv6HC+qIzMzk9zcXPWzd+9eli9fzltvvRWxUgXAaDRy1VVXAd57lK/+ajoO+MjPz2f48OFs3ryZlJQU5s2bR4cOHWqVV6QMGDAA8L5ECrXqqb5YunQp5557LqWlpQwYMIBff/2V6OjoBi0zFC6Xi6uuuoqioiJ69OjB//73P0pKSigtLSUvL4/c3NwAV8LBxoJ+/frRq1cv3G63Okdxu91MnToVgFtuuaVBz6Ehx19ffzSbzRGPQf5KpNqMAQD33nsvGzZsICkpiY8++ohDhw5htVo5fPiw2l99yvDK10Sv1zN9+nTWrVvHU089xfDhw7FYLGzcuJFXX32VTp068dprr9VIHh91nX9JJJL65bRSrPgvD//+++9rlYe/Jj07OztkPP+lgP5voELFqcyBAwcA72TXt5LCZDIRFxcHEKA1P5Vo2rQpQI0fIn1vjmw2W8g41a3g0Wg0jBo1ijfeeINVq1Zx9OhRvvjiC5o3b05hYSFXX311jbYHbdy4kRUrVkQcf9++fcydOzfi+CcK/zYdrk36wnQ6HQkJCVXCBw8ezEsvvcSiRYsoKirixx9/pGvXrlitViZMmBDy7VJN+0Fd8V/10pD9yPeW/0T31YsuuoikpCSWLl3Kt99+i06nC3jbHw5fWwg3tsHxaxZqbGss/i7yQ+Cb2cqEC6sPbrvtNvW3b3sLHG/Tu3fvrvJWtiHwKU7mzZunjgW+1So9evSgS5cuNcrPJ39N7j8naryob3xKlH//+9/k5OTQpUsXdQtfTcjPz2fYsGFs2rRJVar4tqL8HViyZAmjRo2ipKSEAQMGMGvWrLCrzarDvw/72mwwQoUtXbqUffv2odVq+eWXXxg9enQVeXyrLsIxceJEwKtY83g86uoVo9GoblGub07E+Ovrw1arlZ07d9Y6fU3GAKfTyXfffQfA22+/zY033qjm48N/FVEounfvzjPPPMPcuXMpKipizpw5nHXWWbjdbnVVS22p7fxLIpHUL6eVYiU1NVVd9vzll1+yffv2iNP6NNAtW7ZUH/DCPST7bJwkJSUF3QYEMH/+/JDpfWHdunVDr9erx3370r/++mt1efKpxMCBAwH4/fffwypJKuN7kM/Pz8dutweNs3z58hrJEhMTw9VXX62+0cnLy6vRxNmXrlevXpSWlob9+Pa1+9L48Cn6GnMlS69evVQ5ImnT3bt3D2iTwTCZTFx44YXqZMRms6n2GSpTm35QFxISEtQHA/+38fWNr68uW7asXuynRIrBYODqq68GvBPC8847L+gWqmD4204JpagsKioKsMVyooikr/jknz9/fsjxcevWrepDzYmUPxJ69uypvkldsGBByHjhwuoD/7f1RqNR/e1r0w6Ho9YvJ2rC8OHDadasGR6Phy+//FL9hpqvVoHj95+ff/454jQnaryob/r06UPXrl3VlwUTJkyocR55eXkMGzYsYKWK/8rfhsS3KiM2NpakpKQGKWPJkiUBK1V+++23OilVIPB+Gu7eFmqFrE8p0aRJk5BbOHz34nBcffXVxMbGsn//fmbNmqXaW7nkkkuqbB2qL3zjb05OTsj5tdvtVuulNuPvwIED1TGyNv2xNmPA4cOH1flqz549g8ZZtGhRjea0Op2OESNGMHPmTIxGI0KIKtfVd541nR/WZP4lkUjql9NKsQLwz3/+k+joaKxWK5dccknYNwrgNSw4btw49SFDURTVMNj7778f9M3BwYMHef/99wHU5bjBeO+994JquLdt26YaRPWV5cNncGz79u288sorYWUvLy+vFwOt9ckNN9yAVquloKCgRvZGunfvDnhvMMEm9Farlddffz1o2urqwGe0ESLfAuBwOPj8888BuPzyy4mOjg778V3H77//PsDYnM9AqP9e6hNNfHw8o0aNAuCVV14Jah/gr7/+4ttvvwUC27TL5Qqr4IukbmvTD+qKrx/NnTu32slZbY2sXnvttZjNZtxuN3feeWfAloLKeDyeem0Dd911F/fffz/3338/jz76aMTpxo0bh06nw2az8dJLLwWN88ILL2C329Hr9aqi+kQQSV+58sorAe/b4A8//DBoHN82l+Tk5BoZPj0RJCYmMmzYMABee+21oGPXn3/+ycKFC2uV/5EjR1i9enW18Xw2OcD7oOijT58+6oPF448/HmATJhh1NVCs0Wi45pprAO9KFd/KFa1WqyoPa8JNN90EwKZNm3j33XcjTncixouG4KWXXlLHgfHjx9corf/2n9TUVObPn19vSpXqHhRXrlzJ9OnTAa+R0YbYcuivVBk4cCCzZs0KabC7JsTHx3POOecA8OqrrwZ92J4zZ45qRLUyvlXJeXl5QVcZ5OTk8Oabb1YrR1RUlLpS8Z///Cf/+9//gIYxWutj5MiRqhIs1Ha4999/X11xF25+HIqUlBQuuugiwDtfqe4FaeX+WJsxIDY2Vm2DwVaVuFwuHn/88ZDpQ70MBK/i2jc3qjxHqu6eVx/zL4lEUs/U3qHQqcv3338vDAaDAERycrL417/+FeAW0+VyiTVr1ognn3xSdStYWFiohmdnZ6vHO3fuLBYvXqyGLVq0SPVZn5iYKHJycgLK9ndXFxcXJ3r06CFWrFghhPC6cv79999VV66ZmZlBXZ5efPHFah4TJ04McGtnt9vFsmXLxEMPPSSSkpJEdnZ2QNpIXJYKEdpdsj/hXKOGS//II4+o8t90001i+/btalh+fr6YNm2aGDt2bJV0gwcPFoBo2rSp+P3331U3g6tWrRIDBw4McB/q7wpw/vz5omvXrmLy5Mli8+bNqntIj8cjFi9eLLp27aq6aK3sujAUM2bMUMuKxB1kWVmZMJvNAhBvvfWWevyDDz4QgEhISBBbtmwJmT6S6+GTJ5RrvnCuEtesWSP0er3qQnP9+vVCCCHcbreYOXOmSE9PF4Bo3bq1KC0tDcizVatW4rnnnhNr1qwRTqdTDfvrr7/E0KFDVberBQUFQWWpTT8I5+42kjqx2Wyif//+AhA6nU48/vjjYv/+/Wp4eXm5mD9/vrjzzjtFfHx8lXwjuR5CHHdfDIhhw4aJRYsWqW3M4/GILVu2iNdee0107NhRfPbZZ2Hzqkxt3aUKEdrdshBC3H///QIQiqKIp556Sh37CgsLxRNPPKGmffjhh6ukjcR9eDjX6eHSP/744wIQbdq0qTKu+jNu3DgBCIPBIN566y3VnfGhQ4fEzTffrMr/7rvvVkkb6fgYibvl2riGF0KIhQsXqi6XR40apY6PTqdTfPvttyI5OVkkJCTUylXrhg0bBCDOOuss8e6774qtW7cKj8cjhPDe97Zu3Sruuece1ZVxVlZWgGt2IYRYvny56m67ZcuW4uuvvw5wGZ2TkyM+++wzcfbZZ4ubb745IG2k/dafTZs2qWn69OkjADF69OiwacKNhVdeeaXq0vWRRx5R75Eej0ccOHBAfPDBB2LChAkBaeo6XlRHKHfLkRDM3XIkhBs/8vPzRefOnQUg0tLSqrirjwTfGDlkyJAqYXfddZe48847xfz58wPuJ0eOHBFvvPGGiI2NFYCIiYkJ6bLc11drU2dLly4VMTExAhCDBg0SJSUlNc4jHCtXrlT70PDhw8XWrVuFEN4+PH36dJGQkKDOISvLX1RUJKKiotR+6pvfuVwu8dtvv4nWrVuLpKSkiMZ+X3/3fdq3b1+n86rO3bIQQrz11ltqnNtuu011dVxeXi7efPNNdZ5xxRVXVEnra8vB2ow/u3btUuugSZMmYsqUKQHu3w8fPiy+/fZbcfHFF4tzzjmnSvrajAG++WdGRoaYO3euOo/csGGDGDlypDAajep1q3xfTU1NFY888ohYunSpsNls6vEdO3aIyy67TJWlcj8bNGiQAMS4ceMCxlgftZ1/SSSShuO0VKwI4VWAtGnTJuCmYzAYRGJiotBoNOoxRVHEVVddJRwOR0D6BQsWiLi4ODVeVFSUOqgCIj4+Xvz5559VyvW/MU2bNk29uUdHRwuLxRKQfuXKlUFlLy8vV28M/uUnJCQEyA5UeQA5GRQrLpdL3HnnnQFyVj7/uLi4KunWrl2r1hcgTCaTWuepqali5syZIRUr/mXp9XqRlJQkdDqdeiw2Njbo9QrFqFGjBCB69+4dcZpLLrlEAKJHjx7qsaNHj4omTZqociQnJ4usrCyRlZUlli5dqsZraMWKEEJMmzZNVTj66sRkMqn/MzMzq9z4/fMEhFarFYmJiQH5GAwG8fXXX4dMV5t+UFfFihDeydfw4cMD5I+NjRXx8fHqg63vQaoykSpWhBDi5ZdfVifZvvpISkpSJ5i+z+eff15tXv40lGLFbreLyy+/XI2j0WiqjC3BxkQhGlaxsn37drU9ajQakZqaqvYVfwVyUVGROs75rl9CQkLANX3ggQeCynYyKFaEEOL1118PaBvx8fGqMqNLly5qeE0flLZs2RJQD776SUxMDGijgGjVqpXYtGlT0Hxmz54d8HCn1WpFUlJSQN8F6kWxIoQQvXr1Csj3q6++Chs/XL8vLy9Xx2L/fu+rX0B07969Srq6jBfVcbIpVp555pmAuUVqamrYj7+SyUc4xYrvfME7x4qLi1OVhb5P06ZNxcKFC0PKXxfFyrBhw9RyEhISwp5bnz59apy/EEK8//77Ae0iLi5ObWMdOnQQkydPDin/u+++W2V+5Bv7kpOTxU8//RTx2O9TCADi1VdfrdW5+IhEsSKEEPfee2/A9U1ISAiYbw0bNiyoMitSxYoQ3pdBLVq0qFJOdHR0QN2dffbZVdLWZgxYtWpVwBzfaDSq8xadTic+/fTTkPMC/3J891P/uZWiKOL111+vIudnn32mxtHr9SIjI0NkZWWJQYMGCSFqP/+SSCQNx2m3FcjHoEGD2Lp1K1999RXXXHMNbdq0wWQyUVpaSmJiIoMHD+bxxx9ny5YtfPnll1XsOwwZMoStW7dy//3307FjRzweD0IIOnbsyAMPPMCWLVs488wzw8rQv39/Vq1axXXXXUdcXBwul4uMjAxuueUWNmzYENLQnMVi4auvvmL+/Plce+21tGrVCo/HQ1lZGSkpKQwfPpyXX36ZHTt2nJRu1rRaLW+//TaLFi3immuuoXnz5jidTgwGA507d+amm25St53406NHD1asWMGVV15JSkoKHo+H5ORk7rzzTtatWxfSoF7fvn2ZMWMGt99+O7179yY5OZni4mJMJhM9evTgoYceiuh6+cjOzub3338HvNuAIsUXd926daxZswbw7t//888/ufLKK8nIyKC4uJh9+/axb9++Gu3XrQ+uuOIKNm3axG233Ubr1q2x2+3odDp69OjBM888w8aNG+nYsWNAmoyMDH766SfuvfdezjjjDJo2bUpZWRk6nY5OnTpx5513snHjRi699NKQ5da2H9SV5ORk5syZw48//sill15KZmYmdrsdq9VKRkYGo0eP5u23366zt54HH3yQrVu3cu+999KtWzdMJhNFRUVER0fTt29fHnroIZYsWVKrrQ0NgcFgYPr06Xz77beMHj2apKQkSktLSUpKYvTo0Xz33XdBx8SGpm3btsyfP58LL7yQJk2aUFBQoPYVl8ulxouLi2Pu3LlMmTKFoUOHEhMTQ1lZGWlpaYwbN4758+dXu42ysbnnnntYsGAB5513HgkJCdhsNlq0aMETTzyheqYB77aDmtChQweys7N5//33GT9+PN26dSMqKori4mKMRiMtWrTgwgsv5MMPP2Tz5s0hx9SRI0eyc+dOXnzxRQYPHkxcXBxFRUVoNBo6derETTfdxE8//cRbb71V16oAAu2pxMbGqlsBaoPFYuHbb7/ll19+4eKLLyY9PR2bzUZ0dDTdunXj7rvv5r///W+VdCdqvDgZ8N9eUF5erm5LCfUJt80xGBMnTuThhx9myJAhZGZm4nK51PnLiBEjmDx5Mlu2bGHw4MEh8/Bt4z7jjDPqdH6FhYVhz6267W6huPXWW1m8eDEXXHABiYmJ2O12srKyePTRR1mxYkVQA/A+Jk6cyMyZMxk6dCjR0dHqPfEf//gHf/31F127do1YjssuuwygQY3WVmby5MnMmzePcePGkZqaSllZGTExMQwbNoyPPvqI33//vc62bHr27MnmzZt5++23Ofvss0lOTqa0tBSPx0Pbtm25+uqrmTZtmmpnxJ/ajAG9e/dmxYoVXH755SQnJ+PxeIiJieHyyy9nyZIlYQ3Ez549m0cffZQzzzyTzMxMrFYrAG3atOHGG29k5cqV3HPPPVXSjR8/ns8++4zBgwdjsVg4dOgQ+/btU43/1sf8SyKR1C+K8M3QJCeEvXv3qsZs9+zZE9IVpUTyd0b2A4mk9lxzzTV8+eWXTJgwoYpBbInk705OTg6ZmZlotVo2bdpE+/btG1ukk5YLLriAX375hauuuko1/CyRSCSShuG0XbEikUgkEsmpxvbt29W3sOeee24jSyORnHh8HnWuv/56qVQJw+7du1WjtbfffnsjSyORSCR/f6RiRSKRSCSSk4innnqKt99+m/3796vbFsrLy5k+fTrDhg3DZrPRoUMH1Y27RHI6MX/+fIxGY408C55ulJSUcPvtt+PxeOjfv3/EW50lEolEUnukYkUikUgkkpOI9evX849//IOsrCxMJhNJSUnExsZy5ZVXcvDgQTIyMvj6669PuJ0bieRkYOrUqdhsNpo3b97Yopx0PPDAA2RlZdGkSRNmz56NTqfj3//+d2OLJZFITjB//vknLQ0KhYWFjS3KaYWusQWQSCQSiURynHvvvZf09HSWLFnCoUOHOHr0KDExMbRr147zzz+fu+66i8TExMYWUyKRnGQcOXKE/fv3Ex0dTe/evXnuuedqZeBXIpGcugghuPrsIeS74IJmiSwql+ZUTxTSeK1EIpFIJBKJRCKRSCSnOD/99BNXX3wRl8TBtELYf+gQaWlpjS3WaYFUrEgkEolEIpFIJBKJRHIK43a7STfp6GWGfhaYUQQxGlhRIR/3TwTSxopEIpFIJBKJRCKRSCSnMNOmTcPugV5m7/+h0bDWCnv27GlcwU4T5IoViUQikUgkEolEIpFITlGcTiepZgNnRkEP8/HjPxSDAqyzykf+hkauWJFIJKckCxYsQFEUFEVpbFEktaRFixYoisLHH3/c2KJIJBKJRCKRnLKMTTKgBbqZAo8PiYZNNti8eXOjyHU6IRUrEomkCgUFBUydOpXx48fTqVMnoqKiMBqNNGvWjLFjx/L999/XKt+JEyeqypAWLVqEjDdp0iQmTZrE3r17a3cC9cDevXtVWf0/JpOJlJQUOnXqxJVXXsnkyZM5cOBAo8kpaXzWr1/P888/z6hRo8jIyMBgMBATE0OXLl24++672b59e0T5zJ8/n4svvpimTZuq/W38+PGsWbMmZBq3283cuXN54IEHGDhwIElJSej1ehITExk4cCAvvPBCte4WFy5cyBtvvMH1119Ply5d0Ol0KIrC0KFDa1IN9c66deuYNGlSnd3Fulwu5s6dyyuvvMKVV15Ju3bt0Gg0KIrCDTfcUG36hhoPKyOEYMqUKZx55pkkJiZisVho164d9913H3l5edWmdzgcTJ48mb59+xIXF0d0dDRdu3bl6aefprS0tNZy+RSgkdTVxx9/rI6VvvF76NChQcfSSD7Byvz111+59dZb6dy5M4mJiej1epKSkujXrx/33HMPy5cvr/W5SiQSyamI1Wrlz3Lv1h9NpfeNCVrvCpZxvTo3jnCnE0IikUgqodPpBKB+TCaTiIqKCjg2evRoUV5eHnGe8+fPF4qiqOmzsrJCxvXFmT9/ftj8fPEagj179qj5x8bGitTUVJGamiqSk5OFXq8PqAutViuuvvpqcfjw4QaR5e9KVlaWAMTUqVMbW5Ra8/nnnwe0BUDExcUJrVar/jcYDOK9994Lm8/TTz+txlcURcTFxan/dTqd+OCDD4Kmu/nmmwPK1mg0Ij4+PuBYamqqWLp0aciyK8vv+wwZMqQuVVNnpk6dWu1YEQn+fbny5/rrr682fUOMh5Wx2Wxi1KhRAdc8Ojpa/Z+UlCRWrVoVMv3Ro0dFz5491fhGo1FYLJaA8Xbv3r21ks3XTyOpK981A8SePXuEEEJcfPHF6vjp/0lISFDjJiQkBI1z9913q3lv27ZN9OnTp8rYm5iYGNDfADFs2DA5HkskktOGs6MRTXWIJ1MQT6VW/dybjNCDWLFiRWOL+rdGrliRSCRVcLlc9OvXj3feeYddu3ZhtVopKytjz5493HTTTYD3reFtt90WUX4VFRXcfPPN6HQ6+vTp05CiNwhvvPEGubm55ObmcvjwYRwOBwcPHuTbb79l9OjRuN1uvvzyS7p3796oq2wkJx6n04nRaGT8+PHMnDmT4uJiioqKqKioYM6cOXTp0gWHw8Htt9/OnDlzguYxY8YMnnnmGQBuu+02Dh8+TFFREdnZ2YwdOxaXy8XEiRNZunRp0PJTUlJ44IEHWLJkCTabjcLCQkpLS/nwww9JSkoiLy+PMWPGcPjw4aDlm81m+vXrx8SJE/nggw8YNWpU/VXQSUJMTAyDBw/m//7v//jkk0/o0aNHxGnrezwMxr333susWbPQ6/W8/fbblJeXU1paysqVK+nQoQMFBQWcf/75lJSUBE1/zTXXsHbtWmJjY5k+fToVFRWUl5cze/ZsmjZtyr59+7jgggtwu921lrG2fPfdd+r46f/57rvvqo3zxhtvALBy5Ur69+/PqlWriIqK4tFHH+Wvv/7C6XRSUFCAw+Fg06ZNPP/886SmpjJ//nxycnJO+LlKJBLJiaa4uJjF5TAsGkLtjo/RQl8LXDm434kV7nSjsTU7Eonk5GPevHlhw2+77Tb1zeD+/furze+ee+4RgHj88cfF9ddff8qtWKluRcX06dPVVSydOnUSTqezQWT6u/F3WLGydetWceDAgZDhhYWFIi0tTQBixIgRVcJdLpdaD6NGjaoSbrfbRdeuXQUgBg8eXCV82bJloqKiImT5S5YsUdvxc889FzSOy+UK+O/ro3+XFStut1t4PJ6AY0OGDIl4FUZ9j4eV2bZtm7ri4sUXX6wSvmvXLmE2mwUgnnjiiSrhc+bMUcv/6quvqoT7t4EPP/ywxvLVdcVKKPzH8HBj/ZEjR0SzZs0EINLT08XGjRvD5lteXi5uvfVWsW7dumrllUgkklOds6IQWfrQq1V8nwebIIwK1d7TJLVHrliRSCRVGDZsWNhw31tagFWrVoWNu2zZMt58803atWvHE088ETbuDTfcEGCMdtiwYQH77cPZZdm5cycTJkwgMzNTtX9wyy23nBD7J5dffjkvvPAC4DUO9sknn4SMu3btWiZMmEDr1q2xWCxER0fTvXt3nnjiCY4cORK2nPLyciZPnsyQIUNITk5Wz3PIkCG89tprIe0w5Obm8sgjj9C9e3fi4uIwmUy0atWKm2++OaQxs8rGgdevX89VV11Feno6ZrOZjh078uqrr+JyudQ0ixcvZuzYsTRt2hSTyUSXLl34z3/+g4jA+VxpaSmPPvoo7du3x2w2k5yczNixYyOyl1CbOp00aVKAHZFvv/2Wc845h5SUFDQaDZMmTaq2XID27duTnp4eMjw+Pp5LLrkE8L51r8wff/zBvn37AHjssceqhBsMBu6//34AFi1axO7duwPC+/fvj9lsrpLOx4ABA+jUqVPI8gG0Wm3I9HXFarXy008/ccstt9CjRw+aNGmC0WgkPT2dsWPH8uuvvwZNpygKN954IwD79u2rYnsj0usDqPZUakt9jofB+Pzzz3G73URHR/OPf/yjSnirVq244oorAPjss8+qhPvGG/94/gwYMEBt559++mmN5WtsXn75ZXX1yVdffUXnzuHtBFgsFt5//326du16IsSTSCSSRuPw4cMsqwi/WsWHWQMDLXDtqOERzcskNUcqViQSSY0xmY6bHA+3tNxutzNhwgSEELz//vsB6YIRFxdHamqq+j8hIYHU1FT106RJk6Dp5s+fT8+ePZk6dSrFxcV4PB4OHDjAhx9+SL9+/U6IcuWuu+4iOTkZIKRi5emnn6Z3795MnTqV3bt3oygKTqdTNX7arVs31q5dGzTtmjVr6NixI/fffz9//vknhYWFREVFcfDgQf78808eeOABvvrqqyrpfvnlF9q2bctLL73E+vXrsVqt6HQ69uzZw5QpU+jZs2e1D1u//vor/fv3Z9q0aVRUVGC329m6dSsPPvgg1157LQAffvghQ4YM4aeffsJqtWK329m0aRN33XUXjz76aNj8CwsL6du3L//617/Yu3cvBoOBgoICfvzxRwYOHMhHH30UMm1d6tTH/fffz6WXXsqcOXNwuVxoNPV7a/S1+2B95ffffwe8W1UGDRoUNP3o0aOrxK+v8hua6dOnc9FFF/Hhhx/y119/UV5ejk6n49ChQ/z444+cd955PPDAA1XSpaamEhsbC3gVI/7jQGpqKtHR0Sf6VEJS3Xjor6QM5gHLd03POussoqKigpbhawP79u1j27ZtQdOfe+65IRVIvvSLFi3CarVWc0YnDy6Xi/fffx+AESNGcNZZZ0Wctr77sUQikZxsXNAihSw9NDdEFr+/BYrc3rmhpP6Rdx2JRFJjFixYoP4O91bw2WefZcuWLdx0000ReRjx2TLxUXnffag37uPGjWP48OFs2bKFkpISysvLmT59OjExMRw8eLDaB/v6wGQyMXz4cACWL1+OzWYLCP/3v//Ns88+S3R0NC+++CKHDh2ivLyciooKVq1axfDhwzl06BAXXnghZWVlAWmzs7MZNWoU2dnZZGZmMm3aNEpLSzl69ChWq5UNGzYwadKkKoqnFStWMG7cOMrKyrjtttvYsmWLah9i37593HHHHTgcDm666aawb9qvvvpqLrroIvbt20dRURHFxcVqnU6bNo1//etf3HHHHdxxxx3k5uZSVFTE0aNHVY8er7zySljPOM888wz5+fnMmDGD8vJyiouL2bx5M0OGDMHj8XDbbbcF9YxTlzr1sXr1aiZPnsxDDz1EXl4eR48epby8XF0tUR/4+kuwvrJx40YAOnbsGHLlSEpKinptN23aVKOyjxw5opbRGG/w4+PjufXWW5k/fz5HjhxRbX8cPHiQZ555Br1ez2uvvcZPP/0UkM7fvkZmZmYV2xvBlDGNRaTjYSh817RLly4h4/iH+beBo0ePqmNmJOk9Hg9btmypsYyNxapVqyguLgbg4osvbmRpJBKJ5OQhOzub1cdWq0SKQQODo+DmSy7E4/E0nHCnKVKxIpFIakRRUREvvvgiAGeeeSbt27cPGm/t2rW8/PLLpKam8vLLLzeoTD169OD777+nQ4cOgHf7xOWXX87zzz8PwDfffBOwZaWh6N69O+B1e+pvOPHIkSM8/vjjKIrC999/zyOPPEJaWhrg3YbRu3dvZs2aRe/evcnJyeHDDz8MyPexxx7jyJEjJCUlsXjxYq644gosFgsARqORLl268PTTT3PNNdcEpLvrrrtwOBw8+eSTvPfee3To0EF9eG/evDn/+c9/uPvuu3G5XPzzn/8MeV59+/blq6++onnz5oB3dcULL7zAmWeeCcCjjz7K9ddfz5tvvklKSgrgXW304Ycf0qJFCzweDzNmzAiZf3FxMV9//TWXXXYZOp0O8Coafv31V9q2bYvL5eLJJ58MSFPXOvVRVlbGfffdx0svvaQqL4xGI1lZWSHlrQnTp09XlUK33HJLlfCDBw8CkJGRETYfX7gvfqQ8+eSTOBwOdDpdRO5y65uxY8fy/vvvM3ToUJKSktTjTZs25amnnlK30L355psnXLb6INLxMBSlpaWqK+RwbcA/zL8N+K/Gq036kx1/JVLPnj0bURKJRCI5ubiofXPaGyFNX7N0vc1g93hfjEnqF6lYkUgkEePxeLj22ms5dOgQRqORt956K2g8l8vFhAkTcLlcvPnmmyQkJDSoXI899ljQZd8XXXQR4LXzsGPHjgaVASAxMVH9ffToUfX3F198QUVFBX369GHEiBFB0+p0Oq666ioAZs2apR73rb4BeOSRR8jMzIxIlr/++ouVK1ei1+tVGx3BuO666wCYM2dOyK0iDz/8cNAtBv7eY4KtCtJqtZx99tmA10ZLKAYNGhS0XsxmMw8++CAAv/32m/rmGupWp/5oNBoefvjhkLLVhe3btzNx4kQABg8eHFSx4Xuo9inKQuEL98WPhBkzZvDee+8B8OCDD9b4of9EMGbMGACWLl3aKFuV6kKk4+HQoUMRQiCEqNIG/K9nuDbgH+afpq7pT3YKCgrU3/7jq0QikZzObN++nfVWGFqLXbE6BYZEw13XXYPT6ax/4U5jdI0tgEQiOXX4v//7P3Vf5jvvvKOu0KjMv/71L9atW8f555/P5Zdf3uBy9e/fP+hxf6Oi/oqOhiKUMbBFixYB3m0fvlUVwfDZPvAZMwXvUnjfje+CCy6IWBZfmR6PJ+wDte9htry8nIKCAnXFiT/9+gV3z+ezh5OYmEirVq3CxiksLAwpg28LVbgwj8fDmjVrVEOidalTf9q0aRP0nOtKbm4uY8aMoaioiPT0dL766qsTavNh4cKF6kP88OHDefbZZ09Y2ZXJy8vjnXfeYfbs2Wzfvp3i4uIqSpSKigoKCwtVO0WnApGOh/VBXYzvnsr4j6mnax1IJBJJZS7p1p7uZkiq5ZN8NxMsLoeLkwz8UiIN2dYXUrEikUgi4oEHHuDtt98G4PXXX2fChAlB423evJnnnnuO6Oho3nnnnRMiW0xMTNDjvm0lwAnRyvsrD/y3PfiW3lut1ogMR1ZUVKi//W3O1GR7iq9Mt9sd0ltQuHL9qa5+Q4X7xwlX/5FuYcjPz1d/16VO/WkIpUp+fj4jRoxg586dpKamMnfuXJo1axY0rq/uQsnnwxcerq59LF26lDFjxmC1Whk0aBA//vhjQF84kSxdupTzzjuPoqIi9Vh0dDQWiwVFUXC73arnpvLy8lNGsRLpeFgd/tczXBsoLy8PmibS9P5hkbShkwX/9uC/ekUikUhOV9atW8c2O9xVh9ulRvHaZplV6p1HhfMuKIkcuRVIIpFUy0MPPcRrr70GeA2R3nPPPSHj3nnnnTgcDh5//HESEhIoKysL+PhsnQgh1GN/l6WIf/31F+C10eGvEPC9nZ84caK6JSDcZ+/evXWWxVdmhw4dIipTCBHWnXVDEu5NdKiw+qrT+nY1nJ+fz/Dhw9m8eTMpKSnMmzdPtf0TDN+qquo8V/nCw7l2Bq8i49xzz6W0tJQBAwbw66+/NpoHHZfLxVVXXUVRURE9evTgf//7HyUlJZSWlpKXl0dubi7Lli1T458q7h9rMh5WR0xMjKroCNcG/MP824D/OFOb9JHgm3DXVIFZHxN1f9fK1Xn3kkgkktOBy/v3pI8FYus4felohGgNXJQSfiuyJHKkYkUikYTlwQcf5JVXXgHg5ZdfrtYbx549ewCvzQ3fQ4P/54svvgBg//796rH//Oc/DXsSJwCbzca8efMAOOOMMwJcsPq2qmzYsKHG+TZt2lT9HWo7SzB8Ze7evTvgbffJiL+h33Bh/qtL6lKnDUV+fj7Dhg1j06ZNqlKlU6dOYdP4vLVs2bIlpI2R/Px8Dh8+DAQ+aFZmyZIljBo1ipKSEgYMGMCsWbMadXXC0qVL2bdvH1qtll9++YXRo0dXkcd/RdapQE3Hw0jwXVOf96Zg+If5t4HExES1L0SSXqPR0LFjxxrJ51s1Eonbel8cjUZTLzZR+vTpQ1xcHADff/99nfOTSCSSU5nFixezzwmDouqel3Js1cqicigpKal7hhKpWJFIJKF54IEHePXVVwHvQ4TPkGhD41ulcKq8wQZ4++231S0NlQ1UDho0CIBly5bVSDkC3gcLg8EAwM8//xxxOl+ZDofjpH8gmT9/frVhGo0mwCtIXeq0IcjLy2PYsGEBK1XCKUF8jBw5EvAaFF2yZEnQOL/99luV+JVZsmRJwEqV3377rdG3fGRnZwPQpEmTkNu95syZEzK9zybNyTIONNR46LumCxcuDLmdx9cGsrKyqthM8qWfNWtWyLrypR88eHCNV5L07t0b8K4YqU5J67N91K1bN/T6GrqqCIJOp+PWW28FYO7cufz5558Rp5WuRCUSyd8JIQRXDxvMGRaIqqcn+NYGaKKDC9Lj6ifD0xypWJFIJEF54IEH1OXur776asQPEXv37g27JeP6668HvA8IvmOVl9LHxsYCBNhlOJn5+uuveeyxxwDvCoTx48cHhF977bWYzWbcbjd33nlnWO8nHo8n4LwtFgtXXnkl4DUK7HtYrY4+ffqoiojHH39cXfEQihNh3DcUixYtYsGCBVWO22w2tQ2OGjWK+Ph4NawudVrf+G//SU1NZf78+REpVQCGDBmi2s7517/+VSXc6XSqdTB48OCgRoL9lSoDBw5k1qxZah9qTHwrDfLy8oLa+cnJyQnrZvlkGgdqOx5Gwvjx49FqtZSWlqp2W/zZu3ev6hbz2muvrRLuG1N37drF119/XSV8+fLlqoLS5wWsJlxxxRWAd5tPuOu1ePFiFi5cCFCvRssfeughdfvSVVddFeCCORhWq5U77rjjpFrNJpFIJHVl9uzZHHbBgHrcuaMoMDwallWgvhyU1B6pWJFIJFV4+OGH1YeIyZMnh3XX2xD4tkf4XOqejOTm5vLdd98xZswYLr/8cpxOJxkZGfzyyy9VDIWmpaWpD80zZ85k5MiRLF68WFUGCCHYunUrkydPpkuXLqqnER/PP/88ycnJFBQUMGjQIGbMmKHaO7Db7axfv54HH3yQzz77TE2jKArvvfceRqOR/fv3079/f7755puA+jxw4ACff/45I0eObDCXw5EQFxfHuHHj+Oabb1QbPFu3bmXMmDFs3boVrVZbxatNXeu0vjh8+LCqVElLS2P+/PnVbv/xR6vV8vLLLwPwv//9jzvuuENVch04cIArr7yS9evXB8TzZ9myZapSZdCgQbVaqVJWVsaRI0fUj91uB7xKHf/j4Tw7BWPw4MFERUUhhODyyy9n+/btgNc+zqxZsxg6dGhY+zq+caCkpIQZM2bUqOzKFBcXB5yLz66T3W4POO7v0ttHXcfDBQsWoCgKiqLw8ccfVwlv166duirjySef5N1338XhcACwevVq1RBxWlpa0K1HI0aMYPTo0QDceuutfP311+pqjblz53LJJZcA0LVr16Auv6tjwIABjBs3DoAnnniCxx57LEDBW1xczJQpU7jgggsQQtCqVSvuvPPOGpcTiuTkZL799ltiY2M5ePAg/fv357HHHmPjxo3qCh1ff3/55Zdp3bo177777kmz0kkikUjqisfj4cbzz2VwFBjr+em9uQGy9HBBVpP6zfh0REgkEokf+/btE4AAhEajEampqWE/r7zySo3yv/766wUgsrKyQsb57LPPVBn0er3IyMgQWVlZYtCgQWqc+fPnq3HC4Yszf/78Gsm5Z88eNW1sbKx6vk2aNBEGg0ENA4RWqxXXXnutKCgoCJvnyy+/LLRarZrOYDCIpKQkodfrA/L7/PPPq6RdvXq1yMjICCgzISFBKIqiHnv99derpJs9e7ZISkoKSJeUlCQsFktAmTfffHNAukjqd+rUqdVey6effloAYsiQIVXCsrKyBCAmT54s2rdvLwBhNBpFXFycWraiKOK///1vvddpOLlqwjPPPKOWERUVVW1/2b9/f9B8fPL4zjk+Pl79r9PpxAcffBA03bBhw9R4CQkJYcvu06dP0Dx8fbK6T7jrHIp33303II/o6GhhMpkEIJKTk8VPP/2khu3Zs6dK+hEjRqjhMTExIisrS2RlZQVt6+EYMmRIROdYuT3Ux3jo35emTp0aVD6bzSZGjRoVMO7FxMSo/5OSksSqVatCnt/Ro0dFz5491fgmkymgj2dlZQWt30gpKSkRY8aMqXItK49B7dq1E1u3bo0oT/96iWR83rx5s+jVq1eADDqdTiQmJgqdThdwfNSoUeLIkSO1Pl+JRCI5mfj6669FjAbxaAriqdT6/9yaiNCByM7ObuxTPaWR7pYlEkkA/vvSPR5Pta56y8rK6l0G31aa999/nw0bNnDo0KFG3S9fUlKiGvYyGAzExsbSpEkTunXrRv/+/bniiisi8rTx4IMPcvHFF/POO+8wd+5c9u7dS1FREbGxsbRp04Zhw4YxduxYzjjjjCppe/XqxZYtW3jnnXf44Ycf2Lp1K+Xl5TRr1ozWrVtz4YUXcvXVV1dJN3LkSHbu3Ml7773HzJkz2bx5M0VFRZjNZjp16sSAAQO46KKLQtruOBEkJCSwYsUKXnzxRb799luys7NJTExk0KBBPProowwYMCBk2rrUaX3g3y7Ly8urtUERasvSpEmTOOuss3jrrbdYunQphYWFZGRkMGTIEO677z7VzkW48qtbUeJvUPlEMXHiRJo3b84rr7zCqlWrcLlcZGRkcN555/HII4+oKzNC8c033/Dss88yc+ZM9u/fr9rTOVHbg07UeGg0Gvn111+ZMmUKn3zyCRs3bsRms9G2bVvOP/98Hn74YVJTU0OmT0hIYNmyZbz11lt89dVXbN++HbfbTZcuXbjkkku4//7767Q9LCYmhp9//plff/2Vzz77jOXLl5OXl0d5eTmpqal0796diy++mOuvv77B2lnHjh1ZvXo1M2fO5Pvvv2fx4sXk5uZSUlJCbGwsrVu3ZvDgwYwfP55evXo1iAwSiURyonG5XEy88jLOigJ96EWedSJND+2NcFG7TFZXyNV+tUURQq6VlEgkEolEIpFIJBKJ5GTiojiFheVwRxJoG0ixAlDggvcKYMv27bRt27bhCvobIxUrEolEIpFIJBKJRCKRnETY7XZSLSaGR0PXmjl0qxU/l4BTwAarVA/UBmm8ViKRSCQSiUQikUgkkpOIi5qYMGqgywnayXtWFGy1wV9//XViCvybIVesSCQSiUQikUgkEolEcpJQVlZGWlwM58d67Z+cKGaVwlEXbLdLFUFNkStWJBKJRCKRSCQSiUQiOUm4MC2GBC20M5zYcgdHwT4nLF68+MQW/DdArliRSCQSiUQikUgkEonkJODo0aOkJydxRTy0OMGKFYAFZbDXAXvtHhSlAS3m/s2QK1YkEolEIpFIJBKJRCI5CbgwM4kMfeMoVQDOsMBhF/z++++NI8ApSsQrVmw2Gw6Ho6HlkUgkEolEIpFIJBKJBACDwYDJdIIsuDYyhw4dIis9nesTIV3feHIsKYdNNjjgkKtWIiUixYrNZsMSm4ZwFp8ImSQSiUQikUgkEolEIiEtLY09e/acFsqVfhaFUg9cHt+4cjgFvH0Eps74hnHjxkWc7t133+Xdd99l7969AHTu3JmnnnqK0aNHA3DDDTfwySefBKTp378/y5YtqzfZG4uIFCslJSXExcUR3e8VFG2gE22PJ3hyjSZyzZZSTVwRooza5hcMTYSaOE+l6tJq62E3VaUsfPKr39XI5ruEweIpx/KuHFRtHVUOr+4aRFLn1eRR3XUO1VKFp/qij+cRmEnlMqvI4Mu7Npe5BnKFlaEeqdx+I6UhZWpMajpWRDpOREKk16IxymyIshuCkNfvWH/V6Lw/NFrfWOo97nJ4cBXtxF1+EGPGWdhzV1O++QMALG2uwNhsaMhyFI2Cu+wgitaCYozD43BiP7QY695fQLhAoye651NUbHkbjTERc7ubgublcZRTvvk/aLR6ojvfiaINNPnvu1YaRaF0w+uAQkzXewCo2P8rjpzZRPV8Ao0hAQBH/lLsu74gus9LKPqogLzsOb/iyPmdqF5PoTHEV6mu0uUPgNYEziIAjB3uQBfXMXjdVkPle7+iURAeF6XLHjg2WAu0id1wl+wGVwkA2sSeGFtejqKLrlNZofDNU3zxK/+PJG2kMtR0PhMuf+2x9utLU5u5TW1pyDFfCA/ukp04j6zGdXgFCCfaxF5Y2k+IKH3levCNU9WNB7XJW62HSvdz33Hr3h+xH1qENropxrTBGFP7R15YCNl8MlQp2xfXEyhDdeN65XFcPccwZUd6PGSZ2kpl1qLpnsj2Xpm6zkerm2sGDfMEj1vXeoikL4dqQ7624wtX21wNx8VghDqvYPIKt5WyFQ9SXFxMbGxstXmfyuzZs4d2rVpxSxI00TW2NLCqAlZUwCGbE50uMoF+/vlntFotbdq0AeCTTz7hlVdeYe3atXTu3JkbbriBvLw8pk6dqqYxGAwkJiY2yDmcSGp0yRStGUUXqFhRQnSumgwE1cY9AYqVSJc4KZUGH6UeFCtKdYqVCCdqweIdV84EPx6SU0qxEnn7qE6RUvW/97vyNYqsrJqnAWrc3mtC5fYbMVKx4o1fj4qGSK9FY5TZEGU3BKEfArzfqmLl2LfvdDQeN4bkrpQXbefoH/+HPq4t2ujmuMv2o41pjqbyfa6SYkUT3xrhEbhtRylZ9Twe2xEUfQzC5cLS8S4UvQVPxSH0TfpUuWeigMeajyN3IaJ8H27AkbcUU/PRgdH8FObGpkOp2PoB7opDKDozzrwlaOPa4KnIxZm7EGPzCxCOQhRjIhpzcpX6MDQdijN3EdZtU9AYE3AVb8XS6W50cW0RHhcoYEwfhuPgXISzBEVjqCp3hFS+JopGwbbjMxBOAHTJfTA2G0n5uhcBMLW+GkP6iGon6pGUFTJepXtk5f+RpI1UhprOZ8Llrxxrt9RA3nqjIe9DgCapO7r4jlTYj+Au3oYhpW/Eba5KnVejWKnJ/TuUYqXK/dwjcJflYM+ZhSF1IB5HMRXbPkZjiMXQpFcNygstQ+WyfXFVWXztoppxvfI4fnxuGbrsSI+HwjfmHpehRslrVWZ9Utf5aLUv7YKmOXagnhUrkfTlUG1I7Vu+cF+bq+G4WKM4f9P5ZqSM7dSKzqaTQ6kC0NMMSytgXJKeH4sjuzYXXHBBwP/nn3+ed999l2XLltG5c2cAjEYjaWlp9S5vYyON10okEonktMS2fy762FYItw132X5MzUdhSOoccXr7oWV47EfRmJJBeLB0fQBdfEfs+2cCAkPKGVXSOHJ+o2zloziy/4ch8wIMaWdiy5mFcDtDlmNI6Ys2ujmla56jZMVjACg6C9Yt/8FxYDYeay4eWwHCfhT7gd8RlZ4CFUMCis6CxhCPq2ANuCpwF28DQDgKwW1DE52JLqknABpTSsR1EAn6Y/VgSB+BpeOtaExN0CX1wtz+FgzpI+q1LMmpgcd2mIqNr+Eu3YOl64Pom/RrbJFqjLNoKyhaLO1vJKbHA+ib9KZs839xlx9sbNEkEskpyKZNm9hsgyE1W7zZoGgVGBoFf5R5d7BU/tjt9rDp3W4306ZNo7y8nAEDBqjHFyxYQEpKCu3ateOWW24hPz+/oU/lhCAVKxKJRCI5LdHFt8FtPYyl7RUkDH2HqHZX1Si9s3ArCA8aQzyW7o95V4A4y3AcmI0xczQaU1KVNPbsWepvY/MxmJqfh3CU4MhdFBBPeFy4rXlqGTE9H8PS4WbMba9F0cfiOrwSAEPmBWiiW6Jv0g+NJR377mnYdn5aqVSBx3EUdBZ0iT3QxrRGn3YWAIoxCbRmPOU5mNpcg6XrQ2jM9atY0cW1JfbMKZhaX42i0aExxmPpdKeqcJGcXrjL9lG28hHcJTsxt70ebUxLHIcW4C7dixACZ/4y7Dm/4bEfbWxRw6IxxIJw4zyyBkVRiO54M1pTIqUb3sTjqmhs8SQSySnG3LlzaWGAeG1jSxJIFxNYBTz88MPExcUFfF588cWgaTZs2EB0dDRGo5GJEyfy/fff06lTJwBGjx7NF198wbx583jttddYuXIlw4cPr1ZJcypwkiw0kkgkEonkxBLdYTwlayZTsup59Imdie52V5VtQKFw247iLNgEWhMxvR/D7fIukXUeWQ3CjSF9WJU0QngQzhL1v6LRo7WkoW/SF1v2/zA0PRMULdadX2A/MB/fpntT8/Mwt7oMrTmNsk1vIxxFABgyx2DMughFUXAdWY2nwvum3Jm7EFOb648v41Y0mFpchm3X5xgyL8DY/HwUjU4N0xjiEY5SFEWLLr59rbblSCSR4MhdiG3Hx+p/67YP8L7j84DGiKnVFV7FoKLDvucb9CkDMLW7AUU5yZ40AH2TvhhS1lK+5QN0sVloLWlEd72bklXPUL75A6K7/gOlNvuIJRLJaYvuJNyBrSjeUfqmm27ipZdeCggzGo1B07Rv355169ZRVFTEt99+y/XXX88ff/xBp06duOKKK9R4Xbp0oU+fPmRlZTFz5kwuueSShjyVBqfOipXKBop8E7KaGIerrZG0UPvzIjG4WNlQU3WGm0L9rw+jclX3zwbfoxnK5kq4sisbmlLzqHS6VWywVJOf+t/31121/mps1yVUmdU0j2D5hmpTlfcuV//fl1/NZK4JJ9IwbGVDZJESybWrr/OoD4PYkVJTI3G1Nf4bjlDjla8sfyOmDVVW5TJD/T+RRHK+kV4/j8sTEK41aChc/gpaUzTG9J5Y95XgLN5JyeqXiO15PxpDTMhyfL/Lt38NwoWx6TAURYNWK7xv2/MWokvohMYQV0UmT3luFXk9QmBsfh5lqyfhPLoexZyO/cBcDM3ORRvVFOu2qYBCxc5p2A/MRWNJQziK0CX3wdJqHIqi4LQWI5ylaMxpmNrdiEYfG2BXweMR6NKGYnCW49j/A46Dc9An98LUejyK1uCLVW19R0KV/ltpLlDdOFHZwGwkZVU3NlQODxW/NgqlUOdbuazK8SKRqSZ2GupCuHGvPsdj4bZj2/kZANrYtpjb34wjbxEIgbt4G56KQzgOzUeX3Btz2xtx5P6Bfc/X6FP6o0vogrv8AK6CNQi3DVfhZozNzkWf0h83x2R0hzgfd3B5ghu9DX6+oQzFmttciSN/Ga7SbDSmVDSmVKI63kbZhjco3zIVXWwrhMeBPrkXWlNV+0f+cwtf3pWdIoTSzWh0PptBgX0r1Dhedf5atYxQbSzUXLe6Mbe6eP5hlYf8SNt73ebfkZURqU2Vqt+B8fyvTaT39Lr2+0ju46GM1Do9kd0XamrE27+MygRN24j2diTHMRgMERsPNhgMqvHaPn36sHLlSt544w3ef//9KnGbNm1KVlYWO3bsqFd5GwO5YkUikUgkpxUeawGOw+sDjin6aDy2o5SsfpGYng+iNSWETG8/vBZH7hIUnRlzq4vV487DK47ZjLg3aDrX0cAyhRAoioImqhkoOjzWw+AsB8CYeS6e8hwANKZUKrZ/hC65N4rWiMeaj7n1FbjL9mHdNQNX0RY1T11sm5ByGzLHoE3sgfvoahw5vyFcVswdb0djScNxcB7C48LUZjyhVesSSe2x7Z4BwqvlMLW9AY0pGVPWWACc+cuxbvsvQrjQN+mPojOjTxmEfc/XCJcVAMeheTgPLUAxJCDcNmx7pqNr0q9xjWwfW0kjHKXqIX1Sd8xtrsK68yvvFj9Fi3X3N1jaXIOh6VknvVFwiUTSiCigaE/GMaJuCj4hRMitPgUFBWRnZ9O0adM6lXEyIBUrEolEIjmtcNuLAUgc/Cju8nys2ctxHNmIsdnZOA6vomTV88T2ehCtJTVoeuu+3wAwt74MZ8FGXEVbcRZuwVNxCF1SD3QJXQLiC2c5wuPAkbsIfUp/QIOzYJ36gOUu3gHChS62NdZ9v6CNbXvMfsOxSYZGCxoDisaAM2/JsWM6KnZ8gbt0D9r4TriLNkd07tqoDPQxzdBGZ2Hd/Db23dMwtrgURWvGmfsH+qSeaOK7VJ+RRFIDPI5SnLkLANCnnYnWEugNQjlmj0jR6BFOb/9U9NFeu0E5v6Jv0hdF0aKxZGDpeh9lq59EOIq9RqCbjVK3tjUkwmWlbONbuEv3omgN6JP7YGl7Dfom/ajYPQNtXGt00c0BMDUbiTHtTNDoweOkYtc0KrZ/jLs8G0vb8Q0uq0QikTQWjz32GKNHjyYzM5PS0lKmTZvGggUL+O233ygrK2PSpEmMGzeOpk2bsnfvXh577DGSk5O5+OKLq8/8JEcqViQSiURyWqGLyUDRGrHnbSCu2zU4S/JwHNmI/dAicDtBb6Fk9UvED3wRRRu4f9hjL8ZdsgeAim1eI7EaSxq6uA7oW12KNrFHwBtp4XFSsuQf6n9TqyvQJXbB7Lapx9yle0BrQhvbCk/FQXTJvb35GhNQDPG4yw+gi++AcJZgaDoUx6EFVGz5L8JZhj6hCx6PAwDFEB9xHeiTeiBaX4Nt1+c4Ds49Lm89bQmSSPzRGGKI7v86wn4UzTHlgz/amNZeJYTGgLtkF+B19apL7IEj53+U//UvFL13i567dC8cMw5r3/cdwmPD1GJcg5+DPXch7uLtGJuPQbgqcByYg9aURFT7Gyld9yLlm98jts9zKBrvKhZFZzp28lqi2t+ANqoZ1p1foE/uhT6hU4PLK5FIJI1BXl4e1157LYcOHSIuLo5u3brx22+/MXLkSKxWKxs2bODTTz+lqKiIpk2bMmzYMKZPn05MTEz1mZ/kSMWKRCKRSE4rNDoTUW0upGzbN5jSuhPT8UqiO1yBs7yMip1fY8+ZhwDseSswpZ8JgPC4cRZuoWLHNNAaie58C+DdeqMxJuC2FeEq2YMjZzb6Jr29LpgB19FNfgXr0cV38Bq01FnUw8JtQ9GZvcc1BvB4l8t6bAUIZxkaYzzOI2vQxrbG0Gyk14PKse0/pqwxVGydAoChaVWDueEwpA/DYy/AkfOrekwX16GOC34lkuBoDLFgCL4/31NxEDxOhL0QXdqZ6nFji4txHJqPu2QHmugsFK0RfVIPND2e8Bq43fcdrsOrKC/bj4KCYmqC1pyMxtQEbVwb1daRb9tdXXAV70Ab2xZTi7HeA4oW6+4ZuEr3Yml/I6Wrn8GRtxhj07OCptfFtfXKIj0GSSSSUJysW4EqG+cMw5QpU0KGmc1mZs2aFTL8VEcqViQSiUTyt8RtO4ot50+MTfuji2qKq/QAJX+9i7s8F0NyJwxNOlO48j8knfk8GmMcGp2ZqPbjcRXtwG3Nx5YzH60pCXveChz5qxHOUrTRzYjr/TC66GYIl5Xynd/gPLwOj71ALde251ti+v4TjTkFZ8Ea9bgurr2fsdjjCFc5isZwLE4bnPkrULQWHLkL0RjjcVccwmPNxdzueu8qFmMSwleexwWAvulwDJnn1biOjFljcR5ZCW4nwm3Fum0Kxva3SW8mkhOGEB7sOd6JtmJMAI0B4bLiKtyEbc90cFu9K1oM8XjK9iBcVrQxLb2JFT0eWz7Y8tEldsddvA1n3iLwOFD00UR1fwjr9k/xWPMxpA/FkD5MVbbUGI8roP+aW1+BPqYF5VveRxffDl1cexyHV4dUrHjTKjjyV6CLbYvGGIfbdgTcdjTmVNVei0QikUhOTWqtWAlljb8mluKrsxodqcedypa1I7FGrSW4h4LqvGKEsuIdzmp3dfJEOn+tzlp7XfI4LosS9LtKPCXw21dNAd4zKuUpjnkOqu6lUX04Iqns3SdUeJWyq/EOdDxe3WUMJcuJ8BJUW+9A4aiuziOlOk9jNUlbUyLtHzVJEy4thL4GldtisHh19RQU6fWvD49ENS27Vm3z2Bij8SgIj5uSVa/gqTiALXsBpuajceQvQ7hsaKPTcduKSBr8EPmzH8B24Hfie1yNIdb70CS6jKdw2Yu4S/ZSsuZlNKZktNFZIDwo5hTseWuxH9mM48AcPPZijOlD0cW2QhvTCufR9Vh3fAZaI67i7ThzF6ni6RK7BvHM4cKZvwJDSj8AzC0vQTiKsB+YjTamJW5rPo5DCzG2uARtbDsALB1vo3zdCwAolgxizwx8O1RdX/G/fysaHbq4jrhLtmNseSm27VMw2g6hiWp2Qt0uR9J3I+3fDelZrLZ5hErXEN7Oakq4Mayh5dNqNVTs+hpX/mJQtOgSOmLfMwPHgdkIZym6hM4YW1+CIW0AnvI8ilc9g/Pgr1haX+ZNb4zBBWijmhHT7R7v+QhBxY7PcBycT9mqp1AM8eiTe2LPnoV9/0z0Kf3QJXZH0RrRWJqiNaccFyiEByEAxZhUxZaRLqU/huLtWHd87v2f1CPk2KWY0zC3n4Bt13SKVzyCoo9G2I4cC9ShjUpHG9UMbVJv9Ek91LFf4wmcj1W+NxyfnxzzelZpflvZw5w6TgZsWSQgTzXHKnOf4J6qQs4VQ8gcLI9ajzaVvFLWp5egUP8re/2pHF6b+1ek3kmrm2tFUnbltA3p/SdYecGoy3WTSE4W5IoViUQikfztcJfn4Kk4gKnlOGz7fqZixxcAxHS/E0fuMoRwoTFEB02rOWZI09zmKnSxLXEcXos9eyba2LaIkl24Dq9EuCrQJXQiuut9qpFbIQSOgwvQJXQG4aF8/WsB+XoN11aSs3QfwlmKIXUQzqObqNjxGR77UfA4cRdvR5fYHVOrK9H4Pfzp4toQ3fd5cDvQxmTVWZmpTxuMM28xjuxfAPCU56CNalanPCWSSHAV78Ke/RuKMQGNIQHF52XHWeZ1sVyWTfnm9Xgq8tBEZaBozXhsx1eHKT7X6Jrjqz0URUF7rA9rTClE9XgIjTERU6vLcBz6E/vBeTjzlvpiY2w+BkVnRhvTCl18+5CyaqLS8Rych/A4UTR69bip5aW4y3IQrnIs7W8Ke76GtEHokrrjyP7N64Y5oSOK1oK7PMf7Kd2DI28JrtRBmNteg6I11aQ6JRLJKY5ykm4FOvkkOjmRihWJRCKR/O1QdGYAtKZk4gf/m6I/7wDAkNQRW/ZctKZ47Ll/IZzlRLU4MyCto2AToKDoorDnzMGRvxxTi4sxt7hQjeP2uFEUTcDbRE95Du7ybKJa/AN32T7wOLF0vQ/73u8xpA/32piohOfYG2uNOZWKbR/hseZhzByNJqoZGnMK2uhWQc9Pa6k/t4S62DZoEzrhLtwIgHXn5+ia9ENOpSQNTcX2TwAFjbkp7qLNuEt3o08diLn5GEr/egXhKALAum+md8WYIR5j+nFbQj5FjLvsQIAdFWPG2WBMQpfQCc0xo7eKzoIx81wMzc4Btw3htuM4MAf7/l98uWHpfAf6Y8ajK+Mu2obGkgZK4NRZ0ZmJ7vkorqLtlCy9F0P6MMxtrgp5zhp9NKZWl3p/H5NXn9AB8CpnbQcXYtv1Je7ybHRxHTAkdUOf2DnySpVIJBJJoyAVKxKJRCL526E1p6Axp+Eq3oEh7QxMLS5AF52CxhCL1pKMu+wQjsKdaEzx6OMzARAeDwWLJmPNWYE+qTMVWz9AG5WBMXM0puaB9kuC2yA5tnTfEIOzaAegoI3KILrXkyHldJXtQzHEo9FbMLe6FFfRVhAeDKkDjsl0grbj+C0f974ll0oVScPisebjLs8GUI0xAzjzluDMW4LGnIY2viOuoi3qnou4/s+j0Uf55eLblxzYHxWtEUOQFWKAajxa0VkwtrwUXXJvNKYkrDu+oGLrR0R1iUEX365KOlfJTnQJnUMawXWX7gHhwnFgjlc5aoyPsCb8ZVMwpA1GY0ygYuNkHGX7ceYtIW7QGyhIGywSiURyMiMVKxKJRCL52+DIX4anbD8afSx4nNgPzsN+cB5o9BjT+iEcJQC4SnPQmuPRx2aqact3z8Oas4LY7rficdlwFmwmpvck1X1qdbgrDh77pcG25xsMGSPRGBPCpnEV70QX532I01rS0Cf3xFW8reYnXkcsXf4Px8F5eMoPYEgfgaIoiHq0wSSR+GPf/wuOA7+r/02tLkOf3Ntrd8R+BHfxTqx7vsVlzQ1Md/APzFnHlZxCHDPeHN+uVl5/FEVBF+tdFWZpfyPl61+l/K9/Yel6H/rELgFxDSlnYM/+H1atEVPrK6soVzWmRJ9UuIq3q3aTaoMuoTPRfZ/HeXgl9r0/gMcJWqlYkUj+/ijS3swpjFSsSCQSieRvgcdRgnXLf0MEOrEfXIzd75Dt0GrMmQPxuBzY8zdTvH46lhaDMWeeRdnWGWiMiRErVQDsuYvRRrfw2khBYGxevZcej+0w+oSO6n9FH4NwlkdcZn2hKFqMGSNPeLmS0w+Poxj7vu/V/5a216L3296j1Tf3uho/5pY4tvejVOz6DlfRNqy7ZmBMH6KuWhEumzeRn82T2qLozET1fJyShRNxHFqAq9C7NQmPG01UU7TmpugSOuM4MAeNMQFj5ujADLRm9adwltVZHq2lKU6PG8UQj6I11jk/iUQikTQstVas1MZSfE01cDX1BuSjJtanK1vXrs5bSnXWtoPJVL084a2wNyRVvCK5gnvBqc5bUHVehALKjPAlaKReocKljZRQnnlCH69cXg0FjECWE7YFoJ6pL/lr45GkujQN4TWorlbxq/OmEA7feFRbrz0N4e3HR3XyayPcalKTdqQxxqFP7I7bmktc30k4i3eCcHndq2r0OAvWYj+0BE9FLrq4VriKd2PNXsKhvA14HKXo4rKI6XQVbocDW+5aNJam1Y75bre383vK9+M6uh5Lh1vg2Ft0/4chX13714twOxCOIrTm5OPen2z5aEzJYc+7ujrxtfNIvQM1JPXtRScckZ5PqLapjWDsqu83iaf6OB+KsHWos6i/jS3HBShVwDuueY4pJmJ6Po4uri1RHW+meNmjIFx4rHlo9K1wlWXjPLz6WJ5mNLpKXipDjDHh7lFuazEIF64jx9ykK1r0yb3xlOfgzF8JHq9q1lW4pYpixVNxyO8coyO6XwQbX/zjeByFaIwJeIRQx0x1rHCFnyMd9yoUeLyKlyB/KnkMqq23oFDUZF5X23urx+UJGx5ZnpGVpZZZBw97kXoDqixDdR4F1fxrcg+tpdef6mQIRyRjyak6TtYKRXpeP5WRK1YkEolE8rfB1PISSlc/jSN/Bcb0IQFh+thMLC0vRNEIhMeBI285pRs+QmOMIWnIY+himqMoGso2fI+7LIfoXhMiLtfjKAa823nweBUr7vID6jaDYPi2Maj/XVbvA1vG8IjLlUhONRyHFqi/jZnnBo2jTx2IzpyKLq4NAFpzE+IHvYaraDvamBYI4aFk9T/B7VV0hPPmUxPKt3167JdCbN9/4lE0aM0+r18ehL0Qd8VBNKYmahrhLMddnoPj0J/qMY05rV7kES4byNUqEolEckogFSsSiUQi+dugi2mOIaUf1j0/YkgbiMdRgkYXhaI77rZU0WhRNGZMGQMp3fgxUW1GYUhoiXALXGV5lO/8AXOLUWhjsiIvN6ETGktTKnZ8RkzPJ0BjxF28LaxiRaOzoEvoTMXu79An98SRtxThtmPMGMZp9H5Ocjqi6Iju84zq1adKsKJBW8mArMYQhyGlr/o/puvduEp2oU/sgjamZb2I5TyyFgBzm6vRRqWj+Bt1VjQopiTVHTuAu2w/ZasnHTulKEwtL8O252vK105CE9UcXUIntNEtcB5ZjcYQj6nVJTXb1uO2gcddL+cmkUgkkoZFKlYkEolEcsriKtuPddfXKFojzsJNaM2pKIYYPPajFC64BQBT8/OwtLm8amLhASGw52/E0nIooKd43UdoDDFEtbkEpzNyORSNDkPGSGw7PgU8aC1puMsPVJsuutPNFC9/DFv2LNwVh9DFtERrSsLllA9Tkr8nxoyRmDLPqXM++sTO9eqG2FGwQf1tTB8aURqNOQ2NOQ2PNRdNVCaGzHPRWNLw2I7iLt2FM28JjpzfUIyJuBwluIo2Ymw2Cn2TvqpL+FA4D6/GVbgRc4db6nJaEonkFEJR6n/LqeTEIRUrEolEIjmpEUKE9PjhKtyMq3AjAMb0YQiPU33r7MOYMSxYUjR6CzFdrqN006eU7/odrTkFe956Ynvd613h4nQFTRdSTkcRANadX+Eu24e7bB8lxduxdJyIIa51cBmMCWhjWuGx5qGPb0/Fji+xZf+ONnVoCJfOEomkvhEuG6VrXwMguus/UDSRTY8VrYGYfi9g2/sj9v0zAdAn9zxmE2I4QgiE/QiKMQlPxSHse7/Guv0TrLu+Qt+kP4amZ6KNaRUwvgnhxnFgHrbdX6NL7oM+5Yx6P1+JRCKR1D9SsSKRSCSSk4qyzR/gcRQT1e46FH0cpWv+icaURFSXu8FtxVWWrbooduQuQRvTiujOd6hL9O0H51Gx/TMA4ga+htZv6X5lLC1GYs2ej6vkIMLtQtFHYUzpWSu53SW7j5U/H8WUjLAdQdiOUL72n4j2EzCkDUIhyNYHjxMUHcZmI3FbD1Ox4ws0B//E1GY8utg2tZJFIpFEjvA40EZloEvsgqFJ7xoby3SX7QfhwrrtIzSGeHQpZ6C1pKMoCsoxeyzaqAyiut6Lx1aAI3cRjtyFOHP/RBPVDEPamehTB+Cx5mPd8SmesmwM6cOOuXWWb68lEonkVKBGihVF07i+tYN5VQhHnbwqhLiRVWf5O1LL4P5lVJYllDXyypbsQ3nuqQmh8vTJcFy2QEvuvnjhvAFVJ09dwyNJW1tL4jVtY+FeLNfWY1Aoj0T1QU3aaW2p6zWobJ2+PjyYRJpHTTySROrtJ9T1jLR+TuTYW5OyKnvi8BFpvVTxEqGAI3cxABXbpxLd8Vrc5dm4y7PxlG2jYscMXCV7iOp4A6b0gbgrDmBMG4CicaFoBYqiwZDcGesuM1EdxqOzBCpVhNtBefZitJam6BPbYT+0GFfxfkyZo/C43QhnOS6bA0WjC+olLqRXCHsprqKtABianYu59eV4nGU4cxdh2z2Dim0fUbHtI9DoSRz6wbE0hVTsmI6reDumxEtwFW5HG92cmJ6PUb7jSyo2vUF0nxfQ6GMCy/J5savOc16E3oHqQl09bVWmJuNGTc9LjX/sW6sLPnCfiL4Wsh3VgweP+rxX1Md8K5L4/uVU5w3FnGQKOG6s9N9t926j8xz7Vv87vTdjl63qSjSNIZb4Ac9XkaeyZyGfJx7/McFdloOrwLtKzl26B5ezBHvObxgyRqJodDgL1oKix9LRq/xVDIkYm1+IIfN83IWbcOT+iW33DGy7vwbhRhOVSVSPx9DGtAqoj6rzjNp5ZqrO+2XQsBDeglRJQrST0PeB+vMaE2n68M8EoY5X8rBTw7lT5bZck/TVxY10DAk2Rjemd7OatpXTDgUUrVSmnqrIFSsSiUQiOWnwWI8AYEwfhP3gYtwVeWpY+bYvcJflgMaA/dBizJnDMLc4D+ueX7AfWowuvh2xvR5Ca0kjYeg76pte4XbgPLoJ4bZhz12G88hfACj6KISzHFOzYRibDsJxeJ03vrMUdBYc+WuwH/oDt/Uw+uSemNtcHVJu5+GVqptl3TGjmxp9NMbMc9E36UPFlvdxl+zC1Pw8NU3ZxndwV+RhbnkphrSBFC97CIQLS/sbsXS+h7IV9+M6vBJDuvQSJJGcrLhLdgKgTx2ApcMtCI8T+75fsOfMBkWDPqkHzoJ1OA7MwtT6+BiiKBp0iV3RJXbF4yjGmb8MRWtCnzY4pFFfiUQikZy8SMWKRCKRSBod4XGC8KAxJaDozGgMsWgsKdhzV3pf1QoP7rIcNKZkTJnDse7+CSE8RLW9DEPqANyl+yjb9AG2nHmYm58DCBwFm3HkLsWRvwrhtnkL0powt7oEt70Yd/F2hD4Oe/5aHAUbiel+N6BQvv0LnAV/ebfoHMORuxhT66tCyu/IX3zsl6JuU/KhMSUT3fNxb/Ha46+d3dZ8dLGtMGWNwZ63FIQLXWI3KrZ/hqVbGtq49jiPrJKKFYnkJEaX0AlDxkhMrS4FQNHoMbW8GGPWBQB4rHk485eiGOJD5qExxGFsNupEiCuRSCSSBkIqViQSiUTSqLhtBRQvexLhcRLdcTzmFudSsfN7AOwVh0HRojElIpxlWFpdiKIzIdw2nAWb0Ce0RxedgS46A2fRDip2foOzYAOu0myEowiNORVT1rnoE7vituZhz12Gdfd3oDWiNaeii2kGwo0jfzXC7cTYbBj2nHmqbNqoZrjLc8BtxV26G210VffJHtsRPKV7QGNAY0lD0VkiOm9FY8BtPezNw5qPoo8luvNdlK1/hYoNr6FP7o0zfymO3IXoUwdLWwsSyUmIxpyCuU1VpavPAK7z8EoA3KV7Ec4yFH30CZVPIpGcQijhzQs0GnL6ERFSsSKRSCSSRkEID8LjwVW8C+GqAKBs01S0UU2xtLqQit0/AQKEC4/9KEkjPgBFQ/HyZwEoWfMqGlMyMT3vQxeVTlS7q1A0Ojy2oxhT+2JIG4AutiUeeyHFy55AuCrQmFOI7voP9Mm90Bzbx+wq3YsjfzUAUe2u9ipWFB3R3e5DF98Be+4irNs+wmMrCKpYcZfuAUCf1AtX8ZawXox8eByleGyHsRxzpepdjZOEotUT3e1+yja/jzN/KQC2HR9j2/ExUb2eRRuVUfeKl0gkJwxjxkhAg33fD5QWrMbc8Q50Sb0Ar7v3SD0QSSQSieTkRo7mEolEImkUSte9hePwGixtLseQ1h/n0a3EdLqWkvX/xVm8E4055dhKjmj0iZ28hiCLd+Mq8SoyfEqGkhXPEdv3CXTRGUS1vwbhtuMq3Y8upjmKouAu3YdwVRDb53H08W2rGCp0Fm4BwJb9O8amgwGI6fGguqXHkDYYfcoZKBpdUAN7wlkKaNBY0qFwQ0QrSzw270oVrSUVV8kunEfWYG5zJQCK1oi54x24izbjKt6JI/tnAMrXPEV0v1dAn1DDmpZIJI2F8Dix7/9Z/W/d8g76lAE4j/4FHhe6pJ7oEjohnGVoY9uhi62qvJVIJBLJyU+NFCvCI1Rr+o3hHchnIVsToTXyYN4qKk+oa2qFOpS1eh/1afG7CtVYZa/sucef6jwIhfY4FHjc7fYWqvEcs5h/rAVV8ewRhuostNeHF4LK3orq6rmlunLCx6vOsnvY4JDeEyLymnECvP9UR315qmgIL0GhqItnDh/VtblI21pdvH2FIqS3CF34/hAur+r6UtDyTF4FQcXOGeox++H1RHe8joqd3+KxFwKQOOgJDAnNAXAdPazGjel6LUUrJoPHAa5iFE0z3LajlG54H1fhVvQJHYnt/SDa6DQAPLZ8FE27KuOhMX0owlmBdc/PKDozaE1oY9sc9wziAbR6bx6V0gqPQNHHAh5cRZvQmFMD6jfkdTamAuAs3YcjZzaamCx0qUPUMVZRNOgSuqBL6IKpxVisOz7DmbcQhFvNKxLvD8GO16XvVPY0FKkMoYiknYSSN1RZdZUpaFlKzds3hBn3Knl98I3VWr98I73/RHq8Pjx31CXPcOX412/le4ZvXNIZvRMOS3Ovlyx3udcGkjjmqUc5Fk/js2NkPPaVbA7ITxybS3Gszn3pA+N4+6HPk5DvW7g8gfFEYDpPpXCAin3zAvotgDN/KfqkHmhjWuLIX4bt8HI1LKrbg3iseQi3FUUXBWmDURQNbrsnaJ1Vri+twXv+bkf93yNDzinclfpcNXPlmnlLDO1Bqq7U9Rmgcn1Ud97BwkPVaXWyhRrnNCHmGJEQzltXTWSrLn1t8jpdUGhcD7ySuiFXrEgkEomkUTBnjcKWPff4AUWLPrEjpqYDMTTpQuHCRxBuGwULHiHtos9QNFocBdsB0Ce28z7VeByYmo9An9QZe94aSte/eyzvc7Hum4X90GI8tqNebxvxbYPKodGZMaT2x7rnZ3DbvUZrPU7QRuaZQxvXHgB38TYMGdUboHRXHKJkxWPe36V78FjziOo1KeyWAHPbazG1uQZF0TSoUlEikdQPHmc55Vs/wZG3AgBj+hBMWReBRo+rcBP65N4oGh2mrAtwFW6kbP1kAMrXvwJoAA9ozejTBgfkKzxOFI3+BJ+NRCKRSKpDKlYkEolE0ihoLakYmvRQ3RzH9roffXwbb5gpkfgBT3tXkWiN6jI6j8sKgDGlOx7bUW9GHg/uilwqdsxAG5VGXJ9H0egtuMoPYcuehy62BWi0OPLXom/SDV1UelVZTEmgMeCuyAfhxrprBpa2V6JoDWHPQQg3tl1fHM8nunm15+0u2w+APuUMhL0QbWxbtFGZ1aZTTkqLdhKJxB8hPLhK9lO68V08FbkA6JO6YWpxIRqDd5WeIaX/8fjOUso2vAGAorNganWFdwza8Snmtteq/d7jKMK+51uch5djSB+Bu3ir1w18y4vk2CCRSCQnAVKxIpFIJJJGI7rrRGz7ZmHd+yslq1/Gu/1QYGl1AVHtLiO+1x0Aqt2S6HYXoSh6zBn9OfLnUwDYcubjcZSgMTfBYzuKRu/1ymNqNoTSdW9izjoXZ9EOynd+CztmENfvSfRxLQPkUHRmojpcS/mWTwCwH5wHiiCq/fVh5Xfk/IbriNfrh2KIRxvfsdpzdlsPg9aMqfUVlC69D1PbayOuL4lEcnJTvu0rbPtnq/+j2o/HmHE2EHzbg/3Qn+pWoZheTyIULaWrnkafcgaG1DNwV+Riz/4NZ96SY67n3TgOzEYb0wLb3h9xFW0jpts9oDGekPOTSCQNiNI45jYk9YNUrEgkEonkhOHzmCOEAAQanRmPoxThtvliAOAqzw2aXh/bjPiet+C2F6No9Orue0f+GswtRmMr3q2WoRqBVLQkDHwe4XZQuPQJbDnz0MfdVCVvU/qZKDoLZevfQhvVDFfp/vDn4rJi3/sdANrYtpg73o7GEFdtHbhL96CNzsKZvwIUDfomfapNI5FITg1MzYZi2z8bjTGBqPbXYkjpFdamiG3fT4BXqaIxp1C67iUUnQV96iDKN/0H15E1KIZYjFkXYWg6FHDjseajj2tDxdYPceQtObY9qHrFihAeXEVb8Vjz8Lhs6JJ6oLWk1c+JSyQSyWmOVKxIJBKJpEERLjvFq1/CVZoNHifG9EE4CzbjcZaiNafgLj/gjahoMDU/B11UGqbMoWHz1BrjSDjjMcq2zkAxxGLLno9QtAi33fv2V9HhKtwKgC1nHh5HCabM4ejjWuMuzQmTr3epvhBuPCW7cdsK0BgSEW67d+uRKUm1b+Aq3ASALqkn5g4TI3Kb6irZg7NgPYaMs3Ec+hNdYjc0+mhpwE8i+Zugi84g6eyPI44f3fkuFH0UuthWWPf9grt4OyhaKja8hsacirnddehTB+KbsisaBY0hFnfJTlwlu9DGZKExxIQdQ4Tbji3nd+wH5iEchYDi9T6w7ycsHW9Fn9SjTucskUgkkhOgWKnOQnYwqvNkUsUKdwgvQTWzOh6cmno08Z1vQ3pjCZX3cW9BQdyBHquL0N5/aieD4vFZH/eVU7Xsk2FJW0jvCZUOV67aqvUVvI41uuMVWXMvPqEswoeXPRJORHuMlJp6XKoOf08fp5Ixz5qedyTer1SPaWHGAP/4odqUxyUqhQf+D9bOIxkjXSV7cBXvUv/bDy5CG5OFpfkoPLZ8UBTcZTkgPAhXBaZmw0B4V7e4j3njUPy8Tmj1XjmMyc0xDn6A8r3LsGXPx7b/d0zpg1UFh2KIOXZeVsq3foqiNaJP7Ij90BIqdv2Ipc1FKIoSUC+a5DaYmg3DljMfgNI1L4Ciw2PNBwSKIZ6YHvejtTTDkNQdpefj6GJbh6wXfxy5i7BumwoIHDm/AQqmVlcE1F1d2nJtvQTVJO+G9gIkQpRTE6qTqSZjaqg5TH0rwoKN1fV976xNftV5Qamt17dIvIj5jrkdxzzzHBufjv51xCub6i3Ia2Raaww+pXVbXTWSzb9stT8f8+KkVGfQ+th9W6geh4J7EfL3HqRt2gMAZ+EubHu/B0BjTMTc+nL0yb0QVK0bd0UuZWtfAMDY/HzVmxiAx+6uEr9ix+c485ahTzkDfdoQtDEtwG3Huv1DKja+hbHFJRiaja7iKl5/rG598xG1f1YzD21Iatv36jIPCnVeoY7XZb5TOW513n8izac21LZfV04nXxxEjgJopMmkUxa5YkUikUgkDYbbWkDxqhcBMKT0xl1+CHf5QUzNhmHKGIqiURAeF2VbPsV+4A8c+Wuhcw3ytxWhOaZAwW3D3OK4Vx5DUheSz/kE4RGUrPs3ZZs+QBvTHFPzc6jY9R22g4swZQzClD4YraUJ4LXlEt3pBhSdGeve/+GxFWBI7Ye+xXloTElUbJ9G2cb/ENvraRSdKUCpEgohPDhzF2Pd8Sk+ZZWuST9MLS9Hc2yFjEQiOb0p2zJV1WBEdbgR3TF7TSKIQsBjK1B/a0xJ1ebtLtuPxpyCvkk/FK0JXFbQWTB3vBP7vh+w7/0Wd3kO5nY3So9DEolEUkukYkUikUgkDYaiM6G1pOGxF+Eq2YfH5n3bXLHzW0wZQ71xNDqiO92IqelA0EZmgFG4HRSv/5yKvQuOGX70Gr0NtVRRF90M55F1uEv3Y24xmrg+j2I/tAjrnl+p2Pk9+oQOmJqdibFpP8CApe1luK0FOPKW48hbgSN/1TEliAaP7TAVOz4jquMtEclasfldXEdWq/8NmaMxZl0iPXlIJBIA3LajuMuyUQzxKIoGXUKHUItZAdDFt0cbnYVw29CnDlKPe5xleMr2o41rh3DbvPZZjAkY0kdg3/MdFRsnH89Eo0cxxKExxAPgOrwcV1JP9E36NtBZSiQSyd8bqViRSCQSSVh8xmBrg0YfRfygF3FX5KLRRVGx63tsOfMRzlKE246iMQHelSL6xA4R51u84VOs2YuI7XIlbqeHit0z0ZqS0EZnBH0g8blpBnCXH8KQ2AmNJRVDSg/sh5bjLNyKs3ArFbt+JK7/JDT6KKK7TMTd6iI81sN4bAV4bEex5cwDRYsjbwmmrAtQzKnVyuo6ukH9bWpzNcaMs+XSaIlEouI88pf3h3ChT+6DomiCrlTxYd/3E+7yHKJ7Po6i0eEq2YN1x6d4yvYDAkPG2WijMrBu/8QvlQKGBDSGOBSdBTQGr3JXeNDGdUBjSkaX1LNBz1MikVSD9Ap0SiMVKxKJRCIJisdZTsXOGdgPLcHS8nyi219Sq3zKNn+M/cAfVY67SvdjSGxXqzwdhzdhTOmCLrYZJYtfxpDUkeguN/t5HArEYy/0+11M8epXcFsPo4vOQBebhatkL/rEDjiLd1O+fTrRnW70ehaKSoeodL+0JTiLtuKxHsFVuAV9NYoVj70QPA4A9E36qW5XJRKJBLyK64rdv3h/O8vQJ3UPG99jO4I9ZzbGzHPRxrRAeJxUbHobjTEOc/sJWLdNwXFgjhrf1PZatOZU3BX5eGz5eKzHPrZ8dWwC8FgTcByci7HZqGDFSiQSiaQapGJFIpFIJFVwHF5N+bZPwO1Ea07BuvdXotqcj6I11Dgv4SwP+K+NaQ4odbIvoo/LwuOyUrrlO/RJHYg/4xHvjqCQMpSpv+0HF4LwYG4+kuhO1wJgzfmDso0fAQL7gT8wpvZFn9gF8CqYEG6Ex4WzaBsaQyweaz6KzlStnNadX6q/Dc1G1u5kJRLJ3xfhQhxbUWdpdxX65OCKFefRjdh2z8BT7vVq5rEdxV2eg8d2FOEoxNz1XjSWNKw7PkdjiEMb1waPvRB9Ylc0pmS0cR0DixUC4Sw+tiIvH/u+H3AVbsCQMVJuU5RIGgs/g/qSU48aKVYUTc0v9onwRlKdl6C6UNvl2v6Wwk+UR5Zw5YTyFhKp5xlf3lXSK6E9YFQmpGee6jw4hPDcE1GZSmCaSONXLkv9H6I9+B8PZRU9lJX40OdRc29BoeQ7mbwD+aitN4lg+KzjN4Z3IF+ZkXpHidQrSm3T10fe7oocyja+gyG5G1Edr8ddto+SNa/jcZajPaZYCSVHsDKi2l+Joo/GfmCBN//S/QBojMkhPWz5PP9oDF6vFD6vHD50salU7PkDj8tOTKdL0Rp0cCwvnychn+cNRaOgtaTgKtqOpfWlOEt24Ty8Fuv+34nqMB5Fo2BuNgStMZaK3TNxFu1Ca4pD0Sg4i/dQvHzS8ToyxGNMH42reCfaqGZhz9tdcUi1raJL7BrW0K2vHWl1gQ80dfEYVFsPPpGUUxvPQhDJuBd5/vXtaawxiGRMrs7L14mkrveSUDL7e7XRagP7QKh7hdtxzEONz5vZMe8/Wt+YEaJ9VM7HN9bA8fFGHPNCVtstkGq6Y/25ci5a1duOAPSknPsGCAWNznTc8477uLzC46Z4w3H7KIrOjKtoC+7S3RibnuktKiodRaMl4az3gsrkqaQrUVBAm4DWlAC0A3cFtl3TKFv1KIZjdltE6kA05ibV9i13WTYVW95B0ejQxrZFOIrQRmVgaDYSjSGuSvxI+qqvHdRXP68Pj0WRzluqePYJ0l8i9jZay34eydykrvOwyumlNyDJ6Y5csSKRSCQSFXveCqy7v0FrTiGm+50oGj3OI+tA0aDRR9UqT625CVEdrkPR6LEd+ENdfu448hfGlPDL3oMh3A6MqV0p2/YLKFoUpRoXqIDwOL2yxLbAlHUuR+fdXCWOMbUXxtReeNwe75Yij6Bs4/sBceIHPK+uwPHYjwYoVyrjsR4+9kuDuc01EZ6dRCI53dDoLapiOBjC40DRRwEK0d3+D+Esp2L7F96thsdWl7hL96CLa1NrGYzNzkEb1xZHzhzs2f8DIXDkLiKqy/+hmJuGXcXiPLISYctHsaTjLtmBxhCP/eA87DmzMaQNxpB5LlpzSq1lk0gkklMBqViRSCQSCQAeRwnlm95BG51JTNc7VLebjiPr0cW1qtU2IPAuOXccXos2pjkx3e7BdmAezsOrcOQurpVipWzbTEo2Tj+WuRv74U1ojLGY0s8IOfl35C4HQB/XBkWjI37gvxCusqBx/d9S6+Lb4i4/BIAhrT+OvOXYj+VVsXMa0b3aeA1BBkGf1I2onk+g6KPRyIcKiURSSzQ6M4lD/oMjfzWlq58HQBvbmrgeDxx3vRyBgrk6dDEt0XW8BSFuRtiPUrb2ecpWPwUaA5qoDLRRzdBaMtFENUMblYGijwbAmDkGd/F23KV7MHe4FUNKH4SrAvvB+Thyfsdx6A/0TfpibH4e2ujmdZZTIvm7oiCN157KSMWKRCKRSABwle4FwNJmHNqopoDXm47j8F9Etb+iVnkKt52CubdWOa4xpxLVqerxSDCl9z6uWAHsuWuw564htmspUa2CG140NRuOuyJXtYuitaRFNHmJ7nQjllZjKV71Io68lThyl6MxJQHgsebiOPQnxsxzQ6bXxbaqyalJJBJJSMq3H7fZpKBg3fsTjsOrANAYYuutHEVRUExJxPR9Hnfpblyl2XjKc3CX7sOZtxTEsW1XsW0QHicaUzLm9rdg2/kZth2fom/SG0VnwdR8DMaMkTjyFmPP/hXn6knoErpgaDYabVz7Wm+1kkgkkpMRqViRSCQSCQC2/b+ijWmBPqGTesxVtBOEG0Nyt1rlKTzHLcomDH0Hd0UBHusRdHGtcBZswNCkG4om8E2ro2Az7rI9mJr2w2BIr5wl+vjmJA97miPzn8GU0Q9dzP+zd55hklzl2b4rdpo8OzObc9Lualc5I5EESIickwn+SCIYAzbRGJtggk3GYIIJwhgDAokoJJAQEsphc85pdndy6Fjp+9Fhpmu6prsnz+57X9devV11wntOnTpVc7rqeRYxuPtW9JqRafPUrHv9mN73VhQVLdJMw2UfJb73J6ihZiIrXkzy0B3YfXswWi+vukxBEISxULvxXbiOTerQ7Vjd22DwaOHVSjfVVVj0nSgUPYLeuB6tfuia4Lk26aO3kzn2O5z+/RitV2B1byV95Dbc1Bk8exDPGkDJLfQomklo/tMw512L1fEo6aO/I7Ht82i1y7MLLHWrUIyYCOYKgjDrqWphxXO9Ud8BHc54RCSrFWry/+o4FlG18QqyjSaKNV7BrIkQHA0qI0jUdiKFRf34j1el3TOWbgjKM9ZDUkm/jLfPyguM+tMP3ze6yFvQOJ+J4rYzkbGKyA2n2vGRF/Abz7HJj4v82Ck1TlxrELt3D7E1ryu88uO5Hk6yC1BQzJaCGGypMgLFmbUIeuNa7J7d9Nz7LsILrkVvXE3v/X8HwJyn/Tt6ZC5KTuQxcegu+jZ/L1uImyA0J6dNMmycu46LXrscxawldeIRjDlJFLMOpWYtVk7AcnhMfsHUvNjl0LHI7x+lD416ata/tfA9svRG4Mah9ioVXhu90uKt+apHE73WAuafSq+3Qen843oixvlkXEOCBH6rjWkmMB7RWv/+yWxX0LVixH2NNnHXkErHzMg5J/tpp4rtwVR99LkqL3YNYKedohjyaf2i2soYx6Cfoljy83T+a+6z0B+uhxlbhet4GBGTTNcG9Pol9D70mWx6U0Mz1WFCosV1jWbsUM1xU1QdnKxmVWjpSwgtuhF3+xexzjwAQOS8m/HUGhzbX6GC1nQZkcZLcXq3kzn+e5K7vp7dE5lLeMXfoNatKlzzCoLGTr7egLFH8f5yjGdOqkSUtlLGK8pbbj6vZB6f7PvV8VDq3DgnUEa/F5k2zqFDMB7kiRVBEAQBq3MLeC5my4VF291MP4pRM+KpkmqIrf0bnIGjOMkzpI7cQer4PQDodUvRa+YW0tkD7fRt+SFarBUnfobI4qwzRfrMDgb3/JasRXMtTrKXTPc+PCuOVrMAPTYXu/8wnp3ICTwKgiCcvRgNy/GcND0Pfw4ARQ9P6WuH5sJno9UuRW+5DAC9cQNOz3bMhc/BmHPxqIu9iqKgN56P3ng+TvwYXuoMmWO/I7n9c2gN64muf1dB30sQBGE2IQsrgiAI5zhuuo/ksT+i169ADTUU7XP6D6NF55bOWCF6bD56LPuajqLqJPb9lOjym4itfmkhjec69G/7IVqkkfDcC4gfuJPeR78BmonVtQ+jYSlapAmr7xiqESO28gY8L4Q9eILksazTUPc9N1N/2ccwGoJtjQVBEGY7icN3MbD9B4XvDZd9YFyL39WihhpRW68ofA8tuB6z9aqqF7a12CKILUJruhCnezOpPd8ifeQ2wsteNtEhC4IgTDqysCIIgnCOkm5/kMTBX+HET4JqUnfxBwr7PM8jefA2Mh2PE13z2nHV41pxMqcfJnPmMez+wwBEVzy/8IeA52TofewbpM9so+nK96GoOp6TAVXHTfdRc8W7iSy4siB06NgO8f2/Y3D7j1GjLYTaLsJJdmD3HaLonSFBEISzjOTx+4cWVVSDxis/hlG/tOhVzelgPE8LKoqK3nwRxsIbyBz/HWqoCa3hPLRosG6WIJyVKDPrtdU8My+imYksrAiCIJyDJI/8gfieH2O2XkRk2fMxGs9DDdUX9mfaHyB56HYiy19IeOHTx1SH1b2bTNcO0u0P4Ka60BvXgqJiNJ+PakSArOtQ76NfItO9l8bL30tk/sUAhOdnbZg91yG+/w/0bf4+rpXAsxI4qR6snoNEVzyP2OqXFkQPp/sPC0EQhMnCtVOk2x+nf8u3CS+6Drv3AHr9Moz6pdMd2oRhzns6VvufSB3Iuh9pdasw5l2HMedSeT1IEIQZjyysCIIgnGPYgyeJ7/0/wkueQ2z1K/ParQWsvv0M7vkh5twriS5/4ZjqcDMD9D3++YItZ3jJjcRWvbzolxjPtel95N+x+4/QdPUHCc05b2if5+E5GeL7fk//tp+gRZrQoi0oRhQtNpfYyudi5t7vFwRBOBvxXBur7wSJg3eROPJn8LJKrlqontTAcWKrXjy9AU4wilFLzcWfAMfCGTxEpv1eUnu+g929jdi6t5YvQBAEYRqpamHFdT2USVSAHl7PaPiVrseijD9epx4/efXyUqrl5eIqF782AQ9glVPuHqFs7hR/H82pImj7kBOJUjKP/xCUE1efUPXxfEzK6HUH1TkWxwt/2qA+Derb4FhKpR09Tv/4P1vcgPJzw3hcyUajVLnllPfH+kin/xjlv0/EI6LJo39EMWqIrngpeCPLTOz/OVp0LjVr/6Zoe95NJ8vo49Hq3gOeTd1F7yfT8STheZeDAk7iJJmOzeAk8fCwevbRfPVHMZvWgOsRP/4wicN/ItO1E1ybyPLnAaDVr6F2Q/GNtZNxcnWW7hMnk5+XcxG7+c8gF7TiNpRun1IyzVDZpevIo+dcRUak87mqjHqN8qcNTjlh+Md+0Lgv5xYVRL4fqjl3J9ORIk9Fx2MCKdWmfJ8E9Xl5J7nxx+5vf5CjSbl+mshrTaX3JcXzFvhdwErlG+E2mXsazv9UXKHdPtcgLTT+3y2TJ/5K7+P/jZuJA6DXzcPubwcgcegPxFY8g9pVl+M52Vcq3dx9qJeLMd/VQTEP7z/FHd2hxq1wkvHKjNWKzm+9HnTQQnOINF9K+ujtWCf+gG05KIqC40teqMu3Y4Tz2ihjc6LG5USO/0rnwolwcZsJBJ2/qqLgTdH8OxNQUGbkq0BCZcgTK4IgCOcQnmuTOf0QofnXZW0zfaTPPInds5uaDW9F0SNjryj/ek6mH7PlQlIn7yfT8TXcZEdRstjKmzCb1wCQan+M3ke/iNG0Bi3chJM4g5vqARjhViQIgnC24iS76X7wq0Xb7P52osueQv3GV6FFmwuaU55zdr8CqSg6eC5u8iRadMF0hyMIghCILKwIgiCcQ1jdO/GsOKG20q/RDO74NnrjWszW8b1mYzStQ29YzeD2bwGghpsxWy7AbL2A/sf/o5CuIGDr2vRv+yGhtgtpuPS99G/7Pqnj95M+eT+xta8JjFcQBOFsI37wj9n/qAZzrv17VDOKFq7HqF+I50z+k1ozCWPeM7A7HyG55dPocy7GaL0GtW5VYWFJEARhpiALK4IgCOcInueRPPwbtNqlaLVLRuy3unfjWXHCC58xbutORQtRu+nvyJx+CKNxLVrNAhRFIXHo1wCYLeeT6djG4N7bia16PpnOnTjJLhoueQ/9W/+b5NF7UIwo5pxLiC59tgjTCoJwzmD1Hwegbv2LiC66dJqjmV4UPUxkw/uxTv0Z68wD2GceQAm3YrQ9BWP+9SCitsLZhEJBrkCYfUzFq9mCIAjCFOA5aZKHbiOx/ydZu2IfVvdO7N69qGYdyUO/wvOGFiuSR/5A32OfQa9bitlywYTEoxoxIoufiV67sPDrYubUI+h1SzEaVoJqEll0Laoexh44gaJHsfoOkzx6D0bzeXiORWz1yyYkFkEQhNmCEz8DgFG/cJojmRkoRi3moucRvehTRDb8A1rtCjJHbyO5/fO46Z7pDk8QBAGQJ1YEQRDOCjzXZnD717G6d4Jnoxh1RJbcWJQmc+ZR1HAzVtdWrK6tKFoYxYiRPn43dv9BIktvJLrypYy25u55Hpn2+1HMWoymDSV1WkYjNO9y4nt/hj1wjOjSZ1K77uXZcu0UnpMmvv/XGI2rsbp2UbPuNeixeVX3hSAIwmzGSWYXC/K29EIWRVHR6teg1a/BmftUUnu+SfzJfyWy9m3oDWumOzxBEM5xZtTCyniVrcfiDjQiBqXYbaFa14F8emeYY4aW+yOlEiedsdQ1nYwl9ulwAwoqwyuzP89EKnSPtT3VuAWNdDUZXfH/bHUJmgoqdUspR5Drj9+5ImgcDOz4MVb3Dhovfz+Jo3/B6niE6LIbC3k8zyXTuRmz5WIUVSd19A8k9v0vAEbz+dRd+PcYzZvwPBdVK3aTKrid6QrpU48S3/3dbL7GtUTXvRPViA1Loxbl9RNZehOheU8BLYqi6thpIG2hRJeD5+IkO9FqlgJgD5yu6BWgcu4gnq+IILcs/3kz0k0E8utI+XYGHZdSzhujkW+n352jVJmFWPLXqxEORZW5pYwox3feDy9nrO5XI9xFRrijjVpsSWyf25Mff6wTMX9PtTvQcMY6p0yms0Q5x7wg1El8o6/Sc83vAlbkjuMbU/nz3J83qG7HyhZqJVMAaGb2lUo9kp04FC24f4qs6O1sfjUcRQ3lXst08x9OUfyqmY1R9S2IO+lsOv98nj/NS/WXf94quPxQ3Gf+9AW00nNJYfcYHBWD3HG0uhVENv0T6b3fIrHt39HnXEh46UtQI20AOH43pDLX0NGYjPO+3Nx4trj9+Kn0enTOokzu3D12ZmJMM48ZtbAiCIIgjA2rawfRJU8n1HI+icP34NqJov1O/CReupdQ6yV4nk3q6B+IrXktdvwkWrQVFI2Bbf9J5sxjhOZfQ826N5WsJ37gNozm9USXP4/+zV+l/5EPY7RcjJs4hd6wkprVLy6rz6KG6kfcVJpzNtJw1WcBUIwYdt8+7IFj4+gRQRCE2YnnpAHQoo3THMnMRjXrCK//e6zjvydz4g5Snkd03TumOyxBEM5RZGFFEAThLEAJ1eNmBgDw7CRuuhcn1YUWbs5us7ILLYpZhztwGIBU+4O48RNZrRU3gxpqxJxzIekTfyG67Pmo4Tkj6tFj88l070I1a2m86hMM7vkFTv8B3Ewvdu8uzObVhFo2jakNWrQVgMFdP8BN92DMGVs5giAIs5nwvAtItW9Gi7VMdygzHkXRMBfdhGrWktp/C/HNn8JovRKt7aniHCTMSoKexhRmPrKwIgiCMEtJnbiP1In70aJtaJFWMp1bce0ktee/ia57/p6BJ79I/WX/hKKGUfQwkP0lNHPmCbTYQpz+A9Rueidmy0U4iVOooTlkzjxGpuNxFLOmZJ01572Wvsf/nd6HP0njVZ8ktvZvc3tceu59M068HcosrDjJTuzBU5jN63GSHXhOBtWsRzVrcJIdpE/eS3jxcwjNu5LUsT9h9e4hc/oRYmv/hvDCp09kFwqCIMw4mq9+H6gZWRioAmPudSh6DKvjEVIH/ge9/wChla9HEdcgQRCmCFlYEQRBmIV4dpqBbd9Br11EpnNrVvzVtRnc+0tiq1+BGm3FiR+n+5630njNv+Ome3M5XTIdj2M0b8SJH8ds3oiiaug1C/BcDzfTD6qJqkdKvwevKNRf9mF67vsgg3t+TOy8dwJg9+4Gz0WvW1o29r7HPoubPEN48bNJHb2TvNqR2XoJilkHnkv61IOkjt4Bioaes4ZOHb0Lc+4VqHp0/B0oCIIwQ1F0EzUkwrXVoCgKRsulGC2XYp15mOS+72WvM+e9A9Wsn+7wBEE4B5CHjQRBEGYhTqob8Iiuegl1m27GsxOE511K6uTDAHjp/kLaTOeWgmJh8uCvsm5AZm02nWcXlatG5oCbwR44PqJOe/AEXXe/k9Sxu4mteSWZ04+T2HsLVu9erJ5dAGjh8poAnp0EIHX0D4BH3cUfIrb2DVjdO0mfvD9bTqSFuov+kaan/ic159+cbXOind773kfq+D1V9JQgCIJwLmG0Xk5kwz/ipbtIbvkkbqprukMShMpQFBR15v0TKqOqJ1ZUVaFyHe/poxJ3IL/CfzkXoCBV8srIKZM7o6eaqIE7mYraBeePKuoouGYoxd8L+3Of/r7Pi8qX65dK1OXH27cT4Tg1WXUUOQkEOjXk94/MM1q+qSDIoWW2MmKuyLsqlHEkyM9BGvl02e1Dxyz/mesvexDIPsVReM1H0QEFL9OD56QKZauhBrSaBQBYXVuJLH0uycO/zdab7EQ1YoWyQ60XMAhY3bvRYgtyMWRjc62soGJ8z//ReO3nqTnvNcT33kr65N0AGA3L0aJzsi5E+Tw5Zx09rBXKCi+4huTh3xfisweOEll8PVq0lf4nPkd48bOJrnwZKBqpo3eQPPy7XEMMUFXiu3+A2XYpqlH6daVq3UHyfZuP1X+Mihwu7HzegGuFz4ki7wrij63gApSrK59utNjzefxuJiPm4wBnjqB5O8jBYzzzXTnHi3KUesd8pCNJ6bxOri5Nn/j5eqLcgQLzl3CNmSiXtiDnsbEQ6LRXxpGqkron+1owWoz++bacK1k5t8d8fituAaAZ2YK1nEuQ33VoeHxebj5y3dI3j0PXiNIxaDk3ITd/n2vlysm3f5RjEXRdHnlsSt9L+F2EgtyDhhM0ziv9Bdg/x2i1y4hs+ijJLZ8gc/j/0Na+FUXVR7gFwcjrc7nzu9x9y2gOa0GcjS5AlZzv57wLkHBWIa8CCYIgzELMptXUXfB2Bnb+CC8zSGTRU1HDTaSTnaTaH6Hxqo9h9R5kcOePSB75PdEVL6H+sg+B55E6+QBqeA61m96JXrekqFwncQYANTq3aLs9cLToSZHeBz5GdPmNNF39ERTNQNHDaOFGXCf4NjjV/jCZrl3E1rwau/8IVvdOABJ7/wct2obRsBrFrMeJnwRFI7H//0gduYPwwqcRmn81gzv+O7sPBS8zCAELK4IgCIKghhoJr3g1yd3fIr75k1lR26YLUcMiCiwIwsQjrwIJgiDMAjzPxUl24Q37JSyy8Orc0yYeyWN/Jr7vFwAM7vwxihbCSWYff7Z799P/+GdRtBBm8zpwLRTVQIvNHVGP1b0LFA2jYWWuXo/k4d/S98i/FF7TATBbNhLfeytd9/8rWrgJPdqCogav1duDJ+h/8mukjv4JZ+Ao0VUvBUCrW4aiR/HcDP1PfA6cNKEFT2Fw+zdIHbmD2JrXULPuDRgNq2i46lM0XPlJGq/7asnYBUEQBGE4RsulRDd9ENVsIH34FySe+GhWE0wQZiAKWb2gmfZPqAxZWBEEQZgFDGz5Oj33vZfBnbcUbddr5hd9V7QQAKkT95M8lH3dRjGyeipabB6encLq3o2TaKf77reR6dpRlN/q3oVev6JQjtW5mcT+nxFe/GyarvsKZstFhOZfQ90F76D+kveBa9G35bt03PMhMt37AuNPHPg1aqgeRY+Qbn8QLZL9xTC69Hk0PfU/yZx5DCd5mrpLPsjg9m+TOf0I4cXPJrLkWUNtU1T02kWBrwAJgiAIgh+9bgXRDe+h9sqvoEbnY526e7pDEgThLEQWVgRBEGYonmuTPHQbyUO3kznzGACp438Ztt8htvolRXkaLvtg7n8KkWU3EGq7BDVUjxadR+ron+j841tw0z0oek5XRSnWALH7DmA0rB76PnAUxaghturlqGYNdRf+HbUb3px1YGhYiaKFSJ18GLv/KG5msGQ7nGQHqZMPEl1+E9GVLyJ55M6sOK6iYcePY/XsJnPqIaIrXpoVtHWzegSpo3+gf8vXsQdPFD2pIwiCIAjVomghtMZNOD07sM48VKRFJgiCMF6q0lhxXa+koFy1+AXnCiJhZcSdqhV2Gi4WFSSg5DhuRXWPh6Cy/e2pVnAxsL5hf4AEidVVKw4XLNBW/L1UuX6RxnyWQpl+Uc+8iKuvnHLitlMhfjqRdfhF8srVUYkIWLnj7BdE9ecLEsOcKPHE0TjbRGzHSkG40IX47h+QOXVfcQJVx050M7D9O1id29BiQ0+saLFWapatp2bl/wGQat9Gxx8/CUDt+pdh9Wf1UyJLbyS2+hU4loOiqDiZ/GD0cK1BrL5D9D/5BWrWvQkt2oZnDWL17cdsXFUUp6LHaLzmk3Tf+w/ZchduwknnzvOcKKNnDxDf+U0UPUZ4wVPxUEifeozB7d/GnHs1yQO/JKmoKOEWEod+i5fpxWy7mkzHo+BmyJx+hMzpRwDQmzYSW/NG1FBDUZf4BUWrFecMEnVW9fycNbK8cudpvk9d2y4qKy9S6xe3DBJiLXUdGyFkHJBXHV13syyViAoGiTSWu6YGxVxq/1B7R0/r3z+ZYuOBQpsBc+dkCjRWWvZEihGPtY5K7iHLjeuJvkaULs8vultZ3sJ9Tm7+K3zPibUqPrHaUud3XrTWs51cntLX9YqvmbkqVSMnZpu772WYiKt/OI/1eAfdc4w2LvLHWQsQwnUrvEeq9G+E0PzrcHp3kN73HTJHGoicdzPULM/uzJUd5DVRqKOMGcVMZPRjMDHnVDVzjIjWBqBM7rVrzMzAkGYi8sSKIAjCDMTuP0Tm1H2Yc68s2u7ZKXof+gROzg45L+Yaat2I2bSM1KntACiqhtm0DIDIoiuoXfdiFEVDr1tCbPUrsml8fy1kTj8MroXdswOrayvJQ7/GbL0ErW4Z/Y99huTRu0bEqUVbCS96OgCJo38dsb9/y3/iJE5Tf/F7UfQQimpQu/HtuOluFKOGyIpXoEbn4aU60OtXUHvRR4id9/+ou/STGHMuKTxZA2B3b2Vwx9fG2KOCIAjCuY4aaqLmwo9Sc+lnUENNJHd/E89JT3dYgiCcBcjCiiAIwgwk0/EYoGLO2VjYFpp7BXgOih6i4YqPEVn8DAAii68mfWYryWMP03H3v3LiZ28m1b4Nq/8kAHa8EzfVA4qKayWy/+wknp0svGLjZvpI7PsxAIoWQW9cjz1wGEXVqb/4Q4QWXEd89//gJE4XxakoKkZ91llINYu1T9zMAFbXdmrWvBKjYQWulSB14n4Gd3w3m16P4Awcxo0fJ7rh3dmFlJy2ixZpoWbDO2i45mvUX/VloqvfAIDTf2ACe1kQBEE4F1HDLUTWvAXPGiS15xt4rj3dIQmCMMsRu2VBEIQZiNG4jkz7vQxu/6/CNq12ETVNawnNvxJVjxBd+UIUI0Zs6VVElz2Dnoe/BK6Dm+rH6jtOzepnUbfpZQzs+DVn7vow0WU34SY76L7n7YUy9YbziJ33VvoefE9hW83G95A89AsUs57U8XtIHrkj5/jjYfcdQou2FcXquQ4oKuG5FzD8hz+r9yAAduI0fU98iUzHVvAc9IZVxNa9BbPtSpKHbgMgfeTXOAOHAIW6Sz+FFptXKEc16wjNvw6rZwduqnOiulgQBEE4h1EjLUTOu5nkzq8Sf+Tv0RrWodWvwZz39OkOTTiHmQjZDWF6kIUVQRCEGYjnJPFyIq5ZHRUPvWYRobYLAMh070GvaSO2+iV0/P71aLE23HQ/jZf8P3oe/Q4oKoqq0XDBK4gueQanf/9e4gd/M6Ieu3cXmc7HUMOtaLWLia16NYoexe7bR3jh04nv/iHGnE2oZh1quKmkzbEabgDPxUl2g9o0tCP3DnXy4K/R61cQW/0yjNbL0CNNuLaHZydxU90AOAOH0GqX41mDJA/9nJoN7xpRT836m0XEVhAEQZgwjKbz4fwPYHc9gd31JE7X4zi9OzFarkBrvlisZgVBqBhZWBEEQZhhZDoeJ77j62h1K6ndeDNauAlFVRjY9k0SB26l7qK/p++RT2G2XkhkyfUAOPHTGA2L0WItgEf6zB5q1zwbAC3cgBZuwB48Q2TJMwkvfg6KGiLTc4DBrV8iue9HNFz336ha9mcSq3sHeC52/yHAo/b8m1E0M1BQLdSyCRSVrvs+Q/N1nxu2fSMNl38Uxawjc+pR4vt/QThxhujy5zO4+ydkOh4Hz0UxG/EyPTgDB9FqlmJ1PoHVvQOjaf2IuuQmVxAEQZhItNrlaLXLMZe8GOvkXdidj5La801CK9+A0XbNdIcnCMIsYUoXVoIV3ivL7wSojVdEgOJ1pXVXSjUxjdUFya8IPx1UUneQyni+y5Xc7hFdFuRANKKgnHL+KN04VqXzqXCmGekGNHq6SmKqdEwEuQMFkVdvn0nuQKXOn/w5k/+s1u0r6Jyrphwt74ZT4Xk6Qhlf8Ujs+S5qpIXYmlehhYeeAEm3P5j7fAiAzJknyZx5EoDosmfjpnro/POns+Wac0meTmRj8TzcTBIUBTXUiBqak01Tfz6RNW/G6tqM49i4robnWqSO3YWi16DXrcLuO4Ddvx+zuXiRI98+PaThehYoGlrNkmEuNx6Z7l2kjv0Jq3MbnpNCjc7Nfu/Zj5M8Q2jJ8zDbrkIxarB7dpI+fidu8gxa3UoGt30RNTwHrXYF5oJnotUsGdF3/uOSN2rIHwNNKz0hV3ruBbnNlE5bfLz1sFa0vRCzXVxZNW5Ywx2jSpURFEtQOXn8Y3AsMeWp9FyZiEed8+er3zVlOgmaIyfCHajSvHkHqol0Whs5xsZWTjXnVDkXu6EyK2tfNdevkY5albkEjXAB8rkfDgWT/fAocR0zs4X754pCO93i70FP8ZXrl+EORUq+rFyYXpVzSp6861m5GIrdkILS5pzU8I1jrfT9yHjG+dC1X0Nb9BxY9BySe75D5vDP0etXokWzr6b65zf/9X4mMZ779ImsA8QBqBoURZmZrkBCRcgTK4IgCDMKBc/z8JIduInTUL8CACf3ygxAfM9PhlIbNei1C7Hjp8ic2UJs1QuILn8uqhEt3Jhbndtw0z2osXlYPXsJL35uIb/RegVG6xWF75njd2B1bQYgdeyO7Ofxe0YsrAzHSfWBa6EaUSCruRLfdyvJQ79Fr1tMZPlz0RsvQIstoO+Rf8IZPAJahNDCZ6GoRjaO5k2okVYGH/949u8Gz8FNnsZNnsY68wDRTR9Cr1s59m4VBEEQhAoJLXs5zuAR4ps/RfS8m9Eb1013SIIgzHBEHkcQBGEGoSgKkSU3AWAPHC1sTx76LYpRS8PlHyWy5FnUXfT3hBc+FUUzsfsPg6ISWXQdsRXPLSxwAGQ6t9G/9RsYzeuJLn8emY4tZLq2jajXTXWROnIb6SO3ZePQIqjRuSPiKIVRtxAt2oaHR/L4vfQ+9C8kD/+O6KqX0XDlvxBb8QL0mkUoikps/buzmZwkA49+BCd+olCOFp1HbNM/otUuQ59zKeEVr0HLLabYHY9U3ZeCIAiCMBZUs47Ypg+h1a0gsfOr2R8EBEEQRkGeWBEEQZhhmG2Xkzz4c4zmDXiuRfrkX0kdv4fQvKswGldjNK6m56FPYPcdwGzZRN35b0CLNOe1YvG87FMjg3t/TvLgrzGaN1B3wTtQtBDxPf/HwJP/AUB04wfQ61fjeS6J7V/ATZ4CsosqNZvej5s4SXz3d1G08Kjx2gMncRKnUXqjpI7eg9F8HvWXfhijYdUITRQ10oJaswR38AheqhOr8wm02ILCfr1uBfr6mwuPKBvznoaX6kQZ9kqUIAiCIEw2ih4let7NxLd+lsTOrxHZ+FFUs266wxLOckRLbvYiCyuCIAgzjPxCRvrk/aSP35MVeVUNjMa1QPaderv/CEbTedRtuhktFCnK7yS76Hvy61g9+4mtfhmRZc/FywzS9Zd341mDhXSJrZ+l5rJ/BzdTWFTR6tdSe/67UfQI1C7E7ttHZMkzA2P1PI/+7T/KOgn1H6LuovcQar1o1He3ay74AOljd4Kbxpz/tNH7QlFQIi2jd5ggCIIgTAKKFiK67p3En/wEqT3fILL+fSiq/PkkCMJI5FUgQRCEGYZq1hJZ/kKsrm1kOp8kdt4baH7GtzHnbMRzMiiKQnj+lVhdO0gevrMob/r0Zrr+8hGcRCcNl32I6PLnoSgqvQ9/As8aRIvNo+7Sfyqk9+w4w4UZQ4ufl11UIXtDGTvvTeh1I4Vj81g9B0if2YJetwS9bgmh1ovKtk/RwoSXPp/w8pehGjVV9o4gCIIgTB1qqInIunfgDhwic/SX0x2OIAgzlFm95DrRjj4TwWgxVeuCkFcfnwh3oKC01bq85F02/G2pRsF6yNkiX3euzHwR/lgDVPUL3/LptaH9/maVVcf3uSdMpJtCubqGthen89ziz5HljNxWbbx+14XJbHelVFp30HkB5c+daqmkHP854P9eqSp+vv2RpS8kvOT54NoomonVtYv+LV9GNWsxWy4CvRaA+L6fkTj8O1SzHrQITv8BjKZNRNf+LZ5RQ/zYI6QO3oqbPA2AMe+ZEF5K7ZVfw3MtVLMOb9ggUxS34CpSCXY6k4vbRg01lji/c+3PlamZetF+v9NN/rs74nwIdoEKcgmxXadoe8Gxwy2dL4jh5+DI87T03Jr/rhlqyfR2Ohubaxf3w2jjqJybUbWOcRPpPJAvywhwYspfa/wx5s8L/9wz/NoUNCf4y/DXNVbGM/9NhptDtY4a+TFFCccZGF+M+TE4Ea5OU8VYxoM/jzriGlmcPt8fw13RIOuaNjzfUIGU3k7w+FP14k4vuAY5vnxjGL8j7kf8YQU55gW4nPndkfLdWd25VdoFLYjJvn/R61YSWvRc0sd+S2jBM1FDTZU7UlVxT1Kpm1ul+SrNXwnVzh0T4QakqErg+DsrUWbX/CoUM6sXVgRBEM5mFEUFzcSzUwxs/Sp67RJUo4ZM5xbcVFculYpi1KKYdahGHaG5V2LOexpu/CSDmz+Lm8iKw+pNm7C7t2D37MCc91QUPYJCpESlo18WnEQHVvcOrL6DKFoIo2E5oKCoOlbvPux4O3ps3sR2hCAIgiBMM+aC68m0301q/y1E1r0re40WBEHIIQsrgiAIMxzPs/GcNHrdUmKrX5Xb5uKlz5Dp3Er69BPYPbuJrX87obbL8VyPxL4fgZvBaLsSRa8ltOylJLZ9Aa122YjyrTMPFv6v1Swurtu1yZx+HKNpLQNbv4HVsxtQUMPNoGqkjmZfRXIzg3hWnL6H/5Wm674MijF5HSIIgiAIU4yiRwivfiPJHV/B7ngEo/WK6Q5JONtQOLee0DnLkIUVQRCEGY5q1BBZehPJQ7ejxRYQXnAtiqKi1cxHr5mPajYw0LO7IHrrxNux+/ZgznsqoSXPQzEaAIht/IeS5Vun/gJAZO1bCvoqedIn/kx8z49ygZgooSa8dDduqhOtdgmRZTeRPPS7oSdoVANUPegthIqweneT2PM90CLUXvzPYy9IEARBECYQo2kTmfq1ZM48KAsrgiAUIQsrgiAIs4DI8hfiZvqJ7/peVii2Nisom+ncxsC2b2G2XYbRfH42saKgRueTaf8zmY5HqL38i0UuBqkD/4sTP0Z0w9+jqAbhla8DQK9dNKJeq3cvAFpsPk78JGbjaszWi1GMGANbvk761MPodYtpuOKfSJ9+HC26AEVR8XwaBU6qh8Gd3yPUdhGRRSOdgLK20vdhDxwh034f4IKiTUTXCYIgCMKEoTeuJ33011gdj6LVLEaNtE13SIIgzADGvLASJNw1GhP1KuJMFK2dDCoV3hxNsDAvwJYXkColDFhRLL78QWKnw4+xX8QsiEDxs1yIShlBxpLb8yJdM/hxuiDBzaH9+PaP/n20vNUSJAKXHwfjFYecKlx//NWMoWlm5HhQiK56DekT99D38D8XKQ/rTRuJrnkzeAqe56FE2qi99JPEt30Fu3szA399KzWXfxHVrAPA7t2Bm2iH+EH0pnWYc5YC4Kb76b73XdRd/AHM5nV4roczcIzQwqeTOfMYofnXUrPuTYWYjOb1WF3bcZwMru1htlw2InbP9fCcDP2bv4zTfwircwupk49Qs/6tqGYdigqe6zC47UtY3bvRonMJL3omqfb7MduuwbErmPArPM5DyXPpneJ8+bi1AAHWLPl5rXir/3gV5sRQ8eJQPjLFyrer9PyWF/st7stRwirKM3q6cnNPKfzXkjyj99UwEd98y7XiOh2nWICzkH54uQHra4Ein9M4T5UT2g3qx6mkGhHLaufGsYwtP+XGb7kyJ/K4Vy46PmILAFbSBkAzs4NYj+Ruu31i3UBhMVrJ3295I68BJb/nyyqIvZaeU0brt6AuC8pTuJfMzc/l7vcK3TiKWG858dlKxWknYgyWw2i7Guv0/SR3fxOA8Ko3YM59yoh0/nuQ0cjPeX6h7yAqF1+vvv0TdU9U6lwsd07NxPuxqURBKcwBwuxDVJcEQRBmCYqqE13zBsKLbyS6+nVEV7+O2Pq3UbPh3UVPpEBWg8Xu2Tb03U4U/p/XUUns+3FRHrv/EABWVzafaw3iJE6hKBpepp/wouuL0ofmXolnJ/AyfYW8pYjv/R+cwRPUX/oxYuvegjNwkOSh2wv7k0d+i9W1k7qL3kfDlZ9Cr18OdgJj7nXVdI8gCIIgTDqqWU/s4k9Qc/l/oM+5lNT+H+G59nSHJQjCNCOvAgmCIMwiwgueOmJbwcJ34Ajpk/fgJM+g1a0Cb8huOHPiD0RWvR5n8AjWmYcBMOZcUFSOGm7OltOXXSRJHrwdFAU3048Wm1/0qpDdf4T43v8tfHeTZ6BhFQBOsoPU8XtyrwS5pE/cS2zNa1HMWqyjd+HZKTw3Q6ZrK3bPDlLH/khk2XMxm9fjuR6pE/eiGPXY3VvwnAx6yxWo4Tnj7zxBEARBmAAURUMxGzDarsTufJTE1s9izL0Wo+0qFHmNVRDOSWRhRRAEYRbgeW729R1FI91+P0bzJvS6ZSQP/gIncSb7/8O/QjXrcFMdOAOHQdEILXsZimqgN1+Aaw2Q2P5FgOzrQytemivbI77nf3AGT2a/42L3HyF17C6iq19D+uRfQNHwnAyKZgKQOvkX3OQZas5/J4O7vk98z49JHvkD4OHE21H0MIoWws0MEFrwNEILn0HiwM/JnM46EGXa7yPTfh9KqIHQguuIrnhRoZ123z5wbdKHfgpqiMyJPxBa8VqMlsunttMFQRAEYRT0xo1E1r6NzOn7Se37Pp4dJ7TwOdMdljBbUeR1qNmMLKwIgiDMcKyenSQP/B/O4NHcFoXUkd9gznsKmfb7UKMLsDofR69fjTnvWhK7vw1Oksi6d2I0X4hrDZDa933cxGk8awCAyMpXF8pP7L+V1NG7Ct+NumWkTz+MYtQSXvh0Evt/Cq5F8tCvMOZcgGcn0CItQPZJlboL3kPm9EN4ngsohOZdRXjh01G0UFE7ostegGencFNdGI3rMZrWo9XMA8/GswYZ3H8r6RN/KW6854CbJr3329hdjxNe+cYRzkWCIAiCMB0oioLRcilGy6Ukdn4dq+MRzAXPQpkoYUlBEGYNsrAiCIIwg0mfeoDE7m+j1S0vbKvZcDPJo3dk3XO0MPWXfTKroaJo9D38IVBUzLnXZhdV0j0k93wbp29PIX942UtRI61A9mmV9KmHiupUo22kjt2NOWdj1kY59+548sgdJA//ZlhCHbQwnjWIGmrCiZ/EiZ8kc/oR7L6DxNa+riCYC6BoJrHVrytu3/E/Ed9zS9E2vfE8zEUvANfC6t2F07sLd/AQTtcTxLuewFz6MvSWK4vKFgRBEITpxJz3VBLbv0jm2G8JLX7edIcjCMIUM2ELK5U49ZxLi7cT0da8mni17kDFcVTmjlBWZV8tTld4TM3nqsGQpENB+bvcI23DzE0qShe8P7gev2J9kLr8SJejylToK41jOEF1B+/Pb6+k7NH3+/syyIFotroDVXrOTOTjlgWXhACHGreKOcFz0lhdW7A7H8fqeBQAs+1q7FATVsdjuFaiIEarqNlXc+z+Q6SP34WX6UXRwkSWvwRFhcTe72RfIQLQwkSW3ER4yY2FX9PcRDtusqOo/vTJv+IMHiOy7Pm4qU7yDhdm60VEltyIYtbh2QkGd3yXxJ4fFsrWovPQovPQG84j3X4fvQ99DHP+0zDmXIgWW1jcRjsJqkHq9GMARNa+meSe74FnY/fswkl2EV7+CkJLXgxLwE2eIrnts3jWAJnDP8NNnia88m9K9l+gE0PF53FppzKgMOeprn9OKV2Sl3fN0EcfAP45x8mMPIn9rj9+lzetQj36auceGHnOl3Pu8DvJBaEbxVoEQ85zQ/n8feyfn4JQy8yDQfPX8HKrnevKuahUek0eXneeoDyT6TA08lpI7jtF3/3p81Rz3QqquxxB/VJunJfqt4m6Jvj7yclkb47yLjp5lyAtNFKLw3WKO6tcO4JjCOiXEpvL9XWgA1duXvOft0EuQZ7/nnECYijHZLxWERSL3rgefc4l2N3bCC1+Hm7fLjwnQfrIr1FCDURWvR411FQyvkrnVn8MY3FBmupXTUabo+S1l5HMyL+X5TBVhDyxIgiCMMNI7rsF6/QDgIpWswRn8AipI7+mdtM/YPfuJnX097jJUwCYc6/GTXUxuPXfs5kVjdDC67E6HiV56DY8q5/w4htJHf0dNRvehdG4rmDlZw8cpf/RjwFQs+Gd6I1r6XvwH7D79mO0XILZejGKohJacB0oOtFVryB94s9kOp7A7tuPajZQc/670GuXoYQaURSlcFMXWvBMEnu+T/rIr0gfu4O6q76EohpkTj9I5sQfcQYOoRg1eNYg4ZWvxWy7EqP5ApL7f4x1+q94qTMkd36VyMYPodWuQI3MJXrpv2Ofvh/PczBar57y4yIIgiAIo6GoOq6dwOraQnLnV4Z2JI6T2P5lYps+KK+zCsJZiiysCIIgTBGek8Lu2Y0amYMaXQB4eJl+FLO+sNgBYM5/Rm5hxaVm49+TPvlnFD2GFptP7UUfo//hfwQgtu5mjKYN9D743uGVYDRtYODJTwMQWfkqkvv/FzXcgt5wHp5r42UGUEKNMKxOY84FKKpObN1b8ewkZtvlhadaas57IwAD2/+LzKms+Gx09asIzbsGRYuVbKsaaqBm43tInbiH5L4f4gwexep8gsyx36M3bURv2ojdvTVX90UAKHqEyOo3oTdtJHP8TpyBAzi9u9BqV2T3K5pYMAuCIAgzFs9zcJPtxYsqQGTt20nu+z7J3f9FZP27xDlIEM5CZGFFEARhCvDsBPGt/5516wHCK15N+sjteHYcvfkCouvfiaKo2L27UfQY5rynkmn/M8mDPye29m+zZbh2YcGk9qKPodctw0mcAicFRj2aWQuqmVu0yaJF2nL1Jxl4/OM48ZPg2YTmXUto0bOzT7jMfyqKmr0cmD4L5kL8nocaaix8V80GVCM26iP+rhUnuS/7qlB882cAhdDSFxFe8jxca4CBB/4OAKvrSULzn1bIZ8y5BGPOJXieV/KxdUEQBEGYiWiRedgltnv2IJG1byW54ysktn4eo/VK9Mb1aNGWKY9RmLkoCkU/tAmzC1lYEQRBmALSx+/CiZ8kdsEHSez+DukTf8wuqjRuwO7aTP9f/h/m/KeTOXk3kLVDBsiceaSwsGL37cXL9Ga3n34A1axjYPNnUcMtWfHYxEli629mcMtnQQsTW/tm9KaNRJa/HKt7K2qkFXPuU/DsQVKHbyfd/hfU6DyiK18+auxO4gz9j/8bbqa/sG1w+zfxXAuz7erAmwAv3Q2AYtQSWnwTRtuVqEYNAKpRW3jNKX349uwNZk5QN4+iKHiysiIIgiDMEkJLno/RdhWK2YDTt5vk7m9nr7n7b0EJzyG84lVYZx4itf8WwMNcdAOR5S+b7rAFQZgAZGFFEARhgnGTp8kc+w1qdAGhhdfj2UkyJ/+E2XYVev1q9NplWD07AbD7D2LOfxpuuofMqftBC4HnFV6TyT9xAtlXifJoNYvof/zjeNYgHuCmOomuem3WmWfwOLWX/DN6zWIAwotvILz4hkJeRVVIHflt7smVa0bYIvtJHvoVnpPBaFyL1b0jW4ZZS3znd0ge+jV6w2rMlksw52wqyqfVLKLu2u8E2k6qkTbcVCeKFiL+xCeIrrsZrX5thb0sCIIgCDMPNTwHAL1xAzWXfZ70sd+ROfZrvFQnqQP/Q+yif0UNNZI58UfSR2/HbLkMrXbJNEctCMJ4qXphZSzK7pXmLaeCPJ66p4rJUHIOcrioxPlkrCrq5coJUqkvpfxdXum90hhG3++WSFAuTr/bRGG/z8EjSHW9VNsqVfCvVgl9SAHev72avMXODkOxlP4e5L6RL2/48Z6pDkGjUemxGk3R3rKybg9abswo6U6SO/4dL90DQObIzwtpQ0ueh2fFsXt2oRq1uK4FTgI33Yc5/2nYXZtBixBa9GzSR24jtOwlhBbdgOt5eImTpA7dlq3DrCd55Ld41iD6nIuxOx8HPJx0L9aZh9CbN6LGFo3a7oZrvoYTP4FWs3gUJxNwkmdIt9+PXr+ayIb3EnFSDDz6UbxMtn1uuhu7dz+Z9vswFz0Xc/GLSpRUepDq856J1fEoSrgNRTWJb/sisU0fQqtdGuzsUwHjvdb4ceyhAv0uT2qZc8TNuWCYMa1oux7JXn6dTKZk/lIOEU7OdU3T1KI8GsUOPPm8QeO24CJUKCcfc8nkY8I/HwTFUsk1aihNdXNmObeMatx0gtyBqr3GBjl5lKLaObXa9NW0f+Q9QKX5qolocgi67o+vzMrqDCLvEjS8XzWjuNDCWMnfj+TdwHIubfnveRchzy7d2UHDopL7Fz+B18hcjK5d2tGocK+Vyz7a/F7ufnO2oWgm4aUvxGi9nNT+W3D69uBlOlFrF6LVLQXAzfSRV1wJ6uNyjmNl45gG9x1xAxobM7FvZl5EMxN5YkUQBGGCyLrzfB5FNai54j+ylsk9O7C7t2HOfypqqBG7ZyeePYhnD6LVLsOJn8Du2oznpLOFOEnU6FxqLvkkanhO4WmPxIH/w4kfA8DL9AEKWu1KtNhC7M4nAZf00V+DFiG6/BVlY1W0EHrd8sD9TvIMbroXvW45RsslWB2PEd/8abTa5Ritl+NZcdzUGZy+PQDoTZvIHPstWsMGtLpVFfWXVruc8Lp3k97333iuA55Ncv8PqbnwYxXlFwRBEITZgBadR80FHyjappoNAKQO/C+encBovVz0NQRhFiMLK4IgCBPE4ObP4KW7MBZcn9UVmf9UQvOfml00UU0AtIbzCC17CYoWxpx7Dcm9P8DqfBynd2ehnPThX1Bz6aeLXqHR61djd29Djc5D0cI4A4cwWi8ldfBnmAufWRC9jax8NVq0bURs1WAPHGXgiX8Fz8FsvYKaDe/A6txM6uS92N1bcJNnAIhd8BE8D1IHf4ydi9+NH694YQVAbzwfdcM/kHjyY6CFcQeP4MRPokTmjasNgiAIgjCT0WqXUHPxx0kdvo3k7m/hJk4SWvoiWVwRhFmKLKwIgiBMEKGF15M68BMyJ+4Czyay6nUARRomiqIQXvxcADwng9W1BXPBM0HRyBz9TTaRR2FRxfNcMsfuIH3yHpRQE7FN/4iiRxl45MOkDvwvAOElL0BZ8coJa4fdvQ0UndC860iffoBYNnDc+AncVFchndW9lcyJuwgteSGZ5Bk818KzBqquz830Zf+T15BxM+NvhCAIgiDMcLSaxcQ2vJv0sd+TOvgzAFlcOZdRgEmQlRCmBllYEQRBmAA8z8Puzb4Wo4QaMdquGjW9m+4hufeH2Vd/Im2k9n4fo+0qQgufhVazGDfViZvqInPqPqzTD2K2XUF46QtRzHoAai76KFbHY9lHh/XIBLbDRTFqwM2g168kffJu3FQn8Z3fwrMTRWkzx34HnoM7eBQ1Og+nfz+Zk3eiz7kENTq/4jq1YXowtVd9HUULj0tjRRAEQRBmE6FFWYF5WVwRhNlL1QsrkykwOxNEzqplMsRqK6WaPzwqEbodD3nxLIfgmMqJMQWJXPnzjRRazQs4joxn6Hvx9oIwpJXdke9LVS0Wt8uLO6p6adG7vGDbaCJwlQqk+imXLkjMNruvdFlBsQSJ2QaJWpYqL0jcsVqCYq2GsQo+B9VZECot0UbDyI68dOdW7K4nCS95PuGlLxxxJniuhdX5JFrtEtz4STIn78Hu3U1k9etxU52gaMTWvIHEnu/jZvqwe3bkKjWIrHkD5tynFLfFrCe04Bmjtsdxig+cv2/z4zvfHgUY3PxZ7L69oAxdHtxkN+HFN2H1H0DRwih6GNQwVvu9ePYg1pkH8kGBkyGx5VOEVr0BY86lgfN60bjVY4X/2vF2tJqlo7arHJWKsQbtd0Y5twpzRT4t+TmltEBmXqRWNbPjRK/LvhKWOhUHINIUBiDdny7Kp7rZTyczFGT+OBXGnxMwzsuci/65tpprbz6vf64fTcB8LIw2/wVdA4bm3Orq8J/3lcxh4xXUrEbEthyzUTh8Ighqt79vg8TqJ5KR9ynVH9egMaXm70NCWq7s7HY3d/+i5OaeSkfBaGNX8d0DBeWpVJS/nNgtjBS8HaozMMxsGZOw6FDuXKr2vK9kHBTmVMfFXPAcPA/Sh36G53mEllS/uDKdwqeV3sdXg+d6s17AuDoUWVCbxcgTK4IgCGPE87L+DIqi4NnZ11hSR36FVrsMvXlTLo2LM3AIq+NRMsfvHMqsaIRXvhpz3nVkTv0VPIeBJz+DM3AQALPtSsJLng9mPYoWnpT4U8fvxBk8Tnj136AoGnhudlFFCxNZ9iLSpx8CYHDXf1F/2WcwFz1nqO2uh929Bc8eHCow/wqPapDe81+oZhNqzYrygQwrQxm2yCIIgiAI5xKhhdnrbPrQz/DS3YSWvAg13FwyrRM/QWLr51CMGKGlL8aYc8lUhioIJfnGN77BN77xDQ4fPgzA+vXr+djHPsYNN2SfyvI8j3/5l3/hW9/6Fj09PVx++eV8/etfZ/369dMY9cQgCyuCIAhjwE11E9/6eTxrELPtStSGDYV98e1fpvaKL6CGGrB7dpLY9oXsDj2K2XYVoYXPQQk1FHRU3ORpIHuTZLZdRWTFK1DNuuy+Sfw1Ork/q9GihJoILb4RVTPRahZnhXcXXI+ihbG7t+Klu3HTnSiRuYW8ds8O3PjxovLU2CJQTdzc4lDmxO8JrX5H+V9f9BjG/GehhJpQwy0T20hBEARBmEWEFj4HRY+RPnwrVsejhBY/j9Dim0qk9Aoug8nd30I5vxajce2UxysIw1m4cCGf+cxnWLlyJQA/+MEPeMELXsCTTz7J+vXr+dznPscXvvAFvv/977N69Wo++clPcv3117Nnzx5qa2unOfrxIQsrgiAIY8DqfBw3eZrQgutJn7oftW9fYZ/RfCFqqAHPc7LWyIoOnk1s3TvQG88bUZbRehmKFiLUdmXgL1MTgeekSB+7E0WLYrRdWdiePnI7ih4lsuhZmC2XkTz0c+yeHYTmXYuihYnv/AaKXoOTaCd14P9Qo3MLT98oZhOhla9Hb8z+0uB5DplD/4fVfjdO92bsM/dhtF07alyKohJa9vJJa7cgCIIgzCbMuU/BmHMJ6WO/IX3klyhm/YhXgrXYQswF15M58UdQTZK7voFy3lsK12Nh9qEo0/s610TwvOc9r+j7pz71Kb7xjW/w0EMPsW7dOr70pS/xkY98hBe/+MVAduGlra2NH//4x7z1rW+djpAnDNEdFgRBKIPneTiJ9sLrPgBqpBWA0MJnEl7wDNzBo4V9VteTpI/fSfro70ju+S5G62WgaNj9+0uWr8UWElly06QuqrjpHgY3f4b0kdtIHfwx8W3/DlqE0MJn59rTgud5WN3bQNFQQ40AZE4/hBqZi2rWgpPB7t5K5vidaA3rCC15IYoRI73vO2RO5BZaFI3Q8lcTXnszWv1alFDTpLVJEARBEM5WFD1CaOlLMeZeR2r/LdjDfsDJE1r6EtToAtTwHBSzgfjW/8Du3T0N0QpnO5lMhv7+/qJ/6XR61DyO4/CTn/yEeDzOlVdeyaFDhzh16hTPetazCmlCoRDXXXcdDzzwwGQ3YdKRhRVBEIQyuMnTDD76EXrvfzuZzidwU91Ypx8EIHngp3h2AsWoK8qTPvpbrM7HAbBOPwCKit60YUTZU4HnpEls/yKeNYBWtwoAd/AIqlkPrgVAcs/3Sez9AXbfHmLr34kWWwCAEz+OkdOL0WqXYC64HgC9bhXp43/AjR/DswbIHP4pTt/eQp1680VENrwfvWF62iwIgiAIsx1FUQiveDVa7QqSu/4TN9VVvF81MBc+Czd+jOi6d4Ki4wwcmaZohbOZ7373u9TX1xf9+7d/+7eSabdt20ZNTQ2hUIi3ve1t/PKXv2TdunWcOnUKgLa2tqL0bW1thX2zmapeBfLcrGtE/v+VMJr6+mxwAZpO15+JZKwuKRNJOVXvvMvECOcd3zjJj5vR3GNGukYU59HUYjcf1865GuVcVBy7+FO1SrsEDVe2HxlD6fjG6gZRSXq/U1A5N5/gY1K9c1G+rJngDjTece0/Xzxj6EmS+PavokYX4iay+iJW1xbU2AJQVLSaJTiD2RsazxrAswbQG9YSXvxctNqlqEZNcJ0ToKXiBLgrZI7chpvqILLpI+DaJLd8Aq3pApzuzaSTp3Lx9pM58wj6nMvwIouxLAdVVVBjC7EHjhTODb35YjIn7iJ99HYUswHPSRbqSW7/PGrdKvSmi9DnPr2gIVOKofM4+5k/ZpW4nU3UtWM887s/Tr9LUN6pI9GdEzXuyf6qM+fi7JNONSuyttmJIwMA6DnHj/wwKHmO2mOPdzjlHD9mAsNj8ru5+I+/f97zz/dDZY2/3TOxr8bKaHPOeB1XKnWkmkgm49oatM9/fgbVXc6Rr5I6nbRd9BmUrtJr5qh153b55yE/5e5rCvu13LzulE4//P/Vnlv5MRY0pvxjsFS6ydIwy98rjlZfJW6aeRRVJ7r+Zgaf/CSJnV8hsuJVaA1rCtdYs/USUvt/hNXxEGqkDSfZPgGtqBx/35Zz84TgebzUMfHOMeezmfoq0N/+7d/y2c9+tmhbKBQqmXbNmjVs3ryZ3t5ebr31Vl7/+tdz7733Fvb7tfc8zzsr3JDOkmUDQRCEycHzHNL7byna5iZOYC66MZfALrwG5OWe/jDnP62QVo3MxWjaMOqiymTiWQNYHQ9jtF2NFl2AGz8GgNO9uSid1rgRc/ELsTsfIbXjPwrbFbMRL9Nb+K7Xr6Lm8v/AWPQ8PGsQJdSEuTSvj+Lh9u8lc/gneImTk9wyQRAEQTg3UM06YuvfDa5FfOvnGXjgPQw8+k+kDv0SN3EKNdJC5uQ96A2rsTs347kTtBIvCDlM06Surq7oX9DCimmarFy5kksuuYR/+7d/Y9OmTXz5y19m7tysCYL/6ZQzZ86MeIplNiLitYIgCKNgnfgD9pkHyP7a7QEKilGDOe/peHYSZ+AgbqKd8IqXk9z1XwCEFt9EeMWr8Ow4mlk/LXG7mT6cnu2kj94OdgKj+SJSB27BPnUveuvV2Gf+WkhrLn0ZimqSPvg/QHaRJVtGL3bHI+jNFxSVrZoNYA2i6DGiF3wcRY+ixhZhn/4LduejAKKtIgiCIAgTiFazkJpLP43Ttxe7dw9uupv0sd+RPvrrQhq96XwyJ+/B6ngEs+2qaYxWEIbwPI90Os2yZcuYO3cud911FxdeeCGQ1W659957RzwNMxuRhRVBEIQAPNfGOnkXat1K3P68foiHZw2QPnI7bro7q1USW4TZejluqhNlmPCrYtZPy6ONnueS3v8DnJ6tAIQWP5/00dtx+g9iLn8dOHEUswkv0w1A5vDPivLbnY/jOWmczkeyi0M1S0fU4cSP4Vl9pA/8CK1hPXrrFegN5+Eufz2gomjmZDdTEARBEM4pFEVBb1iD3rAGAGfRDXjWAG6iHc8aRG/ahN64gfTR36HXr5lUUXxhElCGXsmbrXz4wx/mhhtuYNGiRQwMDPCTn/yEP//5z9xxxx0oisJ73vMePv3pT7Nq1SpWrVrFpz/9aaLRKK9+9aunO/RxIwsrgiAIATg92/CsAYyFzyXTv7don3X6vsL/1XALAOHFz53S+Eph9+7CHTxaWFRRzEYyJ+/Gswez+zsewB04gN5yOYpRj3Xyj0D2ZWdj0fNxenfgDhzAPnVPoczUgR/hDB4C1cBq/zPGvKfjDhwAwBk4gN35CIpZj964AUULT22DBUEQBOEcRYu2AW1Qv7KwLbzsJQxu+QwDj3yI6IZ3Y0yTcL5wbnL69Gle97rX0d7eTn19PRs3buSOO+7g+uuz5gf/+I//SDKZ5Oabb6anp4fLL7+cO++8k9ra2mmOfPxUvbBSrWjgWEQG/SJH0ylyO1L8c3rimCzyAoxTKWJbDr+AWaWitsWUa49P1KwgRpsVkLQtv4htTlTLdbLpnJyYbW57Pn/2/8WDpJyIrT9d0Hd/vsrErfx1li672thK4W9nORHbIKG6sQryTQR+QVKr40HU2GKMec9ANRtJ7fkG+pxLsHt3gp1Ab7kcc951qNEFgfFVIkw3nHJ9PVo/eMkTWX0UPZoVkW2+mMyhn0KoGXILK25O+8TL9GcVClUdxajFy/Rhdz6K3rC+sGiiNV+EVr8WPJfM4Z+Dl31n22q/e6jOdBdKuCWbjsrnyPHMOUEiplOBWhBSLR6X/rnUf57mxX/jh/sBqF3dAIA5JwKAncz2rZebexRfPQCa6avTHn0uyM+R/nMwH8uI9BX8TJYvK19nUJ7xjOOgtEHzVyE2X3+MVQxztBjGy0wVJfRTTtSzUsHQcvvHImYbVIZb4dzjF84uJZRcjlLnZ+m6Khe1nfvUhcCQ0GuiPQ6AE89qdznJvIht9j7EzX06uTnDDRAvrzRWqEw8fHjc/jLzMeTvgxzffFaJUG3++ASlqVa0drR81Y6/oDFW7r4sX3cl88hEzBFa7RLqrvgP4ju+TmrfLeiXfgpFnfjf0suJ1uYZfq0eTaRWODv47ne/O+p+RVH4+Mc/zsc//vGpCWgKkSdWBEEQSuB5Lu7AIbxMD9apezDnPR3t9HrwPGIb3kum/V7CK145I57QsM48lH01KdOT3aDouP37ciYyLuGVr0dRddToQjw3jdV+N27yFG6mB6PtWswlL8RNniJz7LfYPVvQ6tbg9O8htPTlqOE5uVoUMof+F1QT3ExR/V6qg8zx32Iuev5ZoeouCIIgCLMZRY8SWfFKBh//OJmTdxNa+KzpDkmoCAVm4gK83NtVhCysCIIglMA+fR9ebqEic/DHqEYd4OE5SbTaZURql01vgMOwurfgps6gNW5Aiy0ic/z3oJq4iXa0xvNRzAa0aFaJXSFMaMmLCnmdxAkyR2/HGTyMMecy9JV/Q2LrZ1Brlg9bVAGj5fLswoqbQTHq8ay+4hiO/Rqj7VqUnL6MIAiCIAjTh1azCHPBM0kd+CmoBua8p8qPH4IwicjCiiAIQgmcwcNFT2ek9nwTAHPhDdMYVWnc5GmMtquJrH4TAGrtCuwzD2F3PYbTsw1LC6OteWtRHid+jPT+H+IOHkIxalFji0kf/B/SB/8XxaghvO7dRekVowZUA1wLNbYIWITTuz23r57w+r8viPYKgiAIgjD9hFe8HPBI7bsFZ/AIkZWvnZTXggRBkIUVQRCEkrjx42iN56NG52Od+AO4GaIbP4hWt2K6QxuBGm7BOv1X7K4tKEYNSnRB0UvNevPFeJ6H3fko1vHfFHRWUE3Ca9+O1rgJFI3Eo+/Hs/owl7wINdJWqqbshxbCWHBTYWHFmP8MtNjCSW6lIAiCIAjVoCgakZWvRqtZRHLvLTg9uwmvfCV600aUs0048ixAUZCnimYxsrAiCILgwxk4jDt4iPDCG9CbL8LL9OJ0b0WvXzXdoZVEqz8PN34ctChqqB4nfgJFM9Fbr0EJt5E+8ku8A7eAHUetWV7IF1rxGvTmiwvf1eg8nL4+1MjcgJqyizVa3Wq02CLUmuW4gwdxUx2T2TxBEARBEMaBOfcpKGYDiW1fJLH9K5gLnklk5ey3txWEmURVCyuu66FNViSjMJNdgiaD6VhA9ivBT2cf+yn0h891w6/OPlydvLzyepCTRfZTN4oLtzNurtzsd6fgBJJV5TeGnRmKWo1rzxDlYq5G2X+UWnx1FpcdFEOlDj6lKOcOVGldU0F+bGW6H0Mx6jHmXIibOI59+j7MRTeNqcxqnbeqckvxPNKHfkrmxJ0o4Raw+rEHD2b3AYoWwe58BNwMamwx5pq34/Ruwx08iLHwRozWq4vKM5e9CqdvF2rt8hK1gdawHqd7M5lD/4saXUR47buwOx5ArVszwmnDT6XtL5zfFbknZD8rna8mYm4txFWle4YRys4RDRuzujXWQPYVMzeVcwOyi509So0Dv/NEvj2VXiP9Dg7+c3I0t41yThxBsZajGgefkc4qI1JUWGdxer+TWSnKOc6MxUltNhM0Hqqd76fTGaTUnOU/x6pz4RsiyHlvtHI6Hz0NQGxZHQBq7j7EzrtdaflAnZJ15Z14/M47QW5B1RDUnpGOXbkIM86oMQ0n7+ZVbg4YqxvQROIf3/mYNa2yi8t0zwt64wZiG/8Bu28f6SO3YbRcWtUPRpW6AOURByDhXEOeARMEQfDh2Uk8zyK582vEn/g4argVc/7TpzusEdgdj5A5cSda/XkYLVehxhahxhYTXv8+AJz+PQCEVr4RN34M6+Sd2F1PAKBG5o0oT4stwJz/TBSl9BJ6eOUb0HJPuKR2fI7Uzi9kn5KJLZqM5gmCIAiCMEEoioJaswijeSOoIazTD053SEIJFHXm/RMqQ14FEgRBGIbnuVnhWjuBM3CY8Oo3YrRcjqIa0x1aEW6mn+SebwHg9O3C6dtV2Oeluwr/D69+C9bpewEPp2crau0KvFQHlf66PxzFqCGy9u2k9nwbu/Nh3NQZMgd/gKKF0edcOt4mCYIgCIIwiaT2/RCr4zEA9MbzpjkaQTi7kDUoQRCEYVgdD+MOHgHAmHcdZts1M25RxRk4THLXfxZtU8xGlHAbxrxnordcAYAaXYDefAFa3ZpCOq12BbErvo7ResWY6w+tegNq3Vpw07nK5VIiCIIgCDMdrW4lANENf4fRMvSDiOekcJKn8ZzUdIUmAOTEa2faP6Ey5IkVQRCEYdhnHgZACbdgzn3KNEczEs9zSez6Bl6mB63hPLTYIvS5T0MNtxSli17yORQj967+sFd19NYrUbRQriwPN34ENTwXRQ9XHIOiGoTXvIPUjs/iJo6T3vsNWPtu9MaNE9BCQRAEQRAmA3P+00gfvxPr9F8xmjcBkDr0S9JHfw2AVrucmos+Op0hCsKspaqFlUrEB6sVahyNmSSgWimlfritth1B6YN+FK6m/EoEIUdjIo6rn3IClH5RNL94pJYTRxtNHMsvuBUs0pqvK5u+IEhmZj+cABG44XWrvrLz4m1+MbxyQm1jEdGrVBhtqKz89+L8lQpPViO06hd9CxLDm25Cy1+Bmb4erX71mJ5U8bdLCzh+QWKXZfvBc/HSndn/OhmMhc+D9CnsU9vw0DHmXguAGmrKprHjZI7cWsie2v1N9OaL0JsvJHP0dpzeHRjzrye07BVl2zb8HFX0CKHz3kN673/hDuwDO1kyrf+8LTdf5dOPRcR2JhAUrx7OXm57njiTTeeUFpYcEpwcbZ4oPXaGxp5P5Nb1CYzq2e+6b6zaqWJRzImgnGihNoZX0vz4211ujPn3VzJvBsVZOD5adaKtE0G1ouKVCqRXg19QdDraX05YuJzo8WQIigbN7yNjGfqe7s0+AWhty77KGVtcC4CdsIAhMVstJ4TtWtmB7CSzAtj+OSPo3mG0e66gvvGL1PoZKWKbGw8j5rfgvHnKjaGpHGOOk3PC84nTFu4ptbGbFEy2kG3wGDQIL30RyT3fJXP6Qcy2K3EGDqGEmtDrVmJ1PIrnZFA0s5C3nGhttcewmriDtgnCTESeWBEEQRiGFp0H0ZHCrjMFRdUJr/wbUvt/iDtwgPjD7yrar7ddXRCf9TyH5K6v46a7iWz8KJ49gN35ONbp+7BO/L6Qx5j71DHFopoNRDZ8YMxtEQRBEARhajHarsLu3U1y7/dRI3NxrX602mWElr4Aq+NRUgd+QnjVa1Fm0q8W5wgKyrS7RwljR84YQRCEWYY57zrCK18HQGj5a4huzC9uKCS3/wdu7j3p9L7/xu3fT2TtzajhZnAzaDVLMNqeghJuLZSX2vc93HT3NLREEARBEISpRFEUIqv/Bi22iPiTn8AdPIrZdjVadB6R1a8n034v6aO/ne4wBWHWIU+sCIIgzDJcaxA31Ymx8Ebsriew2v+Y2+Ph9u8lfeQXqGYjdteThFa8BiXcSvrQT7E7HgRFQzHqUIxaPJRsnsFDJDZ/nPCat6M3iEuAIAiCIJzNKKpBbOP7SB/9HUqoAT2nt2LOuxY33U368G0oioaTPI2bOEl40XMwWy6Z5qgFYWYjCyuCIAizDOvMA2SO517lUUOY865DCTWjmE0ooUac3l1kjt6OseA5WO13kz7wI5RIGwDmkhejqCE8XLSapaR2fyOr22L1YXc8JAsrgiAIgnAOoOgRwstfMmJ7aMnzcROnSB36BWpkDmqoifiOr6NsfD9G0/ppiPQcQkHeJ5nFyMKKIAjCLEOvW4VVswx38BBqdAHh5VnhWSczSGrf93C6N6O3XoXWsBbr+G9Ai+IlTwGQOfyzYQXFiKx9B6k93wDA7ngIu+Uy9Aa5cRIEQRCEcxFFUYmuexuea4OioSowuOU/iO/+DvWXfwZFrdxFUBDOJWbkwsp0ugGVc6iZzjInIiZNH10QaTJcfyqmyhXa0cSd8grm5QSggt2BfM4+ufKCPDOGuwXl1eMLbii5fXl3oPynv44gt6CxuAPlCUoz0oGmtKL/ZCix+9Xl/S5BZ6v6e5AbhL8/KnEZcJ1BvHQnilFHdMVLwU2ROfMQ6aO/AydFZN27MJovwI5nF1NwEmj15+H07SouyI6T3P45Ihf8M8nN/wKeg9O3N3BhZbiOXaXuPpVuH9HGs2wcxHtSJberPrcQ/9w16jwXMJ+PzJNzbtFLd34lc0reFaecu9WIGP3ju0JGdz/z1ZF3hivMw5WNnaA2VOKWMmxP0Td/P+Up55JRybw32XPkaOWWu95MplNLOYedIEciv5NLJVQrGlmtu10lx87JZO80EscGANAiei5vdn/eHajgEmRmxcpV3SvKn3cJ8tddanzrYa1kLCPdfSp13qos3XAm2+1nLHNRfgyViy3ovia/vZr7tomiknvkIPLxa9qQM2J0zevpf/iDZE4/RGj+dSXTj4ez9d5POLeYkQsrgiAIQmlSJ+4mue8W1PAcai/4IE7iJAOPfBDPGkSfcyGRFa9EMZtxM72k9n0PyL7+Yy68ETd5Grt7M1b7PZgLbwRVQ9FiaLFFRC74Z+zTf8WYe12ZCARBEARBOJfQIq1odSuxenaMWFgRJhZljD9ICNOPLKwIgiDMIhQ9AoCb6qTvofcDoNUuI3rRP6GG52T3OQ7xLZ8B1yJy/ofQ6lbgDB5FMeowFzwbc8GzR5SrxRahLX/l1DVEEARBEIRZgxabjzNweLrDEIQZiyysCIIgzCJCbVei1yzFTXXgJE6i169BqVmMMuxdBTd+DC/VgVq3mvSBH6LVrcY6dQ+oIWKXfAbFqJ3GFgiCIAiCMOvwXFBKvzYmCIIsrAiCIMw6tNg8tNg8jOaNQKn3m3PvhffvzX4mTmQ3u2nsricx5l47VaEKgiAIgjDL8TwPZ/AIas5hUJgklKnV4hEmlglfWJlO8dNKxA7LxTck3jn6/rHkr1bENt+eSvt0NFHIfBlBfTStorVjJEjQDob9oekUC4jlxR6H0uaF2UoLx/oFyAwju1JvWU4ufb7ukXG5dvE+1y4+8CME+KoUtS1Fucm4/GTtr6M6Yb6x4BcerFYMcKZQqbCk/xz0CyIHnYulys9v0zQVz8ngDB5EDTUSaVmGdskHGdzx37jJM8X1xY9iEIznpFC08or/lYrQTiVBfTedQrjl5tZAEeNR82Q//eKU+e1BQtfBAtmj1+Pb6kszMdeOkeLOlefJt8c/h478LC47qB9K1R20z//dLwCeR/X1sX8xtFQ/Bl0LxspYxdynglJ1VyLgDEPCq/7jPf7rYXmC+swf+1iOpWNlB43nZW8m9Ny0nBetNWpMANxcuvynHs6L3ebvRdyi76XOdyeT3aiZxQM6+D6rtOC9P19QH0/FWPPPqaMd76B4KhVlDUoXdF8zlYxVQByK22V1PokzeJTQ0heLWK0gBCBPrAiCIMxiPCdD4sjvSR2+PbtBUYmtfR2htktxk2dQjDrCy19K5vQDOL27sU/9GVa8dii/a+H078Xp2Y7dsw0veYrQiteJiK0gCIIgCACkT/wRrX41etP50x2KIMxYZGFFEARhlmJ1bSG1/8e4qY6hjZ5HfNcPcZPZbXUXfxhCrRitVzDw2MfQmy8Zyn/mIdIHbgE3XVzuqb/IwoogCIIgCAC4yTPoDWvFsWbSUaSPZzGysCIIgjDLcK1BUvu+j931JHrDOmLr38Lgtq/iZfrJP6KdPPw7ANKnHkStXYkWnUf0wk+gKAqe55I5ejvW8d8WylQj89HnXosamYtWs2Q6miUIgiAIwgzEbLuC9Im7gb+d7lAEYcYiCyuCIAizCM+1SGz/Al6qi8h5b8NouRRd14gsfSGJvT9E0WN4dhwANdRE6uhvhwR/1BBqpA3PjuOlu7Lb9BpCi1+IPvcpKKL2LwiCIAiCD89zUfTodIchCDMaWVgRBEGYRWRO/gl38AjRTR9CCzeSaf8zNg52/yGAwqIKgN64lvDCZ5Hu3IzduwfUMIpRg9O7M7u/7TpCS18iN0uCIAiCIATjpFCM2HRHcfajkDd2FGYhs2JhJUh1389UONtUGkslZZTLW217RivPHaHg7ts/DercE328RlMYd3Ltdz2fU0OAW1ChL518vuKytZz7hFNQ2x9Wl5NT10ct2pfv83xdQQ4GQZ9BThfD1eYrdUPIM9KJw+9gUFr5f7S+LqcWH6RQ79/uV9OfLQryQX2fHytqgNNFkIPLiP1aCIDEln8rWU948XPInHkYN9VD5tQDZE49kN2hGuBaRFa+EnfgEErtCkIrXjvqu7yjzSn+eazc96nA9blaTafb2XjrruRc9s8llc4dQQ48o7mGlHMOCrq2VHv8R3PkKbEnt9933HPzc7m5Y6R7Uvm6/d/LjfOguvPznT+G4fNntQ5p43UeqSZ/uT6dzLr9fZd3vfE77I2ljom6zhTOwXyVY7iO+V197JRdtF8NZZ8wNOrMou1OPP+EYm5Dbmy6uXsTJ531onMyQ550+fGbdwcaqzNmnoKjYoBrUKn7Fr9D4Fgp5wZU6hhUWqc/xvHEPB63nuH46w4qtxLnsdHa4TkZ3MGj2H170etXjyHS0nX6mW33fIIwnFmxsCIIgiBkCS14Olbn4zi9u0bsU8wGoitejJs4TibVA0DTlR+B8EIUPczg7p+Q3P+TQnqnfw96/dopi10QBEEQhNmHomefVolv/gyhRTcQXv6yaY5IEGYe8rCRIAjCDMLq3k7/Q+8jvu0LRds9z8NNdeC5FrEN70arWzUir5fpxerdS6ZzOwBG01rMOeehGlEURSWy7AVF6bXowslriCAIgiAIZwWRla+k7infIrTsJaSP/R67b/90h3RWogCKosy4f4hRUUXIEyuCIAgzBOvMwyT3fBvwcNI92L270BvOAyC17wdYp+8DVNBC2YWStW/B7tmOdTr7uk9o/lPQom2F8pou/4ei8tVhWirm0pejGDWT3iZBEARBEGY/iqoTWnQDmfZ7SR/5FfrG9053SIIwo5CFFUEQhBmAk2gnue97GC0Xo+gxMu33opiNAGRO/Anr9H3ocy7FaDwPN9NH+sjtJHd/CwCtdinhxc8lPO9SPM+l9vw3Emq7GEUPjagnsuLlJA/8lMzhn6I1rEOLyVMrgiAIgiCUR1FUtMhcQDRQJgVl/HpZwvQxLQsr5cTuZgKVxjYeob6JEMKtlHICfFNBtYK5kyE86RfDChK1zaNpOZFap3SH5UVsh5frFoQQi8XN8mmcTG67XrrOckKMqpYrzxuZ3i9SmafcJD1SxHF0ccv8M4GlxMXKibn5Rd+C8JdTjZCjf2wFjaWJuHgFisz6ytYCBBXz7Uxs+TdwLayOxwAILX4ues08VEXB6ngou23uFZhzLsIePEb6yO0AhBffSGjZSwGwrew41ZuvxbGBtFNcl64QWXg1yQM/BcBqvxtt5d8Mi726tmfbWXr7ZM4xQYKh/nk7aBzkt1c6x1Qi7l1pWUGCsm5e3NonzDkaRqT4Eu7mxbYLotp+wet8yspErof3bzmR1vz+kWWW7rtgsdfs5/D5UTOL51m3hGj4cPL7y9dV/riWuwcYT9ml0g2fF/1z6Ey42Z4sQcnRrgdDYszF34OoVsS9VF0T3c588/yljlZP0LUlL2Kr5u5L8uK1np2b13Kitm5u/ldy55KmZ7erufua/L0EgJW0c3VQ9FntPXAe1S2+fmsUH8PxXB+C7jHK3VOM1tdB4vnlyh6rWP9EUo1YbZ5qRGtL4aY60Js2Vpx+tL6vVqRbEGYy8sSKIAjCNON5HlpsPnbfPswFz8Jouwq9dnFun4uiR1H0GHr9GgC06DxCC58NQHjZS6r63UgNNaDXLcXuP4zTvQXPc1AUbaKbJAiCIAjCWYjn2gWHQkEQhpCFFUEQhGlGURRqLvgQ4OH6fslLHfkVds8Oaja+F9XIqvIrqk505SsLabwqf21Sw03QfxjP6sNLdqBE5463CYIgCIIgCMJ4UJQZ8XSin5kX0cxkBr6EIwiCcO6RVV4vnpKt7h2kDv+K8NIXYjRtmLC6woueMVRHxwN4rjVhZQuCIAiCcDbjIn9qC8JIZGFFEARhBuK5Fql9t6A3rCW85Kby6T0PZ/Aoyb0/oOfPbyS+94eBaY2m9YTmXwOAdfx3pA/cMmFxC4IgCIJwduJ5Hp6dQtHC0x2KIMw4Jv1VoOE/wFYrilVJmcPLmwz8ZY9VyKsSJrNdEyUQPJ6Yqs3rFAToSu+fSHHbILEsh8qCHv7YXj7cglhtkFCk7S+j9Hcn4xTlDxKzBfAChDErFbMNErEdKQZYLGJbqg6/CGeQWNpYxd2Gt2FE3T6R0iCx0okUSRtNhHI45UTiNE3F81ziO76Fm+4isv5dudeDXFxrEJw0arh5KK1roSg6yd3fJnPmIRSjLluQk8bJlB6/juOixFYC92djd9JA+TloMoXGqxGULSegmieorKDtQTEM/16t8G2l51rhHDPy53c2nR4eukznz/W8OGVhLsjPAbkyrf4MAE5OvDJonAeJBgbNG6Uodz0POv/LiVgOT5+fAyul3LVmLOO6fJkTL7hYTlBzJhE0zv1tCBJGn4xH38tfxyafcoeskliGxHtzn74sTjwnZmsWD+T8d7+Yc/4mRTWHtLWM3Kddds4oG2627Lz4dO4+xy98Pxb8Y6nSe4exCLVWK65fbUwTSdAYGlXg3xt9jh9V+DbdBU4SNTqvbGyVnHNBMQwXjT+XBG0VRp7jwuxBNFYEQRBmGHb3NqzOx4mueRNadD4AVtdmkju/CiiElr6E9OGfF9IrehTPThCa/zTUcAvJgz9Hr1sxah2enSj8P7T4hZPRDEEQBEEQziKc+EkAtJrF0xyJIMw8ZGFFEARhBmH17GZw25cAyHQ8SvrUX/Ey/bjJ9lwKDyUnYgsQXfMm3Ewvnp0CN0PyYNZKWW/eiJM8Q6b9PtToPMzWS1FUo5DPXHA9qtmAGp2HUsEvT4IgCIIgnNt46W4AFD0yzZEIwsxDFlYEQRBmEMmDP8v+RzUBUMwG1Oh8zEU3Yp26F6d/P+ljvwUgsuIVhOY9pZA3dfyPZJ/zdul/6B+Kyk3s/jZqqBm96Xy0xo3oDedhtF4OFD9yKwiCIAiCUAq9cR2oJvHtXyGy8tVYXU9idT5BZNXryj4pK1TIDHQFEipDFlYEQRBmELF1b8PpP4gx5yIUzcBxXDw7ycCD7yyk8VKdoEVwU10kD/2S1JFfozdtQIstRG9YTWj+0/Bcm/SJP+EMHCzkc9NdZNr/DO1/Rgk1EVr0XDIn/4QaW0R49ZunobWCIAiCIMwW1Egr0fXvIrX/Rww+/s/ZjVqIxM7/pPayz6Ko8qelcO4io18QBGEGoUVa0CIthe92726Su77hS6Wi16/B6t6GmzydTde9DbtvP4pqkNh7C3rDavIiw2pkLm7yFCg6WnQuTvw4Xrqb1P6sG5CbOIm7+IWo4RYEQRAEQRCCMJrWo1/yCTKn7kdRDdRQA/Gt/4GbPIMWmz/d4QnCtDGlCyuT5Sgxk12CxkM514RzhaA+H+31hYlyDBqLYnpQGsenzO/53RE8n+K9W+wEkP8jOe+QkXcEyX/CkJJ43iVkvC5B/v3B7kBQTu3fX0al6vlB6vujlV3I62vXWF95Gct4cpzi4x3Ux5aVPZ5O73bc+FHMhTcACl6mB8/JkNj2+RF5Ihf8E1psEaqqkNx3C9apPwMqsU0fRNFjpI/chpvpxUm0o8YWElp4A+ljv8dNtmMseBZmuA2r/c/YHQ8WyrTb/0R4xat8Dc9+VNNvQXNiOfcYdQxuEeN1DHML54NvO8HjaKxuQEHjOGhcmLGsHk6oZeg99ryLh5vKjhk3N3ZUQyvKq0eyl3YvP+dopevIh5J3DRnNDahyp53qzrGxXEMn65o4lnLLuVWUcyCpxkVE09SSdZZzJplIN6Fq3X8m0/WnUsbiBhR0TRmO1XsAN92D0bQO1YiOWmfe0Wu0IebPE+QGlD+cSj59yNcuxdf3uXsJz85lzG8fNi/k5xYtlyR/nzFeN5aCO1COUudY0L3BdLpgVepaOJEuQJN1jpRzACpFJeeMouqE5j8VgNSRX4EaKjgWToQDl9/d8ZxBmd75Uhgf8sSKIAjCNOPZCZI7vpT9okXJHP0VntUPgGLUFf6fJ3P4Z0TWvxc31ZlbVAFzwTPRYgsBiKx+IwBO/ATJ3d8kuefboIVQY4tJ7f1vYpd/hfDqv0VZ+WqsMw9jdT6GJu9GC4IgVETi8J3Ed/8IyLqyxda8gvD8q7H7j2D17EE1Y3iORfLY3biZQcJtm6i/8C2Mx25YEGYqTt8+9PpVKFpoukMRhGlFFlYEQRCmASdxCuv0A+jzb8DufLSwPX34VrTapTi92cUUz+pHb74I9FoUPYJ14g6c3p24qU4Ud8gyWTFqR9ShxRZQc/EncDO9DD76Ybx0V7bMTC+KHkXRo5jzn4Y5/2mT3FpBEISzB88aLPxfr1/G4I7vMbjjeyPS6U1rUOwUyWP34yS70WLzUTQDFB29finhuZdOZdiCMClotctJH/0NVsdjGC2XTHc4gjBtyMKKIAjCNGB1PJq9EenZiZfpA0AxG/EyPSh6TSFddOMH0OtXFx6HdQYO4Pbvw7PjaLVL0Odcit35KOnDt6I3rkerWTKiLsWoR1F1PKsfrX4NalTegRYEQRgrsVUvRjFixHf/D1bXzsB0qqJjp7pBM3HtFG73Hjw3g+dYuAd+hbX02dSsfRWKqgWWIQgzndDSF2D37CBz6j5ZWBk3CsoEvmImTC2ysCIIgjDFeE4G68zDoJq4iVPgZJ880WqXYXf1YLReid27A71+DXr96qK84VX/D+vM/aixhSiKQmTN3xKPH8VNnsbu3lZyYcVLd+HZ8Vwdyye/gYIgCGc54YXXooYa8Kw4nh3HtRJokRZCbRehmjG67/8ITqo7m9jJ0HTF+1H07JOFnuuROHwXg7t+hD1wjMjiZ+Iku7D7DwNQs+ZlaJHmaWqZIFSHm+rATZ5Br7loukMRhGll3Asr5QRWh2+fTKHX4YxWz0SL3lUjZjtW4duJELGdjQK4lfbPRAnVVsNo4q9BolNaTmQ2L2Lr2H5BrrzYV/abk9uq+gTshsTSRh5Uv1Be/jOvi1upmG0QwSK2w+P311FR0WUZj4htxXUEiN2ORSjZPw6Gx5TY/V3cxEnCa9+JVreC1P4f4PTtxe7ZAYDduwtz8QvRm4d++SnUE24mtPgFw+LSCa99B1b7PahNF+C63siYtBBoEXCSZI7/Hr1hLXrjhhHt9AvM5sup5BwL6iP/8Q8SsfXXWUld4z33C/kn8NoUJFrr/x40jvPjJNWXASATtwLr0vKCkyGtqO68KKWeE8C1c2U4lluULj8/aEa2A1yneD5wMkMHr5wo8VRQaV3Vz2fjL8tPOUHZ8TBijJXpl3J1j0UktFKx2tHmweliIoQ1AVQ9Qnje5YFlhuZdRWL/L0BRabjwTRg1jQXBaU+BmhXPQo3MZXDXD+h/8ivFZRth6je+sbhM33ycP88L+33HxMufz7l7DS93nPNitsowYdmgvvALW1fLyHul0VKPTeB+MvH3S6X3pZXMVdX+TVReQHx0UeuxUO5cye/PHP8jKCqhxS8qimM85/s5J1ornBXIEyuCIAhTTF4PJbX7axiLXoBqNuIaNXipMwBYJ+8CIHPwx6iReaCFCC99UdFiyHDU6HxCK14TWJ9q1BJd/26SO7+GZ8exzjwcWJYgCIIwfjw7mfuPC56Ha6cAoyiN2byexqs/y8DmL5Hp2IwaacNsXk3NmpdNfcCCMEY8J40abkE166Y7lFmPIq5AsxpZWBEEQZhiwstfgdV+NwDWsdsx5j29sKiixpagRtpw0124Awdwk+0AJPf9kNrLPjfmOvX61dRc8SXcxEnU8JzxN0IQBEEIJLrsBtzEYdJndtH75H8zuP/3NFz8Doz6pUXpPGuQTMcWoqteRWTJs9HDcmsuzEbkCRNBkNlbEARhinEGDxf+rxj1hUUWAHPpi9Eb1gNgnb4f+/RfcAYOFhx9xoOiqAVLZkEQBGHyUEMNtF7/rwCkO47S88hX6fzLx5lz7b+i1y4qpHPTvYCHXi+W98LsRDHqcFPb8DwXZap0H85mZsBrcCOZiTHNPGT0C4IgTBGe5+AkTuGle4c2auHsp2pmPyJzC7uMtmsIr34T6FFCS188hZEKgiAIE4VRt4CWp/0reqyNvq3fK+idAIXXJ9x093SFJwhjJtN+L07/PjyrD88amO5wBGFaGfMTK0HCg6NRTnhpKhY5/XVMtpjtRKQ91xZ/Z7JobRBjEeiqtJ0FAa+8wGih3fkChgtMFu9TfdsL+/OirD6xyqkQFhy3wGwFIraBeXN1B4mi+bcHpS819jRt9ANquxbxLf+Gm39aRa8BexAv0wN6FOwEWtMFqKFiJwglPJeay78yatyVtiOIQjt9j/LmBZYrEZYN6qvJmL/Ge+6HYsU6B3mBRjfX3vzYqmSMlhOrDRLvLCfMWEpY1S8MWhCZTTsl68pXoeSEs/XcfjuX3snHopc+SGM5dkHixFPBeOeviRCKzzMZwptBQpLl5tRywpNjidUvVjty++Rfn/PjNqjdEyFSW65vg+ooiHr2pQHQwzqKZlKz9sX0PvoV3EwneqwN1fFQ9Ua0mgVkTj9MeN7lOJns+WlEim/R1fw1JmAe8NzswM33i5sTn3bSdna/ly8nJ4LLkMWz57uelmtXpVSTf2gsTWydfoaLPQfdR4ycx0evq1w7S4n5BxlaVDv/5Muu5rpVLYHj3xoktf+HAOhNG1GM8WusiGitMJuRV4EEQRAmkUzHY6RP3I2naEOLKgD2IHrrNdhn7gc3A2oIc+FN0xanIAiCMDm4mTiKHsZzsg5dihYq2h9d/lwGtn6LVPsDhOddNR0hCkL1aCEUswGtdinRde+a7mjODhRlZorXzsCQZiKysCIIgjDBOIlT4Fqg6KRP3oPduwvVp22ixhZjLnkx5qKbcJOn0GpXoOiRaYpYEARBmAziB+9gcOePCt/N5jVo4YaiNOEF15Dp2MHg9u+ihedgNK6e4igFoXoU1cBccD3pQ7dOdyiCMCOQhRVBEIQJwvM8Ent/QKb93qLtamQusU0fJrn7m9jdWwGIbPwQipp9JUVcegRBEM5OQm0XEd97a8F+ueHid4xIoygKNevfiJPqon/zl2m4/GMYkQVTHaogVI2bPI0aaZ3uMARhRiALK4IgCBOE1bWZTPu9KKEmwgufhV67DA8XvXY5LjqhJS/G7t6KPve6wqKKIAiCcPaix1qZ/8Lv0f6bt6PH5qJFmkumU1SDugveRd/Dn6D/iS9gXvcvqGbNFEcrCJXjeR52z3aM5ounO5SzB2VqNKqEyeEck0UVBEGYPLx0T+6zm+TBn6NG52I0rEXRso4/Ws0iYld9i/CK101nmIIgCMIU4XkeHfd8DDfVg2enyHTvC0yrGjXUXfReXGuQnke/hOfaUxipIFSHO3gYL92N3nT+dIciCDOCqp5YcV0PpeBQUrxPDVCIr4bpcA0KKnOi3YLGw0yKJUiteyIdeoKU0mcio60qT5bDTv4YuG7WOUDzhjpoyJkm34nZ75pfuT73qarFjkN+lyA/fqeA4ekmeoV9PO5BZV0wyrgD5alEnX54XaEFT0dv2oCX6WPgyU/jDOyHpguL0muaVnHZE0Wl562/X/znXiUxVzoXTKfyfzpuTXodQWOw0vNkNEeT0c7D4RSOY+68LriB5F1Dcm5IeRcSvzvQ8LqDHWfy+/0xFu8fD5U76I3PcaxUPeMtsxyVjIcgh5FyZZW7vxmt7nIuKJVun0ynufz4He+5Nh6C3GCGjxvP83AzKQCsgWN03f+vNF/7z5hNq9CHOf8MuXvNpf6iv6P3kc/S8/i3qdv0FhRFKZSt+1zNCo4z+et37rqumrnz3Ml+OsnsIk1+rWb4HwCqkb0u5d2B/E5pqj55fTnyOBU76FQ7Z/rH3GjncHl3tspiKHeO+h3nSsdQXTsn0wWoUjKn7kMxG9Eazht3WeIGJJwNzOA/WQVBEGYfWqQVrWYxKBqD276K1bV5ukMSBEEQpglFUWi+7tO03fQj5j73uxgNy+h5+IukO3YE5jEa11B7/v8jffJ+BnfegjeTfmETBMBz0lgdD2PMvQZlJv8COstQyC7kzbR/QmXImSAIgjDBKFqImvOz1oOJHf9J5vQD0xyRIAiCMN0oqk7jpe9Br5lP9/2fJnVqc2Da8PyrqFn3epJH/0TfY1/EzYnfDsdzbQb33UHy+CNkug9MYuSCUIzV8Sg4acy2a6Y7FEGYMcjCiiAIwgTipnvInH4IN9WJYjaghBpI7r2FzOkHcAaP4TmZ6Q5REARBmCa0SBNN13wYLdZC6sSjo6aNLH4G9Ze8D6tnD91//QROorNof7pjD31Pfp/uB75A5z0fJdNzoPA6jyBMJtbp+9Aa1omroSAMQ1yBBEEQJgirdw+DWz4PnkP2gU4PVANci9Te7xaljV7yedRQ47TEKQiCIEwfiqKihZtItT9G32YDo3E5WmwpWs28EWlDLRtpvPJj9D32Bbru/2fmXPuPmM0rszt9rwh13v1R6i94HbVrb5qKZgjnKFb3Fpz+/UTOG2kdLowTRUEpo/0jzFwmbGGlIDqUm+NLidlW+gpe0Kuk1b5iOp5X/oIE+c51/MKUUyE2FXQMXIrrrkQ0s9J4KxXgHE1gMuidxIK8bBlB0UpjdexSHaTmYvCJm/niLYi6+erGL7zmVCaeWG5fJfv9+IXnSom/VVtWJxxRyAABAABJREFUgTGO36Jjk/u/AyQO/Aw8B7VuFVpsMZ5r4Q7sx3MdvEwvuOlCNqd3O2rbU8ZUf56gc6Pc3JfP5z+HxlrecBy7dJ9qAeKH/jrzMY12DvrPjSCh1IkU1Q5itDkguz0Xi08Y1i153hblLMo/vI6RIqWVCSvma8ynz8cUJPpYqo5qz9+JFLEtX1dlsVUiODrRjOcd9XJ5qxXYrFaYtto0w+uaCoLESidCF6Da61nQfDDiHHQ96i9+F4O7fkLq1BbiB/6Q3W7W0njZ+zEaVhTyKgqYDYtoesrH6X30S5z508dpuPBtRBZegZsecg1StBDmnLX0bfkxih4jtvypAKha/n4gG5M1cJpM53aiS59e+AMuL16r5ASuNTMnsm5ny3cybm576cEzkefOUN8Vi9jmCRTrDro38N2/lBOsrYbCcfVd96q5T8mn1cqI1zqOW1TniHJ82yfr+ufEj5Pc8x20xg3ozReWz+Cj2r8bnP4DZI7fUXU9gjAdyBMrgiAIE4S54Dmkdn8dt38fbv+QpWZoxesw5l43jZEJgiAIMwktVE/9BW8FwLUSWH2H6d/638QP/JaGi99dMn3TlR+ib8t36H38q9jxUwzu/llhv+ekab76H+h98r/pfeyb6DUthFrXjygnsf9W0u0PYjYsxmhcNXkNFM463OQZEtu+gBpqJrr2rZP+ZIXnWqT2/hce2qTWIwgThSysCIIgTBBawzpQQ2i1ywEPp283AHb3FtzUGXAyGAtvQA01TW+ggiAIwoxgYOf/Ej/wW0JzL8VJnMHNDAamVTST+gvfjl4zr2hRJY89cJKGi/4fVu9hBvf+ruTCit13GAAn2SkLK0LFeE6axI4voehhohvei6JHJ7/OdDdeupvQqjeT3vftSa9vpiAuPLMXWVgRBEGoEqd/P8ldX0XRIihmA2qoMStUq8fATaPoMZzBQ0Ppe7bi9GwFQGu+WBZWBEEQBADUSFb8M30qK2QbXXr9qOkVRaFm9YvQa+bR++R/gWsBMPd530IL1QEQWXA5A7t/Sfzg3ZgNKzAalgBg9R/BSbRny9HCk9Ie4ewkffhW3HQ3sQs/jmrWTUmdSrgFxWzE6hBnRWF2IAsrgiAIVWJ3Pwl2HC/3D1y8waN4qdPZ/V2PjcykxzAXPhe9Ye3UBisIgiDMWGLLricy/woGdv2Y5LH7yHTtJH1mJYqq47kO4GT1U5rPK3r1IrLwSoymlVh9ewi1nFdYVAEIz72A/u3/S+9j3wJg3vO/w+DuX5A4/MdCGqNx5ZS1UZjd2L17yJz8E6Hlr0SLzp2yehVFJbTiNaR2fW3K6hSE8VDVwoqqKlQqOeQXs/WXA6MJqJXeXq2Q7FiEZ6dDtHai2jsdjCZmW07odrzCWn5RxLEI6QYJK1YrcltKTCxYzDInDldG7C1IxHa0fs2X5eROPMUurlPNn5B6sZjdyMp94pj5OgIE+YrS+to1k4Sg86J1ebG4aoWC85hLXoyi12CdeQAv2Y4bP47WsB5XUfCSp4rSGvOejrn4BaBFUCZYwdNf3Fj7eISArFvcP6OVW+nxDRK1LYi7lhGcLCXSXDgXxtmtkyFa6hetDRLYzDNyf+l0pQgSzBwh/OzrwyDx2lJ1luuboHEw1iE/mfPFeI5zueNWLv1EUK5PR87B5cZa5TEGtXcyhX+rxR9Dfpzn1yTyuqKlYvX3WVC7ygk+58+1vAhsEGpuv2o20HjZzUSXXkfvE9+h95HPj0hrtl1I/aa3ooVqCnVr4Tno0ZZcu4Zi0esXE15wBakTDwHQ/uu3jDip+p78OtFlz0UN1aGoS1AUpexxrHRM+bePNi+Um78IEFkvXMcnUecjL0o7NL+Nb3yPlj9/3+Zvz3gE+8sx4hrhu/YDeE6K5L7vodWtwpz/jIrKnUhjC73pAszlf0Pm4A8nrMwZjcKIe21h9iBPrAiCIFSB1fEImSO/QG++EL1pE3rja0kfvhWn+0kAjPnXYy66Cc+xABfFbBTrPEEQBKEsodb1tDzzcziJDjxHAUXFHjiBM9jO4L7b6LrvIzRe8u4i16AgGi97N573Lqyeo2Q6toFeD3gMbP0mAFbXDvq6dgCgxeYRWXgV4fmXkDh8N0bTBkJtF01mU4VZgGfFSez8Gl6mj8iGv5/wH4cqxWi59NxZWBFmNbKwIgiCUAX26b/gpTuxTt4FgHUiZwOohcFJYZ28C2P+9aKjIgiCIFSNouroNfNwLZfBvb8kvvfW7HY9ipvsovuhz9P6rK+jqOWdUhRFwahbhFG3CMdy8TwP1WxECdWhhRvwrAROvJ3BXT9kcM+tDO7J1sWhu2i98ZbJbKYwC0ju+z5u4gTR89+HGmmb7nAEYcYzPUuPgiAIs5TQyjegNV04Yntkwz9izHsm6DV4mR6cwaPYvbvwPGcaohQEQRBmO6kTf8Vsu5C6jW/GsxMAeNbg0HtNVaIoCkbTWvTYfFQjhhZtwWzZiOfaaNHWQrra8988Iq9nJ3Ht5NgaIsw6rM4nsLueILTiVeh1osczVShkz9OZ9k+oDHliRRAEoQrU8Bz0OZcWXv1RzAZQDfAs3MQJsAdJbv23oQx6lNhlX5YLkyAIghCI1XuY5IlHcRJdGI3LUc0mnPgptGgLyeP3FqUd3HMr0cVPQ4vOmZC6VbMGLdxE6/VfBMCxhkRRPNcmdfQPJI/8GjyX0NzLia16KWqoYULqFmYe6WO/JX34l+jNF2O0XDHd4QjCrKGqhRXX9UYIDY5FoKggjkRlf2gMifiV3j+RIndBAotBjFeAFWaGqOdEUao/gsZI0PZyorf+dBPRf5WWUYnI7WiCttkyggTa8rFM3BgsiLzlhPTyjw7nxWgrrakQo0/ENi8KmK1rdPE6f1mViiD6+6eUUF2QuFs+rb/MQhlafn+xEGEpAbfh2632PwEQu/zLKHoMz3NJbvkUbvzIUN21K/CsfvSmi0ZdVBnPXOqn0tefywnOVjKvVStK7I/NX0c5Ac2JmGvLERTDaOekP09+LCpudruTyZ97ExNLqXiGn4fV4GScknUVzpNh5ebnkEpFbMfKdF4PKznOI0WFy4l9Tlh4owj+jy6UXum1aDzMBNHaIDzfdStwfwX7Km2nGiAQn78UlDo2Azt/Tqr9cQCSR4cWUjId2wAwWy+gZu3LSB65m8ShPxA/8Duar/lX9LpF2TpVX6y5cza/SOIX3HWH3e+Gl9zE4Lb/JHFyJ0bj6qE0VobBHV/D7t5OaMHTUcw60sf/iNW7j/qLP4geK37lNah/HKf4RNCGPTAffG8/+rhVKzy3xiNuW7i3cEY/7v46gup0S4j2+r87FN/7VDzmxnA+j7iWqApuqoP04dswF1xPaNlLx/SjUDWxTKTQ7VnBMBFpYfYhT6wIgiBUgedauIOHMRe/ENBw+vdh9+4sLKqYy16JMe/p0ybyJgiCIMw+ata+iNSpJwNX4zIdW0mE6oktv5Ga815J933/xOCen9Fw6XvHXbfZeglqqJH06UcwGlcD4GYGGNz+X9h9e6jZ+F6MpvXZtC2XMbjls/Q/8TkaLvsQaqh+3PULMwer8wlQdUJLXoiilNfxEQRhCFlYEQRBqABn8AhW7170xo3guWSO/YbM0dtGpMsc+gleuht9ziVotcunPlBBEARh1mE2raDtOV8h3bmb1ImHSZ18tGh/ZNF1pE9vJnXsXsy2CzHql5M6+SADu/6PmjUvAcwx160oKmbrxaRPPYzRtA431UPi4G3gOtRs+LvCogqAFm2j7uIP0PfYZ+h99DM0XPoh1FDdmOsWZhae1Y9i1qFooekORRBmHbKwIgiCMApWx2Okj96OmzgJZF2BjAXPwjp1Hzj2UEJFg5xQrXXyTqyTdxJa+UaMtqunI2xBEARhtqFq9D72n+C5RBZeTajtQgb33o49cIzkiQeIzL8SrXYByWP3khk4DkDiwK/R6xYRW3rNuKoOL3oWVs9uBjZ/GVAwWy8msuK1JZ9I0aJzqb/4A/Q/8Rl6H/0sDZd9ENWsHVf9wvTjeS7O4DEULTrldWdO/AGr/U8oRh1680XozRehRuZOeRzTjjKxr2lOGDMwpJmILKwIgiCMQvrEHbiJk+hNm9DbnoJ14i6sE38o7I9e+u+oZgOe56EoCnbnY6QP/wwv3UXm+O9kYUUQBEGoCEUz0WNzsQdP4lpxBvf9CnvgGJElz0A1a0kc/D2RxU+j+dpPkzmzhcTB36OGG9FrF2L1HMRoHPtTklq0lYYrP4Gb6gY1jGrEinRYRqSPzaP+0g/S+0j+yZUPoug1Y65fmF6cRDup/T/C6dtDZN07p7Ruu3cnmcM/Q2+5Es/NZJ8IPvIL1NhizMXPR61dPaXxCMJYqWphRVVHCupMpPBiENWKv1UrqjicStszFUKKZwvVjpFq082EY1FNDJUKCZYT/R1dtDYnUqfkxer823N15jNUGL9fxFbRhvJ5ZYXWimMJEmYr9z0vJjdcHC7//yAR23Lib7qRnTTyN5HDxWyja99KYs93sbu34DkZwhveT/LJf8ZNnkQxG1HNhmyeXAz6nEvQmi/CTZxEUYem2HJjJOg8qVTMebQygpgMGZigMqsVqx1Z7igCwD5xvaBxUI6JEPnMx+IXa1Tdytrv779qRGyr3V8uXV6wdngcEy1SOjHi45UJYY8Fv2htHs3Mag+oubkjLxTqOsUCoeXnt0piqC7m8gLD03/NHI2xiEhXk78aMeqgussKq/oEpSvR/1QUBc2M0XL9Jxnc+3syXXswGxdTv+l1hFo34GYc7METpE8/TnjhNRhzNtHQcgFu8iSd93wAgNbnfBktlHUKKjcNDm9D0TjUmlBUZdSxWbhWmvOou/Afs0+uPPJZai/4B1Szdkz34ZULA+euc7kHRkfMtRMhVjtF+UbDyc0p5e4dyhkgVHTP6Dkktn0eRYsQWfcOjOYLxhDx2Mkc/RVq7QpCq96Eoih4TgandwfWyT+S2vU1lNiyKY1HEMaKPLEiCIJQAs9z8ewUnucSPf8DWKfuJX3gFhKPvh8lnLO4VE3SR36Bl+kntPxVhXeSFUVFiy2cxugFQRCE2YhqRKlb/5LCH8zuMOvj2rUvp/uhz9B930dRzXqM5nXY/YcK+9NndhBddN2UxqvFFlB38Qfof/yz9D3yT4QXPYvQ3MvQIhNjBS1MPk7vHrxMH9EL3o1Wu3Rq6x48jDuwn/Damws/UCmaid58IVrTBTg9O0kfuXVKY5pOFGb+4rcQjCysCIIg+Egfu4P08T/gZfoAiJz/QbSGrHifZ/XhWdntXuo01vHfARBa+hIQsTdBEARhktBr5jHnqZ8n072XTMd2Mp3bUTST7J9jHqmTj6CFmgi1nj/FcS2k/vJ/JbH3JyQP/ZLkwVupu/B96A3rpjQOoXqc+HFSB36MGmlDrVky5fVb7XejhJrRmjaN2KcoClrDesKxZSQfe/eUxyYI1SILK4IgCMNwrTipgz8t3qiaKKFG9DmXY3c+TGj5a/CcNJ6TRA01oTVuRDFEuE8QBEGYXBTNJNSyAbN5PfAKVF0h07WL5LG/kOnaR/eDn6X5Kf+MXr9ySuPSwo3UbHg7np1kYNtXGNz5Xeou+wSqPvVCqEJluKkO4ls+gxpqJLLmbYUnRqas/kw/dscjmItfMKq181THJQhjRRZWBEEQhqEaMbT61Th9e4e2ReehKBqhla/H7nwYDw9z4XOmMUpBEAThXMe1U/Q+8kUynTsBBdWMAR72YPuUL6zkUfQINeveRN9D/0T/o/9CeNGz0FuvRNHC0xKPUBrPSZPc/W0UI0Zs04dR9MiUx2C1/xkUFaPtKVNe94xFUVDUSRDAGyeytFUZsrAiCIIwDDfdh5s8PbRBDaGoRnZfImtvqeix6QhNEARBEAo4gydyiyoQWXgFWs1czKbzCLWsLwgpTwdapIW6iz9I4tBvSOz9ERz4Oebcq1CMOgBCc85Hrxu7g5EwdpxEO1bHw1inH8Cz+ome//5pWVRxM32kT/wBo+0pKIa4SQlnBxO2sDITnFnyDLmOBO/L40+T3z+Z7alWLb2cI8BEuCpMBZX2abUOU6XST/V4HB7DWOv2K7lX6gZTSuQqX1ZeqV5xi90x8g4+BXefiXBo8TkFBQ/LYnegIMqp7A/fn3cBGKsbwHBLSbtvd0FbBSCy8tUodjepI7/COvUAanQ+ZsslKKpCct8P0BvXYbZeNiKWIXeIYpcILeciovhcI+KdyXzDRo21kvE10W5to5UXNIf6t+fzavroE5r/PKhmbObTamV+W/GfH+Uo5VYxwiFPGf27P1/5eb18nX7Xm4l27il2DZkaN6BKrtszgbxj0nDnpLEw2v3AZLh2Zesa+zk2k6nWTSi/3e/gM566825RQZeiQoxq8XVi1DLD2Vv1wrU1J2br2S6h5pU0XvE+Bnb+lOTxB4ksugZz1UvwXG+UdpdvT8VzZH7xxvFvByKLia67GTfVSfrE3VgdD4PrgOeQPnwboYXPIrL0BXi+J1k0TS2KoUR0RbFVet2fDOee8eCfr8s5Agblz1PJHJ05dR+pfT8ELYTRfCGhJTehReeOSDfR830p0kduB0UltOT5qKoyqe6ygjBVyBMrgiAIwzBaLiO8pJ3UkdsBUGPzGXjkQyh6jNDyl2POeyqKquN5Htapv2Cd+gtabCGKFkINN1ddn5PoQo00TnQzBEEQhLMQz/Oweg6Q6dqPk+hADcWIrXgOqVNPkDx2P9HlN2LULZ7uMAuo4TlEVrycyIqXA1lrX+v4XSQP/YL08TtRo3PRapai1S5Bq1mCWr90Wp6gOJvxPI/U4dvIHPsNxtynEl7xShTVmLZFVSd+HOvUXwgtfwWqPK0yEtGUmbXIwoogCMIwFEUhsuyF6A2rcZId2deAPIfImjei6HVkTvwRc/7Tswsp0fm4iZMMPvZRAGou/jhqbWWq+p7n0rf5+yQO3kXt+legznn2ZDZLEARBmOV4jk3Pg58nfXoLKBpadA5OfOjV1VDbhWjR1mmMsDyKohFefANG66XYPTuxBw7jDBzB6nwMXIs4Cmq0Db1mKVrtUrSaJei1S2SxZYx4nkt63/ewOx4ktPSlmAufM61isJ7nkTr4f6iRVsx5T5u2OARhMpCFFUEQhGHYfftw4scJzX8aWoOH57moNYtJ7PoWONnXddTofPAs3FRHUd7Bxz9OaNENRHO/zJXCcyySJx4ieezPZDp3A+Cmepl5UmWCIAjCTCJ+8I/ZRRVAr10wYr9eOx9Vnx0isVp4Dtq8azHmZoVLPdfGTbTjxY9iDxzGHjhMpvMJcDOg6ITmX0d40Y2o4aZpjnx2YZ24A7vjISJr3oLRevl0h4PdsxWndyeRde9EUeXPUOHsQka0IAjCMOK7/xs3eQq7bx+hFa9CNWqIrX8n6WN3YHU8jmf1kdz5lcD86WO/R4u0Epp3FYoWIr7nJyhmLTWrnofneXQ/9DkynTvRoq0oRhTPShJZ/BSsGagjIQiCIMwcQq3riS6/HhQVz7bBc4mtuhGzaRUdd72P+P7fYg+eIbrsevSGtbPKplZRdbSaRWj1SwjxlJxOjIObOEmm80nSx+8kffJetJpFuOkePDuOVrcCo3E9uBZO/CQoCmbr5ajhZlSzHjV0br9ma/dsJ3PkNoyFN86IRRXPSZM++FO0+rXoTRdMdzgzE0U5a3SvzkXO6oWVasTgqhHSm4g4SpU9VoG+iSpnplBOsGs6Ba7KiR/DUHxqBeJ0pesoLSyoBQhTjiYyVhCrVXLiaDmhxYKAplYsYpsX1CsnoFoJ5dudr6N0u/KCdH7BuVLbg0TsgsTqgvrM6nwYN3kKgMzpB1Ejc4ksfT5qpAV99evwVrwcq3sH8R1fBUCrWUxo/tOybVDAy/SSPPI7Ent/gN27g5rzXkfyyO9zZW9FMWJkOncSW/Mqkkf/CB6EV7+JjD0P180JEvrGmEt5QbvAMTdirBTnq3Z+G+3cdAsCqqOX4Rda9TOWG4rCcXaKx0FeODioDr+oszuG+b6ccOJIwdnK0uUpJSBbTmwzSNRwPDdrky1mONq4qVbwPc9kxlxp2dXGMJZ7jqA6yp1jhetDBULJE0UlsY71uFU6zidiXPjrqFi0tgoK7cldp7WQhta6lFDzmwFwMzkBZSf72XrDt0kd/yvxQ3fR8+Cn0WoWEFn8DELzr0NR9SKR9qmiEmFZf5rhx0dRNbSaRf+fvfOOk6SoG/fTaeLmvHd7OUfu4DhyFgREVBQRUEEwIFH05aeYQJEgryAviIgJMSEqIAhIkJzD5Zxvby9tuo0TO/3+mLA7szM7M5tm966ez+c+e9PdVfXtVN1TU/UU7oIJuOpOJ7T3ZUz/frSyBUiKC6N9E8H6fyMpLhTvOGzDj2/dL2KpUYtn4qg+Bq3yiJQuj0wC3JEQ3sZF9zmmSysnti2MA2sI7/4PZucWlOJZuCadm7LMgTKQ93Dbtglt/gNWqA3vnKuybvSTZHI/OAJBnjioG1YEAoEgW0xfA4ENv0arPhb3rMvwrfoZpn9vwja24Sew/R8gqbgnfxJHzfFYeieS4iS8/01C+16LdFsGbEune+NfQJIpmPFJwu316O1b0UpnY3TvwTaClBx1E6ZckY/dFQgEAsFBhKy68Uz+CM66U9EPbMC/80W61/8RvX07atEULCMcaYBwV6GWzs13uDkjqW5cEz+WuHDiWdi2nfAl3fTtwzaDmP49hBvfxb/5YdjyJ7SyBTiqj0YrX4SkOEc4+uHHtgz0pncI734eK7APpXAa7jlXoZYvQhquKcZyQN/7IkbL+7hnX4HiHZfvcASCYUE0rAgEAgFgHFgT+Y+sYocOYHbXoxYcF19v2za+jb/DtkIULfkx+oFVdLxzPZCu98uq+P/9u17FO+N83BNOIdS8iuDu13DVnYzircEMGMO5WwKBQCA4hJAkCUf5XLTSObS9czOhvW8S2vsWKE4wQ4CNa/IncE/+ZL5DHRKSez4o3loA1KIpOGuOxwp1EG5+n3Dju/jW/woUF46Kw3GOPw25cEo+Qh5yzEAjwa1/wmzfgFq+CNeMS1CLZ+Q7rDhG+wbCO/+BNv5MtMoj8x3OqEYCJDn/DWF9EcOTskE0rAgEgkOWUMN/0JvfwzP3KrSaE7D8e9H3vY6+73VQXLgmfRyI/BLk3/xHjLZ1eOdfh9G5hcC2R/vkp1UuwQo2Y3bVAyA7S3FPPAnfln/RtebByDJXOa7xJ+CZ+omR21GBQCAQHHI4q5dg+hopOvybKAXTotPu/pvAjsdRPONxVB38X3JlZzGuutNx1Z2OGWgi3Pgu4cZ3CDe+i3PKp3BOOAskJd9hDgjb8BPa9W/Ce14E1Y1nwQ2oJbPzHVYCVrCV4KYHUUrm4Jh0Xr7DEYwAt99+O48//jgbN27E7XZz7LHH8tOf/pRZs2bFt7n00kt5+OGHE9IdddRRvPvuuyMd7pAiGlYEAsEhidG2ntCuf4MVIlT/L9yzvoJ71qXInmqMlhW4Znwe2VEEQLD+34Qb38Y15dPoLcsJ738DAMlRgmvSOWgls1G8Nfi3Pore/GGkAEmh5OibCe17NbptMSVHfhvZM25MCQUFAoFAMDbxTD0H16SzkSQJy4gMmdEqjyCw43GQtXyHN+Io7irck8/FNfFsgjufJLjjccJ7X8VZeyKuiR9Dkkd3A4ttW1i+BowDazDa1mJ2bgNJxjn5PBzjPoKkOPIdYgK2GSK48X4kxYVr5ldHxZCkUc9BIK997bXXuOqqqzjyyCMxDIPvfe97nHHGGaxfvx6v1xvf7swzz+Shhx6Kf3Y4Rtf1OxBEw0oSw3HPZ5tnrmLddOn6K2+si20hs9x2JIkdz34ltsS2SYw7rdRN6V+i1l+Fm05mFhe0JYli7ZjEs2fDtHnnSnz3Moo0c5PY9ieTy0ZWa9s2/tU/xezcEsnfXYPZvSu6VsU54eN9RG9WqA1sk+DOf4FtRqJ1FFNy5I0o3hoATH8Tod0vJqTr3vjXyEwFgGvi2dhqDUY4JqmN7k8fWXFi7Llc72ZcTtj/eRyKeq6PvDFJiJm8X7F7JSbjTXdfJJONWDOteNBIvNYGKkHtj3TXXDbSxt4k3xfZSKnTSWpjcttkOWny8nTph1f6mvh5NL5n9z4ufZ+vyTLidNdebhfZUB6HbF/Ks7nWhpqR+MKQTgA/lMSFoxlE0plIiDWalZTc5T5ax0QfPT3XVqxoPVrnmon3bzxvO/LcixMVpfs3/gaj5gRcdacjOYpTTn2bqR5LJ5cf7Uiyinvqp1HKFxPe9xrBnU9iBVvwzPpSpBFqBKS1MbK9/4zWZQS2/Blb7wTFiVI8F+e0i9HKD+t39qNcrv/kWDJJajM9S/V9L2H5duE+7IdIUXlwruJb2zo4vrscSjz33HMJnx966CGqqqpYtmwZJ554Yny50+mkpqZmpMMbVkTDikAgOLQwfPFGFSA+C5BtWyl/TbFNHaVwMux/I/5m66o7GffUT6K4el5mFE8VJUffTPu7N8cSEm58L74+sPUR1KLpB82YboFAIBCMPZSCOgoP/z7h5g8J7XmJ0O7nkRyleOd8GW0MSm0Hg1o0BbVoCnrJTPwbf4vsKMY99dP5DqsPeutKAhseRC0/DEftR1CKpmET6V0zmn5sjGFbOvruZ9D3PofsGY9SMDHfIQnySEdHBwBlZWUJy1999VWqqqooKSnhpJNO4tZbb6WqqiofIQ4ZomFFIBAcUkhaAQVLbkM/sIrQ9t6elF7TfZphQntexDywFqNzG9gRwaykeilcfCOO0gkp8+79I5fsKkctmoLsGUe46X0sfyOS4h6OXRIIBAKBIGvUommoRdNw1Z2B0VVPaPcLdK/6Gc4JZ+Kecl7K3isHM86a47DDnQS2/x3T14Bj4rmoRfn9EcS2LazunZHhx3teQC1fhGfuFWAn9jwcbdiWTmjTLzE7NqDVnoI2/sx8hzS2kEarvBbC4TCdnZ0Jy5xOJ05n+lm2bNvmm9/8Jscffzzz58+PLz/rrLM4//zzmTRpEjt27OAHP/gBp556KsuWLes3v9HOoVVzCgQCAQBSUqMKmO3rUUrmYhxYRaj+CSz/frTyhbinnY9aMhtJ1gAJxZO+26LZvSf+/8JF30QtGI9tgXvyuVjBdmRX+Yh2MRYIBAKBIB2ysxSHsxStfCGhhucI7Hgco20DBQu/gewoznd4I4pr4lnIzlICO5/Et+IWZHc1smccimccSuFk1IrFw+IIMQON2MFW5IKJYAYx2tZhtK/DaN8Ahh8UN466M3FN/gSSpCQO6xpl2GaI4No7sAL7cM2+BrVsXr5DEgwhv/vd7/jVr36VsOymm27i5ptvTpvm6quvZvXq1bz55psJyy+44IL4/+fPn8+SJUuYNGkSzzzzDOedN3Ylx6JhRSAQHDJY4S78q++IDP+RNQqW3IZ/zd1YgX0Etz2CWjqf8N4XUQqnUHDED9EKUvdMSYfiiXRhdNQchVowPr5cklVkV/mQ7otAIBAIBEOBJMm4Jp6NWjKHruU/puPtb1B01P+iuCvyHdqI4qg+Gq1qKeHmZRgdW7D8ewk3vYPd8Ayytw7X5PNQS2YiqZ5BlWMbfvQDazBaVkSF970lIjJK4RQc4z6CWjoPpXAKkqSMeqGpbdvoe5/DCuzFNf87KAVi2PPBxuWXX85Pf/rThGX99S655ppreOqpp3j99depq6vrN+/a2lomTZrEli1b+t1utJNTw4pl2UgxCd4ovMGzERNmEiClE+v1JykdbjLtVzZSp9EoCBxOMsmxhvr67X0Oko91JoltMunWK2nmkO/dHdSS+y4bTvoVbKZZlSzQ7JUi+nfohYqxY+pffTtWoBEAz7xrkDUPYMYCI7z3RVzTLsIx7jQADMNE3/cKwW1/Qas5Ec+sSyPbhntOeEIPFM80Cpb+L5KjGD1kJsSQ7pocimsxlkdMDJuuTlDUxLKsLOvzVNdkWlFylvfeYF4SsxUkxs+NGfs74CKzLjvdfmWqg4dSJJpOnJpJkDsQMXYywylElaPXr2UMLO90st6BpB0u+nuWDJRM52Q45a4xRnLYQnJZ6coeiHhWyrH+SredHb1He69PjjI5bey+jsVt+PTI8jTS2p6/JHzuD7VoCs4JZxFq+A/BXU/jjT3z0sSkDMPzOpnBXp/9xZYsx4+WiFa5BK1ySTyt0bmd0I6/4193b2QT1YPsqkz5T3KW9hlKZVk2VrAZs201xoGVmB2bwTaRCybhnPwp1LKFWL49IGuRHrK9Gm4sy470UsmxDs7lOKSTzWeLaVroO/+K2fQqau2Z8UaVXL6fCEFtBAlpdA4FkiKz9hQVFWXc1LZtrrnmGp544gleffVVpkzJ3MjW2tpKQ0MDtbW1QxFt3hA9VgQCwSGD5CyDQCOSqwJsi+5VP8U2grjnXkNg/X0AKMUz0VtXYHZtx2jbgNW9I5LYCmdVhuwsy7yRQCAQCASjEM+0z2KH2gg3vY+jYjFa+WH5DinvqEVTURZ+G8u3CyvQiBVsjvwLNKN37cQOtdLTNCYjucp6GloUF0bbOiz/HpAUlJI5uKZeiFp+WML7guLt/xf90Yht+DAOrMBofgercxPa5ItRqk7Kd1iCPHPVVVfx17/+lSeffJLCwkL2749MElFcXIzb7aa7u5ubb76ZT3/609TW1rJz506++93vUlFRwac+9ak8Rz84RMOKQCA4JLDCnVj+6AxAug//2ntQCifjWXA9kmc8WuXR6M3v4lt+cySBVhSfwlCtOAL39IvzFLlAIBAIBCOHe8bFWOFOfJv/SPHS25CUsSuTHCokSUIpmIRSMKnPOtsysENtPQ0u0X9mdz223oVSNAvHhI+jlc1HUse2xN42QxitH2K2foDZsQFsC7lwBo4ZX0cpOzzf4QlGAQ888AAAJ598csLyhx56iEsvvRRFUVizZg1//OMfaW9vp7a2llNOOYVHH32UwsLCPEQ8dIiGFYFAcEjgW/0z7HAbAGrhFJwTz0YumkG44Rn0zX/EOf50UL2YXdux/LvBDKAUHo7VXY+j9mQkzZvnPRAIBAKBYPiRtQI80z9H57If0732FxQsvH5YxK0HC5KsIrkrkd2VKddbScMwxyK2bWO2ryO840/YoQPIhdNxTLoApfxwUA8t0fGwIo3t6wTIKFh2u908//zzIxTNyCIaVgQCwSGBpBYgqV48C7+JWjgF07cH38pbsbobAJvAtj+DZSA5SpA947C669Eb34qkFS+UAoFAIDiEUAomULDgWrpX301o7yu4xp+W75AEI4jl34vZtRXLvzv6bw8YPuTiubjmfBPZXd2z7Sid+lkgGGlyaliRZSnnVrRU30eyFcHmKjJKzncoREjJeYxVuVKucQ+naHMkSI4zeX+ylXYOhHTXd7LE1kpaH5OoJQsmM9F7OzlattlHg5cu1uh2ytAdh1hDdSaZXXqBZvx/Cetjx8c0s7+YY2XIkkTR4m/Hl1vBA/hW3o7kKMY5+ROEdv4rMq0hIGFhddejFM3ACjSBbKCUzEqIJdXxHeoXi4H8YhE7dGaa612KHrp090c6sazDrfZZrvuNSFo7tSgxRux8xsS5uT9Dst8+01TW2Upvs2GoflEaSD4xeaskR89bBglnsjA6+e9A4sy1nuqbX+r8+xViD5F8NVM+2bSjZiuITPfsTVdGf2Wnu7fyQXpJc//nYiCS02yvtVwFy7mQq7Q2HdnsiySlvhdkTYmmjS2IbqdbCdunq4sHgla2AEfV0QTrn8E1/rQ+8ad7XqdjJH+Jz+Z6yPTMiG+X43Wb/IzN5l0z2zLS5ZVJGJ0q/1TXiBU6QHjXY5gt7wESkqsa2VuHVjsHuWAKSvE8bLv/eHM6XllcpyMpvxYIBoPosSIQCA45QvteB9umYPH3MLvqCSETe7rbZkRSa4VasK0QmEHCu1/AMe5kkMQ4c4FAIBAcGpj+fRgdWw65aZcPVWzDT3Dd/4IVxjH1i6gVRyMpjr7bZdkgJRgA0iidFUiQFaJhRSAQHHLoratQy+YjqR5kTy1K4WTMru1IWhG2GcI9/ULMrnrCjW8DENz+d4Lb/w6yA/eMS9GqjsrzHggEAoFAMLwEdz2LFWrFM+tL+Q5FMMzYtk1o20PYRjfuhT9EdqX2xQgEgvSIJjGBQHBIEW56D7N7J47qY7DNEP5192KFWpEcpdhIFC6+EVfdGXjnfAXX5MRp3yStgHDjm3mKXCAQDBTbtrFCbfkOQyAYU7gmnA1A95p7COx4AtsI5DkiwXBhtr6PeWAFzumXiUYVgWCAiB4rAoHgkMEKd+Jb/6vI//37CO15GdO3D+f4UwntfoGiJbegeGvj27smfgxZK8TwNRDe+wqyswKzfT1WuB3ZUZKnvRAIRgdm8AAd734fSXFSvPQHKO7yfIeUEjPQRMd73wXLoPTk3yF+UxIIsiPyPJTANgjWP0Vw17N4Zl2Ca9wJ+Q5NMITYZphw/WMopYtRyxbnO5xDHAnEUKAxy7A3rPQWI8UkV9kK15IltNnKbseqYHYkSXcs7TRyy7FOPvYnW4ltfHmyzLaPqDDzPsSFcnZqkVzPPZIooBuoiLL39gOVi2USrqWLMVV5yRLW2DaxY6t3bItvG9j+DwA8868lvPsFtLL5CY0qALKq4ppwKmDQ0b0Ts3NzJN/wASRXaUIZsTJzldwlb58ce4zBSP968oyWmUZuHI8laZ/CASNjGbH4VMfQ3GvJotls9j/5nklHTFiYTmabi0g1vcQzdbpM+5FN2T3P0tyEkTGJrawkpjP17B+altGzraS6sA0/tuGn4/1bKFz8LdSCuoQy08WeKdZs9j85TSqMzno63v1h/LOsKsPyjjBYaW0u5HptDUb8OBCJ+mDLzLXuG6pnz0DoE2sGEbwUE03H0vWKIX7tR+sniaS84qLw6P2sRPIyLCMhlr6TLgzOh1Gw8FvYZgDZUYxv4+8I7XkFZ83xsagTtk0vpR9CQf4A9ydbUW2qMgb6DjkUUvtcy46/92RZJwHo+/+LrXfgmPSZfvMeidl/Uu2vfZB9JxEcvIgmMYFAcMiglh9GwRE/in92z/giatlCrGALsqsqbTpJVik+8gfInsj0gsaBtcMeq0AwmgjufZv292+ne91vCbeuAUBWPRTM+woAthWm88PbMH378xlmH/S2TQAoBRMpO/W3eY5GIBh7aGXzcFQuQS2egaQVwBDOribIP3a4A333M6g1pyRMoSwQCHJHNKwIBIJDBkmSUAomULDkJxQecw+OcSdjtK3HCraAJGEGW/pJK1M49zIAbL1rpEIWCPKO4duPb8s/0Q9sILTvTbpW3Ycd/flTKZwEQMH8K5BUN/4dT+aef9duzGCi/8TSfdhW5p5S/WEbIXyb/gKAZ9p5SLIY/SwQDBTTtw+zcxvOcaeKWWEOIsINT4Kk4Bh/Tr5DEQBIkffN0fZPkB3iLUMgEBxyKN5x8f/bhg+A0O4XCDe+S/ExdyPJSsp0WtlsSo69HUsVU08KDh1Ce9/GCrRQMP9ywEH32l/h3/YY3unnI2sFkY1MHee4kwjWP4tt6Uhy3yk6fVv+SWj/uxTMuxzZUURg+7/RKhbQvfbXSJqX0uP/F0nW8G3+G8GGl5C0AooW/w9q0eSEfGzbRpIkQvvfxbYMzM7tOGuOQiubnRh343uR/8gqWsXCYTgyAsHBT+x+i/VU8W/8DXa4A9fEs/IcmWCwWL7dGE1v4Jh8QaQ3kkAgGBSiYUUgEBzSaOWLiM1zYOudGbs5qwXj0EPm8AcmEIwSJM0DgNm9F8/0Cwg3fUBw5zNopbNRi6aC4sQMNOKoOpzA9sfxbforzpqlOMrnJuQT3PM6driDrpX3gqRg612E9r8DgK37OPDKlfFtnXWnEm76kGDDS7infAxkDUl1E9r7Bv7NjyC7K7ECzT15734Z14SP4J19MWb3HvT2Lfg2PQKAd8aF4hc3gWAAWOEuOt6+Fu/cK3BUHYV3ztfwbXgQM9CU79AEg8TWuwlu+Q2Sqwq1+uR8hyOIIiENqZNo6BiNMY0+RrRhJVsJ7UBJznesSGzTySuHk+Rjk0ksPFaO5Wgko8Q2jZw1WbSWTsyZqgKOSTlNYjK7aF6pO2KMCNnIZ3uvh9Qivti+9Zb9JueV7timItz4bsJnI9iF7CiMxBKVANNPO0ry8VeyFIrmSv8yz6QY1MTPmYRz6eqDdDLbVGWmI50gNhNxEXM0lph4FXoEqunqpVwkhSm3N5PuPanvfveIIlNLbAf6vMvlPOeaZ3L6mEgzVi1YZuI+xf7qBzZGttcqMHQLvX0LAF0r7gLFBWYIywTJOQ5HzfGE9rxCaM+rFB99O4qnBgBZlZCdxXHpc28Xi1o8A++sz2EF2/BvewxkB94Zn0NSHATrnyO07w3U0jlYoTYsfySdFepAdldjBRpje0Ow4SVsI0xo/1tg99y0jpqjszpOA3k3SV+PxdYPPO+eMnKLZSheynPNY7D13UDSZ5sm3TMnm+OV7f0ezzNaRNpqL4W0tk+ZMQFuTDafJBvv+647fMNyrGCk8dK3/lcgqSje8QDx+zpt3TIMYuBsyVT/55JvtoLwbJ+x/dUDg333NzM8FxPiMQIEN9yDrXfgnvf/sh4mmW2M+fheIxCMBkSPFYFAcMhidtcT3PIntJqTcE7+FFbXTiTNm++wBIJRgX/HM9iGD9f4kwg3LUf2Rmb8kT212IoT75yv0bX8FgBCu/6NHWzGPfNLuKeeT9fyW+j44Ga0snk4a0/AWb0IR9lcAvXP4Z15Pu7JZ9O54h7CzauQNA9ayXQAHNVLgIgfxT3lkyjeOkK7X8Zo2wCAZ8YFqCWz0IqnYts23Wt/RbhlJUWLv024eQXB+n8DEqUn/hz/tn9hdGxDFve0QDAgbDMIgOKdgG/dL3GOPxUArXRePsMSDALbDBHceC9WsAnXvP9B9ozLnEggEGSFaFgRCASHJJbeRajhWcDCNTXy67hctiDfYQkEowb/1n+CbRHgWQBsww+Ad+H/IEsSkiQjuyqxbQs71Epo78uoJbOw9G7U4umguDA7NtO97lcY7ScS3PUCSuFEHNVLkGSFwgVfI9DwOlrprHiZkiQR3PM63et+F19WtPQm9NY1mJ31uOpOQ1Ic8W0L5l+BbehIigO1aCqO6qXIioziKotmmMduegLBGEd2FAPgnnERwR3/ivQGQ8a38TcULPwWsqMovwEKcsK2dEKbfonl24Vr7jdRvBPzHZIgGQkkWQxdHauIMycQCA45rFAbvmU/xGj5EIDg1j9hW3qeoxIIRgYzcID9z36VUNOafrcrWnRd9H+Rbt1q4WSAhFkCio66A/e0CyLLtSLCzR8S2PInwo3vYrRvpnDRDWAGCe56Adekj1J67C2o3loAZEcB7klnohZNSSg32PBywmcJGc+Ucyk87Jp4o0p8nSQlLFMLJqAWRnrWaMXTMLt2YfqFD0IgGAiSGvErBbY+invqp5EUJ5LqwuzeRdfyW8TsQGMIK9hCcP3dmJ2bcc2+BqVwWr5DEggOOkTDikAgGNPYhp/Qrn/T9cG38a+8hVD949h6d/rtLQP/uv8DbNxzvg6A3vQ2/vW/GKGIBYI8I0kRWexbt6N37Eq7maNyEd7Zn49/Dux4PEVWMqp3HChubL0TK9QGUqQzrOXfixlq78mvbF5kdpEMOGqWgqQguypQCiagFA7sV1Vn7dHIzmK6Vt1DuHXdgPIQCA5lJEcxjnGnYHbvJLT/TQrmfh3biA4PKpyS1f0syC+2bWM0v0Ng9Y+wQ62RnirFszMnFAgEOZPTUCBFlZCiUkQrLvLKvdDkNEpSnskMVPqWTbrRIGUdDVKnXI/DUAqIR8M5GAkGKrGNbxf9ZShZBtpbqpZOGGclifdidu+4kC8mCs1qT3KTv2XaNp1QMJlUEjnbtvGt+TlmVz1qxRGYbevQdz+LWjgFreLwPscWwGhdgeVrwLvoByiFkwk6y7BDBzDb1oJkD9nsIdnK+4ZCPJgpj0x1jEXq9NnUTbnKabOW3kafC4ojMpTDCBpptzXNmLQv9b2TKcbk9bH0iqPvtRAT56aT1fbkkbqsTNd3NscnJvJNl1d6oW5MYl2M7CrHCrbSte4fFC+5LtILJSkGI2Tg3/LPePpw03t4Z1/WpzzFO57CRf8PvXkZaslswk3vEt7/ZmSl0YVn5sVISuKUx/2JRN0TPoLZuQu9fTOFC69M++UtLvpOOifxvCUHhYuux7fhYbpW/IyS4/4XxV2R8fmVzTnIdOx78sqYVT9l9L98oGLkdPuXannf/RmY1DZTusEc82zzHIhQNVdBbrr0uRxz0p735Od48vLU2yeXlWqf0q2TJBnLtxcApWQ2cvEMPHOvQG96F8/0CzMe08yS+sxpMh3bZNLV97F3qN75ZaorY3+Tv59kW98nr8/lfT/V+0uq9f29Q9uGj9D2v2C2vo9ScTTOKRfFeyENJ6Phe83YRRqdQ4HEKc0K4VgRCARjFrN9I2bnNjzzr0ctnU9g02/Qm95N++JgGwFCOx9HKZ6NEh3WoJbOQ9//BgDBbX9Hq1iEWiJ+zREc3BTM+iydqx4g1LiM5hevomj+pbjGHZWwjSRJcXklAFYY27ZSNj6qhZPjQ4WUwsnxhhWtdBaOioU5famVFAeFC6/Atu1IDINofFQLJ+Gd+yU63v0BVrAVvWUVRlc9iqcK57iTkR0FA85bIDiUUItmAKBVLsFZdWSeoxH0h+lrwGh6A6PlA7BNnDO+ilqxNN9hCQQHPaOwSUwgEAiyI9z4NrK7GqUkMkOBrfuQVG/ahpHQrqew9A5cM74YX9Zb3hbe8wK+VXcSbnpveAMXCPKMa/yxFC64HAA73EXH8vvoWPkglu5Lm6ZgwfVZ9eiSNS/Fx/wcz8xLQdYGHOPQDTOIxNy54mf4Nv8Fo6se//an6HjvB1hGYIjKEAgOTrzzrwXZgd78Qb5DEWTAtm30ff8luOYnmAdWoFYehfuwm0WjikAwQogeKwKBYMxitK1Fq1yC5d+N7BkPgOSqSru96duDUjAZxV0dX6ZVH4cV2IfRvhEr0AS2EfkrEBzkeCadgqNiHl3r/ki4aSXB3W9ghbsoPvxqTF8jB974XsL2/s1/pPiYnwERV5EVbEF2V6dsAJGdJTjHnTQqHAyyqxQUJ5hhig6/Aa1sLmagmfa3b6Tz/R+D4sRRdQSuCR9BVt35DlcgGFXImgelcApGxxacE87MdziCNNhmkNC2P2K2vo9aezqOiZ9GksXXvLGGJElIspjNbqwi7jiBQDB2kRTCe14ivOel+CL3rK+k3Vx2FKG3fIjRsQW1eEZsIe4ZEUGnGWjE8jeils0f1rAFgtGC6q2idOn/EGh4nc5VvybctJLm57+Ga/yxfbZ1jDs5/n/ful+it67APetLuGpPHMGIc0dWPZQcfStgo7grAVDclRTM+zLhxg8wuncT2PYYZvduChd8Pb/BCgSjELV0LqGG59IOBRTkF9syCK67EyvQiHPG11ArxFAtgSAfDLhhJS4mSlO/phPRDnbboSa9YDC3dIeKgDVGNvub7bP3YDuW6fY7ds8M9fWeSsSWjpjkU7ayF2X2po80L4td6U+Y11/emZAliYL512K0b4zMVmKFkbQitOqj4r+Sx06F4duH0bocyVUNlo5/7V0UHn0P/jV3Y3Ztw7vkNhR3NbKzCtlZBTYJ00jmIkO1MhyUwcpqc5H+ZZuHkibP5P3MtG/ZlNV3fVKZUTFr7K8ZNoHU9UK20tpcRcL9yRNjcaUjJlLNJDccjEgzVka6vJJjzCSDlCTwTDwRSVboWPEA2CbB3W+glc1GP7Axvp3e8j5a+UJkRylW6AAAgU0PoRVOQSmYkNP+5VIfpJXwpk3bd5ns7CutddYcjbPmaGxLx7/tCUK7XwbJZiCWvvQy29Tbj+R300zHKxtpbbZ5DQeDldamWz6YujSjZD3mT5YSt08WRGcjn0+W2caeTcl5DubcpEtr2Ta2pWO0rgBLB9uEXqLrTAyknhts3ZFMf8+tTMcuV2mtLPf/zOldTrbvgpliADD2v4Tla8C14HsoBZOzylcgEAw9oseKQCAYs6iFk1ALJ+Ga8FGMjq3gqujza5pt2wQ3PRh56ZhxKZKrEtlZRmDzQ5hd2yLbhDug1/AggeBQxF13HFrZDLrW/pFQ48qERhUAs6uB0K7/oJbNx+yujy+XtKKRDnVIkWQNR9USgvXP0rn8bmRXGZ4p56B40g8rFAgOFexwB2bXTlyTP4E0CGeSYHiwwh2Ed/8bteYU0ahyMCAxOmcFEmSFOHMCgeCgQC2ejuwo7rPc7NiI5WsA6JkxyLYxWj6Mb2OFWkcsToFgtGBbJsF9H2B07Ykvkx1FOMp75M+OivmUn/gTnDVHA2B0bkcr65k22TX5U8jOvvfdWEMrnop78tlYgWb0llV0fHAbpr8532EJBPlHivgelIKJGTYU5AN973MgKTjqzs13KALBIY/osSIQCA5qZE9t5G/hdMyOTcgFkzA7NydsE9r+d7TKpUiSEIYJDh3CLWvpWPZ/AKiFE1ALxxHc+16fbVrfvBnvrItAVlFLFiI7Con8LmMhpWjMHKt4Z16Ad+YFWKF22j+4jY4P76Dk6B+JKZkFhzThPS+BpKB46/IdiiAFZttq1PIjkTRRTwkE+Ub0WBEIBAc1ZmdkuI9z8qdRyxdjddejFM1M2EatOEI0qggOORwV85BdZQAYXQ3xRpWCOZ+h8vSfQ2xGCcvAt+GPuCeehqMqIkV01J4QSde6YuQDH2ZkZwnFR3wb2/Dj2/xIvsMRCPJGcOdThBqexTX5kyhuMTRutGGbQexgI3LBlHyHIhgyJJDl0fdPkBXD1mNFzkJYNZLS2lzFoTFNQ7Yi1VxEdGNdzpotsf3MVdKX67EfK8SuveR7I7Y8eX06IedQYOiRg+tII7nMVRbZ3zZ9hLdpBKE96zMWlXUskiwR2PArAAJrfhrpLjv+dML736Bg6V3Yehe+NXei73sFWSvEOekTWe2DSf6E2/3JDjOJ+HKR8KZCUTLfzIOVcprhyAUQE7TGYpbVnlgtI3qvROO3omWmk9Um1ymxz7F8rDQyyHDASMgXQHUpKcvoKSu2fOivkVzPb+b8VIoWfZX2d+8AwFG1iKJFVyJrboyuXXinn4Nv87/i29vhZpToC7x39iU4a45FdlUn5Zld/ZXu+dBfusx5Jh6X3tdMNvTOX3GX45n+GXwb/4R7yjmo3tqsyuxZnqms7OPK9Z7KRpSaavvhINc6qjdDFVfycUi3fijK7COUTZLYElseE1Cnus6zFKDbRv8XUfKxznXfzEATofp/ITlKcU86JxruyE+fPtBzkk5am0t+fb7LRO/FdM/S5DLjwvEhuJZT1RlWYH+kfM+4QecvEAgGj2iCEggEBzm93kZsE63mBLB09OZ3UQom4JwYGZcc2vUUnW9cTucbl2MFGvMUq0Awsjgr5lO85EbcUz9JuGklgR3Pobdv5cDr38O3+V84KuailU6ncO6FGL4mbCvS2CRJMlrprIPCr5IO1/hor5y2TXmORCAYOUz/fkJ7XsHWu9GqjsIOt2Pp3fkOS5ACOzo7m+wsz3MkAoEAhGNFIBAc5BQe9b90ffh9MENoNSciu2uQPbWEGp4ltOMfoHr6pLGCLchiliDBIUKg/nnCzcuRFBe2EcTs2htfp3gqCex6Db1tKwBWKIhn+mfyFeqIYls6YCMpznyHIhCMCLYZomvFrdixhhQ5eu0fbF2IDxasUOSv7MpvHIKhQ5JG5axAI99XbWwiGlYEAsFBTWj3i2CGcc28DEf1cQBIWiFEZwrC8AOgFM/GPftryI6xPXWsQJCMpfsI7X8fSXHgrDoMK9iCWjwFSZIINa4g3LIKiIzX18pmIWk9DQnB/csS8lKLp49o7PnE9DcBIAu3hOAgR29bj968DNvSsfVuPLMvR1K96AfWoJXMFs/F0Up8nGD+hicLBIIeRMOKQCA4aDHaNxHe8yLOqZ+NN6oAKIXTMDs2JvwKZ3ZsRFLd+QhTIBg2DF8jB177n/jnruhfpWAciqeScNOq+LrCBZfjqFqErCiUHvsD/NueRnYW4SifA7KKVjQRWzl0Ghmk6JcWK9yR50gEguFDb99E96r/TVhmBZpwTzkPR8XiPEUlyIqYdN82ANGzTiDIN3ltWEknuE0n+cwHfcV6iX+zTZftulSIHphji4FKe7MlJkcbColcstROUqICNjNahjLwMgYqnEsnLx6I7DC8/03AhqgXIobiqYkX4JpxKVZgP+Hdz+FffSfeRd8bUNzJZCurS1fPDUZanG3aobyW0gli02+frswk+WM/xzG2jULqbZNjiMlMe4S4keUxUW5MZtsju4xG1OtajMl1FYeccj8GIn7OlXRlSrKEbVuYvr0o3lpkJZTQqBJDdpaiFEzACh7ANfF0bCOAq+4UtJLp2CZYtoVaNIOyo/umjdUNuj/xnsp0HOLpk4SbyddLKtFocpo+eSZdx0Mh/A41foh/62NIWgHOivlZpxvs83o4nhvDKUIfTfR3X6RaH6P3PZrt/dpHUpvhc3x5kpQ7XRwpSXpex+7FTMLs/upSK9xF98o74p+9c6/Atsy0DSojeQ0NtbQ2xkD2IdMzMlmAnvz8769eGMw9L2mRnkR2uB1J9Q48I8GoQZIkJHk0zlJ5cD8/hgrRY0UgEByUWIFmzO5dkf/79wGR2RZCu54k3PAsSCrYBsEtf0CtPAoAs2s7tm3Ff6kWCMYaXWsfJtjwMmrxFLyTTwSgcN5FuGqPBMWDrHkxw2aeoxz9BHe/iunbS+GCryCpzmGdOUcgyBeS4sRZdwahva+CFca3/ld4Zl4iem+OEWRPHUgqZvs6ZM/4fIcjEOSN7u5uLCuxBbOoaOSHMIpvDwKB4KAkWP8EVtSjotWehG1b6PtfI7zr32Cb0a6zEYzm9wBwz/5aQqOKFe7ENgIjG7hAMEDCzWsINrwMgNGxg66N/4r8v2sPZqAFM9Cax+jGFgXzLgPZQXDPm/kORSAYNiTFgWf6hZSe+CDFx92PVnEEwYb/5DssQZZIqgel9DD0xtewRff2gwZJlkfdv9HIjh07+NjHPobX66W4uJjS0lJKS0spKSmhtLQ0LzGJHisCgeCgw7Z0jAOrcU46FyvUTnDrX7CCTWAGkT3jsPyRWU8KltyB5CjCt+p2LF8DRscWtMqlAFh6F93vXY9SNAPvYd/J5+4IBFlhBg8kfLZCHSieCgK7XiOw6zUASo+7CcU7NR/hjSkUVxmSJGN01uc7FIFgRJA1D7KrHKNjS75DEeSANv4sgmt+gtH8NlrV8fkORyAYMS6++GIAfv/731NdXY00BMPaB4toWBEIBAcdZvtGMANYgSasUDuWbxeOSZ/CbF+P2bEJAKVkLrK7EgDP3KsI7X4Bx/iPAGAbAfyrfgpEfhESCMYC7gkn4axaRLh1Lf4dz2N07MD0twAgO4uxjSAdH95D0eH/g1o4Mc/Rjm5s2wZJxlm9JN+hCAQjhtG5DbVkVr7DEOSAUjAZtfIYwjv+iuwZj1IwJd8hCQQjwurVq1m2bBmzZo2eOiunhpWRklYNh7Q2W5FkJtLJbIeDocx7sCLNwZDrfvRIDAeWfrSQHHdsf0yjf8Fm7uX05Be7R00zu4OWLK+NpYrlE5fjpbksEpZnkPj1SZuFnDQhtgxCut55KsUzATC763FOPIdAx0Ywg5gdm3CMOwVJceGo+yhIEVGY4qnCM/Pz8XwCO/6OFYh4Wdwzv5Cx3FQk30u51kF9RaxR4Wqvg57NMcmGoZTYxkh33yYLZNOJNWOS2FTE4lWU1DdP7PqXrdRlxaS1ikOJfo7kkyxkTY65P5LjTxauZpLa5vJ87W9b2VmMu+54XDVLaHnlf7BC7cjOEqrOvA9L7+bAGz/Bt+nPlB79/T4x9KkPzJ71ySLr2DExw0kC7CTxbzKZxe/ZH4dYmbHrIFthcqY6R5IlrMABbMOPo2pxyrTD5VzpfXyGSvU01qS1gz222Upr49Vdr/Xp7ols6XMfRLNO+yzNQcoeq+6Tr8GhvBYVVyX6gbWE9ryMY9wpyNF7ayw4hpKfh9nEnOq5mktZZhoZd99ycso+qzx745jyBaxAI6GNv8C14PvIzvwMgxAMAaNVXjsKHyNHHnkkDQ0NY7dhRSAQCMYEsgNJK0IrX4zZtQOA8O7IuPHw3lcACMXGkcsOJK0QzBDOSecgOUrQ978OgHvmpcjOsjHxUikQ9EZSXRTM/ASdax7GCrWjH9iCVj4TSfNiW0Jemwm9dT0Asqssz5EIBCOHc/xphJvexb/lT9i2haN8Hop3XL7DEmRAUhw4Z11FYPXN6A1P4px+ab5DEgiGnd/+9rdcccUV7Nmzh/nz56NpWsL6hQsXjnhMomFFIBAcdFi+Xdh6J0bndsyOTcjeOizf7jQbh7FDEalncNvf4ovV0vloNSeMRLgCwbDgmXwq/p0vYXTtpu3D+5E1L0ZnAyVLv53v0EY9srscAL1lLVqx6FovODRQi6dTsOjb+Nb+gsDWvxDYJlNy7N1IWnG+QxNkQHYU4xh/NuGd/0CrOxvZVZXvkASCYaW5uZlt27bxpS99Kb5MkiRs20aSJExz5H9EGp2aX4FAIBgEoV3PAGB2bEStPLJnqEtBb6+EhKPuTLyLv4f3sG/jnv1lkB3RVSqeeVePChGWQDBQJFmldOn1AFiBVhRvFeUn/QhHxbw8Rzb6sQ0/AOHWdXmORCAYWbSS2RQfdx9KwSSwLfQDa/MdkiBL1KqTkLRC9N1P5zsUwUCRJJDl0fdvFHLZZZexePFi3nnnHbZv386OHTsS/uYD0WNFIBAcdMiuclA9YIPR/D5q5VI8h38fvXUVxoHV6I1vg6yiFs9ELZqGpXcT2PYIWGEAtKojkRRHnvdCIBg8akENBbPPo3vzvyledDmKqxgzJIYCZcLo3AmAZ9rH8xuIQJAHJEnCM+sy/Jt/j2/Db9Eqj0KSh/crg22GMANNqAUThrWcgxlJcaCNP4vwzr+jjf8Ysrs63yEJBMNGfX09Tz31FNOnT893KHFEw8ogGSq5XC55D0TmOhxS2uFirMpqM5FOZhsj+RxlKxzsb7uYMDXT+U+W4PWR/g1ArBmTd2YrA8z2vGfjO3FO+SxG21qQFNSy0wg3PI1ZdxZaxeGY3fVIWgG23o0VbEY/sJbApt9hhzsA0KqPwT3r8pT7lEsMyQz0HuxXVBrtUZMsn033eaDE80sQayYfk/7z6LnGEtMn5xOXCapSwvapjnkmSXN8v82k4xF11KrOxO0d3sgjMewzEsqGvoLo+JqY6DV6vcdEuDEx7mBlmNmQ7hoJ+3QAvNPOxLf1P/i2PkPR/Iuylria4Z4GGNkdOTbJUt7YebKM/vPKRhibbrvkdZnKSpc+3edUmIFWFG8t7poFkbKTxKHJx6GHxOtcMHwM5Lz2precOZls79N08u0+Avg09UaqmPvUGTlKa4eqjlE81XEfkxlqR3aVowzQYBmrq23Lxgp3YHRsA8WJUjQT1eHAtgy63r8RO3QAR83xeGdfniHHHmL1fPze7LX/thnGaFuP7K5BckWmY01494ptG623M0lsY/uRLKPP9H43EAZah6hVJ6Lv+Q/6nmdwTr9s8IEIBKOUU089lVWrVomGFYFAIBhWzCCWfy+umZehVR6F0bqCwObf4Z7+ecIN/0EtnY9SNA2jbT3GtkciaRQnirsG98wvIQ1ni6lAMMLIjgI8Uz6Cf8d/KZz3uXyHM+oJ7n2b0N63KJjz+cwbCwQHKfqBNVi+3UhqAZJzcBJn27YwO7djtG8ktPMJYg2QkrMc78JvgaVjhw4guSoI738TW+9G9tQiKS6Mzq246k5HK1uQXVmGDyvQjNm1FX3PC9jhA5Gy3OPQqk9EqzkeSXENan9GMz29Vh4VvVbGIBKjdFagUcjHP/5xrr/+etasWcOCBQv6yGvPPffcEY9JNKwIBIKDDiva+wRLB0lBUl2AhG0GALD1LsJ7X8HWu1FL5mK0r0eSVNyzLx/27s4CwUgT2PM+/p2vYBsB7HA3yAX5DmlU49/xLI7Kxbgmnp7vUASCvKGVL0IpmYPl3z9o35hv9V2Y7RtAUpEcxbjmXge2SXDDLwk1PItr4jkASKoXyeNEb10JrSvj6cOuiqwaVmwjgO+DGyLDeiUFtfwI1NozsPUOjOZ3CNf/g/Dup3CMPxNt3OlIspYxz7GIWn0S+p7n0Pc8jXN69r1/BIKxxBVXXAHAj3/84z7r8iWvFd8gBALBmMEKtaM3L8fs2opthpGdZcjeOhxJs/cYrSsACO18ArV8MWbnViRXBZKrCtf0izE7t2H69wEWRntkWlXX9ItQvHUjvUsCwbATbtmArXdTuODzyM4iLF2MU+kPy98Etklg53/wTDgGJTpDkEBwKCHJKrKrCrNzO3rLStTiGaAU5pyP6W/EbN+Aa+pnI40Zkoxl2diWga13YLZvRp5VhWf+Nwjtehqzux4A2V2D7K5EK5mDsy7bRk4brDCSoxTPopsiw36j1Z1aehhW6ADGvucI73oSvfENHBM/hVq+GHD2m+tYQ5I1tPFnE975SLTXSk2+QxIIhhzLGn3vMqJhRSAQjAms0AG6l9+CHe5CLpyE1bUDALVsYULDiunfT2jnP1GKpuOacUlkCsK6Mwnvfo7Q9kdxTjgLtWg6etO7qOWLUUvnoXjHoxTPzNeuCQTDiuwsRNI8FEw/O9+h5B3Tt59w6xpkrQBH9ZKUv1gXzPsSoX1v49vyGIEdz1J23A9RvOKLieDQQ6s+HqN1Bf519yK7qyg55s6c87BCbQCo5YsThtmaHRvANrGCTZiBJrTyhahlC7A6NyNJCkrR9Jx7ykiqB+fMrxLa/GusYBOKltg7T3aW4Zx6EVrNyYR2PEpo868JqV7c0y/CUX1Mzvs2mlGrT0Df+x/03c/gnCF6rYwZJJBG5Sw8Y8fVmU9yalixLXtYZa3DSTpxZLKAKtf0ueYDveWNWSdJIJd0wy3Qi8UiRH1DR64Cvt5kktrFyCRoi4kZkwWjihY54amEfLEs03lS0wkn+5P49Saw9VGwofCoOzH9e/GvuRuQcE09P76N3vwBgY2/isRaPAfFMw7bNpFULwBG5zaMVT+NbCw7cM/4PLKztN9yU5HLOUp3LpKFnIM578nnM9PnGMlS22TpbX/pc427R0qbWIHFPqcTKMfH4vcux+i/rHSyXtWVOG45dh3LipRyOyNoRmPqWdcTn50Qf/J+xUgn6U2WnyZfJ6lkrtnKOmPS2Vjc4eZN2Lof2wohqy6ST2e6fHqXbeqpZdTZkvyMSD7P2eSbWZCc+Dn2fArueZ3AzmexQp3Yhg8kBWwTZ+vxFM7/Sp+y3XXH4q47FivcxYG3bqJ787+o+eg3AdC7IzOHmYHIRRi7hpLPZ/JzOttn5Fh9x8qW4RCuZrovMpU5HELptGVGF8eflym2S5bVJuc5nELs5PtRK5mGeszPCWz4FUbH5pzzsy0bSSsBQG/filZV2bMudCD+/3DTMtyTzkKSJLSS2TmXAb1k/d4pkeVmKLpPfdPInnG4512P5d9HuOFpAht/g962Cfe0C1POCGjFjz0p8xyO+zZTnpnqlEivlbMI73gEre5sZHft0AUnEIwSfD4fr732Grt27SIcDiesu/baa0c8HtFjRSAQjAnMzi0oRdMI7nwCvfEtAAqOuAnFOx7LtDBalxHY9Pv49uGGf2McWIUVagXDFx3bXYp77jVg+lC84wfUqCIQjBXMQDNdK3+GFWgEILh3GZ6Jx+U5qpEltO9tutf9DkfVEpzjjkfxjkMrm8OBl68gtPdNrHAn2HbEqVJ3akJa2VGIs3IBetuWPEUvEOQfSZIwu3YiKS4s3YeseXNKr3iqUcoWEa5/DLV0PpIWGU5km8H4NpZvL4Gtj4Bt4JpwFoq7Ml12GbH1zkjcct8GkmRkTy3OmV9GKZlDaPtf8Pnqcc+8HNkzbtBemdGAWnUC+t4XCW78Bc4pF6OUzM13SALBkLFixQrOPvts/H4/Pp+PsrIyWlpa8Hg8VFVViYYVgUAgSIfsrsZoXd6zQHEie2qxLZ3Axt9gtHyIWr4Io5fwzvLtivxHLcBRdTTOSZ9AUj2D6h0iEIwVrEAjVqARZ82ROCrm455wcHV1z4TRvZvu9b/FOe54CuZdHnE7hDpof+s78W30ltWRv61rUIunoxZOTMjDUTmfwK6X8e18B+/kQ+v4CQQxtOpjCNU/Rffqn1N0xPdzTu+cejGBVT/Gv+onKKXzkV3VaFXHYQX2YzS+gdH8Vnxbs2snRUf8cMCxGo2vIznKkAunZLW9JElo1ccjeycS3PhLfMt/iOQsQ6s6LvLOMIYbWCRZwzXnOkLbHia44W6UssNxTv9yyl45gtGCmBUoW66//no+/vGP88ADD1BSUsK7776Lpml8/vOf57rrrstLTKJhRSAQjAk8869Hb3oXxTsOO9yOUjILSdbwrbsfo3UV7llfRa1cSmBTpJHFOfHj6K0rsLrrcU44G2fdR/O9CwLBiGGFuwg3RxsiZQfuiacectOIW4FmsC08Uz6OJMkYvn10r/s9lu6ncOGVGF270Ns2Yps6WslMFO+4Pnk4a45Edpfj3/WhaFgRHLJolUsJ730ZeYDTLsvOUtwLv0u4/l9Yndsw9r+GFWzENf0Sug+sBr2jZ1tH0YDjtG0T48AKtNrTcq7vlIKJFBzxY4yOjRgH1hBu+DeyowjHuFMzJx7FyO4aXPP+H2brB4S2/YFw/T9wTr0432EJBINm5cqVPPjggyiKgqIohEIhpk6dyp133skll1zCeeedN+IxiYYVgUCQV4yOLVjhDhyVi/ud6liSNRw1JyT0NrHCnRgty3BM+Bha1VEAeGZ/Fdv+SuRXJsVFqLs+PsuAQHCoENjxNKE9LwPgqj0qz9HkB7VkJkgqocYPsM0QgR3/RnZVULT4ehzlc3HWRI5LsqMi3LIOK9yFWjAetWg8asE4zEBbPnZBIMg7eutK/OvuR3KW4p468C8qsqsS16yvAOBfdRsYAazQATADqJVHo5UvQHZXoRVMGnAZZscmMP0opQsHlF5SnGhlh6GVHYYdOoDesmzMN6xApFeOWrEUy78bvfF1HFMuGtM9cQQCAE3T4tdxdXU1u3btYs6cORQXF7Nr1668xJRTw4okSzmJ5sYCmaS0MeJSrDTbx5ZnI7EdLuFrqsb54ZbLCmltZjL9aJLtNZgL6a7DdCLNbOV+/QlLk3OIbWOGEy8SQ++ZV94Kt9O94jYAQmUL8C64PmUcvfOzdR82NpLqQW98O5Jn60qkqZ+OrDf8hHf/F9sywQqiFE7BOeGMvA3/yVRurnGlErOmk9NmOs+ZJMbp8kmFaVoJeaZLE5N8xuqO5OsjhuJIvHF6xy6r6WSr0fVJWcaOWSyPmGg2XYw9ot30zzvFoSSs6ysvTUybLLfNRhibbrvk+zGWdywGM3iAQP1zuCediWfaeUiqE8uwsNNIqZPL6jlHPbEk71867CTJY7pz1TddVpvlhKx5cY4/Ef/Wf8aXWcEWutf+mqLDb+jTQ0WSJcxAC+3v3xFfppVMQiuZRHDfciSHhVYU7UIfizdkROPPrk491BiNx2E4pLXpZMxpP6coOlc57XBKd3vXmaGGFyKy57qzwVmFaVooSna9QWL7q2mR+jL2nFDcVegHVmF270BSPXhmfh4lg7slljZGqvccW+8CQHaVp3236q9O7Z23bekgOxLKGeud/uTCmbDnWazOzSjFs/IdjiAVkgRiKFBWLF68mA8//JCZM2dyyimn8MMf/pCWlhb+9Kc/sWDBgrzEJHqsCASCvBBufIvg1j/HPxsdW7DMMHKasb9mVz3hxncI73kBiFj9Lf9etKqjcE44G/3AOsyOzYT3v44d7khMbJkpchQIDi58mx8l3LIGK9QOgOyuRFKd+Q0qz3imfpJw04fY4c74MivUhhlsSzn0x+iK/MpVvOR/QJLoWv0gent9dF0TiltMuyw4tHBO+Bhh1UNw6x+RnYVoFUcMOk/ZOx6a30VyluNZ+E0k1TPoPC3/Psy2tZEPdoap47JAUgswu+uxzfBB4yRRSuYiF04ntPW3uBfehJQ0HbVAMJa47bbb6OqKNKbecsstXHLJJXz9619n+vTpPPTQQ3mJSTSsCASCEcP078fwt6M3vYu+/1VQXL1WBvEt+yGe+deheCLTAtq2jeXfS3jf64T3vAhyz5dEpWAS7pmXoBRNJbj9H4R3v5BQllqxBKPlQwB8K2+j+KTfIxAcrNi2RaD+eWRXGa4JpyA7S3GNPzHfYeUd2VFE6fE/x+iqx7fuNygF4/HOvgTZUZhye0fZXCStgODu1yhc+BUqT/kere/ch+IuQCuqxtJHeAcEgjyjls5FKZlDYP29BLf9HbV8MTC4rhuO8acju2tQS+cia+6c0pq+BsJ7XkRyj0OrPgHbMght/QNm2+qIqH7y+QN2wfRGG38mxpo7CG35Pc5ZXz0oHFWSJOOc8VUCK3+Avv8lHBM+ke+QBElIkpDXZsuSJUvi/6+srOTZZ59Nud1bb73FkiVLcDqH/4cm0bAiEAhGhODu/+Lf/OfEhdHpFp1TLkArnY1//QMENj+Md/51oDgIbH4Yff+bPdtbISDyUiapbmR3Nb7Vd2G2b4xvIjlKcc/6MmrJbJAsjLYNiG9DgoOe6K+qrnHH4Zn2qXxHM6qQZAWteColx96ecr3p24d/22OYgSYKF15J4dzP07n61+ivb8c7+RgqTrgB7+ToDCP64H8JFwjGGpIk4Zx4Lr6VP6H7w5soXvqjfp1oGfOTNbSKwweUNrjlT1iB/djme5hd25GQMLu245z5FdTyw5FkbcBx9UYpmIhr5pcJbnwAe+MvcU69aEgabPKN7CxDLT8So3WZaFgRHBKcddZZrFy5ks985jM5pZMkiaeeeorx48dnnUY0rAgEghEhuOt5tMolKGWLCG76LUgK2JEhOqEdj6IWfgvnlPMIbPgVne9cj1I8E7NtPa7pF6E3vY/ZuTWeV3jPi5F09U/Fl2k1J+Ca8mlkR1HPeHZJQSubP4J7KRDkh45VD2AbAZy1x+c7lDGDpfsI7HiKYMN/kZ2l2Ho3ncvvpvToGyk78ae0v3sbXRufxrYMvJOvzHe4AkFeUQqnoFYcgdGyDNvwIw1i9p7BYaOUzEYpnkto258AcEy5EK1y6CXdavnhuGZfQWjbX/Ev/wGOSZ9Cqx37M6zJRdMxmt/CNoNIvXsOCwQHIXbUGbVy5Uq+9a1vUVCQeQicbdvccccdhEKhnMrKqWHFtmwYhSKykSBbwWg221lxidmgQsqJ5LJiosBMMQg57cBJPrbJ10Y2ouNcSSU2jcQSlXFmKStNd957BHx9hZzpxLaSDEZXA1awGUf1UQS3/gWQ4o0qjvFnEN7zAnrLclzTLya0oyLiQGhbi1wwCb1lZb+z+sjuapxTPotWviitlDOfZHvMB8Nw7W+qc5luG1lNlLkmE7umsq1TYlLb/srsyTu5Tk1cH5PZWkZMyBi59lRX4iMwdvv0J2nuW2bqWDIJKJOv1WRxbDbn1LZtsC0sA6xgJ2rRZNSCqrTbW2b0vlWyE+cOZJtYHZR83Q+3SD1VWX1XgN6yCr1zF5a/iXDLCrAMvNPPwz35owQa/otv49/oXv8wZUffQNUZ99D0wjVImhPTH+mpYkUFmlJUyivb0es+6bAkXwfZyn8Hwmio77IVome7Ppuyct3vgUhg09c1Azvm/ZWVq7x2OEj3DhF7X3FO/CRGyzLCzStx1p6Q8Tgkx96f9Dbba0gpmU94739xzvwqsrcOZBeKd3z8HSs5n/6ewbH97SMb7zUhhVp+BErxHEL1jxPe8ShG87s4p30RpWBi2nxHgmy/Q6Sqc2XvJMDG8jWgFM0Y0riyJafvQGO7HStHJJBH4Q7n/zEzJNxwww1UVaV/T+rNXXfdlXP+oseKQCAYdoK7I9O+BuufTljuWfhtwg2RMZFK4RQCGx7ECrYSm2PI6tOgItMzHUcESStEK180DFELBKMX2zJpf+8WzEArhfO/jNGxDfeUs/Md1qjGt+FhgrtfQdK8KO5qnDVH45n6cRR3KQDeqR/D9O0n1Pghlu6PNFqFOnGUTslz5ALB6EDxjkOrOgb/pt8jKS6cNUtHPobS+dDwFPrel9DGnT4i0wZLqgfXtM9jVh5DaNsfCay6BaX8cJSimciOEmwziG10YwWbwQrjmPBxZFflsMc1UGR3LUgqlq8+bw0rAsFIs2PHDiors78v169fz7hxfSX3/SEaVgQCwbDjnfk5jM6daOULCTWvRFZdOCecg1o8E8u3G6NtDYFNvwfZiVo6DyNq9lcKpyB7xiN761C847F8uwhu/0dC3r2HCAkEhwpG1y6Mju0AdK/7HWDjmXZufoMapdiWQffaBwk3fYBr4hl4Z14EpO514J3+CYINr9L47Ffwzoj4ByzdN5LhCgSjGq32ZPSmd2CIXCa5ohROBdlBeOffMZrewn3YDwble8mp7KJpuA/7Afq+lzFalxHe+Y+eGYhkJ7KrAsu/B5BxTv/iqB0yJMkqsqcuxY9XAsHBy6RJk3LafsKECTmXIRpWBALBsCMpToqPvAkAx4TEL3+OcadGplq0DdTyw/Cv+Xl0jYzsnYC+/3UkVwWYQWy9G9ldhRVoiqfXqo7F7K5HKcitwhQIxjK9p/+0Qu246k5FVnObXeNgJ9yyCv3ABmR3BeGmD3COPwn3pI/2m0ZxV+CsOoxQ0yp8W55E8ZTjKJs6QhELBKMb29IJbv0zsmc8WvnCvMXhmPBxwvWPYQUaI3L6EWpYgUijhGP8GTjGn4Ft6WCGQHFh653Y4XYCq2/DaHoTo3UZnsN+gOzObtjBSCMXTsM8sBzbMkasYUqQBWJWoCEnVa820zRRlJ7j/N577xEKhTjmmGPQtIE3Gos7SSAQ5B2t6uj4r8cF86/B6NhCuG09+v7XAbCDLWjVx+GoPQGlaAZW9y66V94OVhi96W30prcpPOY+JIc3n7shEIwYasF4HFVHEG5ahnfOJdiGH9+Wf+KqOwXFXZ7v8EYF/u3/wuzcEf/srDocxV2R0VlRcuS1hPYvR/FW45k4e0SGGggEoxnbtjD2v46+/xWsQCOFh38/r70x5OgPKe7DvoeUhwZl27YwWj7A8u0GK4zsGUd493+wQy09G5kBAuvvifhYimflpR6xbRuzexe23g5GAMlRjFwwFUlxolYdj9H4GsGN9+KadaWQ2AoOWuxe7qh9+/Zx/vnn8+6773Lcccfxr3/9iy984QvxqZpnzJjBq6++Sm1t7YDKyqlhRZKlYZWkjaSgayRJPmZKkiQrmeGQmvaNKbft0gkH+8tHiG/7J1lmm+29lYsMNVMZmSSgPcLRZJle7G/PSZbV/uWbsTxj8rp0kjxbK0WpWIqmeNAb3wHbQHKW45zyWYJbHsbsuA+QwArH0zgnfxJJ86TMb6ySjcgv3TWT7r7Ntf7uI2DuJSuOS2ujItSYGDVZwNhX2po6tmR60veNPddnRd9jGflrBBOnzo3tX3/3Sbqyk4WaA5V39j7GfcqIhqGVOAFQjvwyza/U49vwMJLiBEnGv/0ZCuZ/DWf10j55xY9p0mWQTqzbe3mm/YmlUfJouEu+XrXSWZidO1C841A81ahFU6Pb9S8/lVUX7rpjIx9sCdvukdb2lBXNI3r9y1qkcDtW/0WXmzEZZppzMdbIJG8diCA2W/q7N3IpK13dlA1D9Q6cquxspbXD8W6V/DyOS5ejf8M7H0Pf+zyyuxb3zMsI7X+LwK5nKZj9RWSt7wwb6eqUVGQ6H6nfFWL5yX2ktZnekXrnZ0bv13STC6SbkCK482nCDU8hOStAVrH3vQyqO9JY0fRmz74Fmwiu+xmSqwqt5iS06uOR1JH5AcgK7Cew5qfYelfiCklBKZmPY+oXkb3jsTrWE97+MJ45V8T3e6iusVE6EkpwiNHV1XMPfPvb38a2bZ544gn+8pe/cM4556AoCg0NDViWxcUXX8ytt97KL37xiwGVJXqsCASCUYXp201g0++wfLviy9wzvojZuRWjdTkAzokfRymYgOypRXZXi26sgkMSxV1K9Ud/jt7ZhKQ4afvwAfQD6wjufhln9chLJUcTtm0R2vMGjsojKDzsSlFHCASDQCmehb73eazAPgKbfg2KE8wQAVcp3hkXjng8kameJazOLVBYN+Ll641volYdj2vGpQDYRhBb7yCw4b6E7ZSiWTgmfgK98TXC9Y8T3vUkavkRyN46JEcJsifijxtKbDOE0bocs2NTvFHFteD7yO5a7FALZscmwrseI7j2dmy9AwCj5QPgiiGNQzBAJAlG5VCg0dNzc/PmzcyYMSPeC+zNN9/kZz/7GVu2bKG2tpZrrrmGT3ziEynT/ve//+Xxxx/n6KOP5rjjjqOiooIXX3yR8eMj9+GPfvQjvvzlLw84NvGmIRAIRhXhhv/EG1XUsoU46s4EM0xgwwPxbZTCSWgVh+crRIFg1BBqWkv7qj/imXQq+oF1ALgnnJ7nqEYDEtgWsrtCNKoIBINELVuIe8F3sHw7wfCDpBDe+xJm1868xKN4xqOUzMFo/RClcBKyqxLFVTRy5RdOxWxbgxXuxPLtwmxbjdG6AiQJ19xvoO99EbNjE2r18SjFM1GKZ2JN/izG/tcwDqzEaF0W73WrlMzFOf0SZOfQDOHUG98gvONvSN5JuOZcQ2jbXwiuvQPHpE+j1nwEzTMe2/ShNzyJVnsqjtqTsc3AkJQtEIwEc+bMYd++fVRVVfHqq69y2mmn8bGPfYyLL76Y5cuXc9555/Hss8/y0Y/2daq1tbXFG1HKysrweDwJUttp06axb9++Accm3jYEAsGowjXtQtTyxSgls7BD7fhW3AyAUjQT96zLsY3OyKwAAoGA7i3PYnbvw7fl3yhFU7B8+6O/5h662LZFYOcz2GYAxZvbVIkCgSA1cuFUwrufxmxbC5KKWjKHgrmX5y0epXg24frH8a+6FWQHrsmfwjmhfzn1UOGY+jkCK39EcN1dWP69SI5SlKIZOCZ/BtlZhlo6v08a2VGMY+K5OCaeG3E+mEHM9nWEdvwd/4qbcU69ELXymAG7WGzLQN/3EuE9z0c++3Zh+feilC/BaP2A8M5HMbu245zxFdTSxegNT2K0r8M17SLhkRKMKXo7U37yk59wxRVXcP/998eX3Xjjjdx2220pG1aqqqrYt29ffMafq6++mrKysvj6trY2vN6BD9cbFQ0rgx17OxJOkmTSjbtMRbb7Fx+jnsGtkI/9FeMkcyd5jKpF4nnL5RqC9OOGU3kQksccZ0smP0RsbHIslt7bmeHEsffJ46bTOVV6Y5thjI4N6E1vE9zxd7SKIwDQqo7BPetL0V+eM89Bn4uHpjfZxDjUZcbIdK5Src90X8bWD6cXwExzraRzjmTrEYidi/h6M30ZsWOf7vpN3n9nYdT4Hl1u6ZGb1QybWaXPZptsXSuZ6H1ZxfI0fDoAsqYgKRpq4XhsIxgXtQa2/R33cTfFfUd9Ys8QUmr/QyyGNHFm6c7p2X54XuRt2yaw7e8Edj6Pe8o5uCeeFP/SkM4P0sfd0Wu9pUeuCclMXafG01oJf+Kuldj65HORq6NktJFtnEOxP7leK6oz0o1e1iJ/zVDEpWTquYsjMjllsk2f7fJU67K9p7I91v0955LdKgkYfsy2tcgFU/Ae9m0kWcOWJUzTSvv8S64Hh/K+d9adgVY6B0nRCO9/g+D2R1HclTgqj0i5vWn2PZCxd6Xk/U3nXImvd5TgmPI5Qpt/A4Br7nUJQ3oynzMJZDdK2RLcRXMJ73yE0JbfY3ZuwTn14gH1sgusuQOre2ekgWfGF9GblxGufwxJ9aCVzEZv1zFbP8AsmoRWfUIkzkAjmtyIu2YaAKH2EADhgJGyjKH8/pHT96hh9HuOPiQkaTQOBRqdrF+/nltvvTVh2Re+8AV+85vfpNx+0aJFvPPOOyxdGhkufccddySsf/PNN1m4cOAzno2KhhWBQCCwzRBd796AbXQju6qwQ62E970GgHPiWaI7v0CQAte4I2lf9iBq8SQItOY7nLyjH1hLYOdzeGd+Fs/Uc/IdjkBw0CBpBTinfJbQjr8T3v08zon5vb8kWUMpnIokS7imXYQdbCGw9RG0isXDPmOR2bWN8I6/9cQyiBl1JNWDc/rlKMWzCW37E1ZgP87J5yMXTMm6J4lt+ONDqM2ubRjtm1BK5uKYcA6OgmokWcHU/XS+fQ2hXc/giDasgITetj3esCIQjBW6urpwuVy43W6cTmfCOofDQSCQenjbk08+2W++S5cu5aSTThpwXOKbikAgyCt660r8Gx5ELZmNbXQjOcvxzL8GvWUZofpnADB9e1G8Iy+oEwhGO57JJ2GFgwT3fQiA4inHM/XsPEeVP/TmlcjOUtxTPpbvUASCgw5n3Uex9W5Cu55CqzkRxVWc75AAkCQJ16Rz6Vp+C8aBNWjlhw1reaFtf46LYbW6s5Fdg/ejaNXHIbtrCG5+kMDq25DcNRF3TOFUtLqP9dtYZLavB9tCG38W+r7/ou99MbJCUmHWJThrjkdS3cjuaiz/PvTWlQDIrlKM9m2A8HIJxhYzZ84EIr1Uly1bxqJFi+Lr1q1bF/eo5MqRRx45qLhEw4pAIMgroYbnkGQnRutaAOxQK93LfoRaOhfsyJCH0O7/olUeidm5heCOx3GMOwVH1VH5DFsgGBVIkox36hlopdNoff2HOCrm4KxenO+w8oKl+wjufQPPlLOEM0AgGCYcdR8lvPcl/OvuoWDxd5FkLd8hAaAUTkEpnEyw4YVhb1jRxp+J0bo80rPEVTFk+SpF0/AccQdmxwaM5vcjPXd3PYnsGY9anl7Yb/p2g+pFcpSgVR0DgL7/dVA9+Df+HtlRilI6F+fUzxFY+3OCWx6KlOepItSyFtuykGQx5n9UMGpnBRo9vPLKKwmfa2trEz7v3LmTr3zlKxnz2bNnD2+99RZNTU1YVuL4vWuvvXZAsYmGFYFAkBeMjs3ozcuxAo1olUtQyxbiX3tPZKVtYhxYHd/W6tqKvv8NAtseATNEMNCEpBZgGz4U7/ghn65QIBhraMWTcZTPJLDrTfT2BpAUvLMuxFE2K9+hjRhG+xawwrjGn5jvUASCgxZZK0CrPg5938tYgcZR05tUkiRcE87Ct/4BjM4dqEVThq0srfIotMrh+XFHkmTUknmoJfMizqi1dxLc/Dtcc5yoJfNSpjE7N4HhI7zjEQA887+FWnEUgU2/BVklsPMJCkrn4ihfAPOuJrD5D6B3o3fuAsNPYPc7eCYeNyz7IxAMNZmG6lx33XUZ83jooYe44oorcDgclJeXJ/wYI0nSodWwkg95a64x5ComhezFY5nyHg3Hpze5Sg0PNrId6put3C15fSoh22DLGAx9ZMspRHmmfx/+Db/BDrWC7CC892XCe1/unQuSVoStd8aXBLY+AlZErGaH2/GvuQuITANZuPD6IYl9sALa4SAXAW0mUWKyUDbb/LKRt8ZQHJFfWmKyzmRpbXI9kO31nMs121cwmiRQjApFHcWRcbmGP9IzSvJFtrfM5JjtXnnJfZYl5J2jtDZdOlnpu7+xuGKXaUysGpF0KlR+5Ed0rn6Urg3/AqDj/VtRPNUULrwKtWhS/JzEzlFyDP2RbT02EvV9chmx84sZqS8UdyGyKqcVxqa7llLd/rbZ/3mOp43GINnR5TGpbRqBcDr6u87Tnadspc2Z8umPfEh1c62vYsQktZY5cjEP9Nj3L7HNrqxs6U9aG3v2mSTHF/nbc88ZBLf9BX3/G5EZbFy1kXhS1FeDiTVVbLEyJDl1/WzJoFQcgeyuIrDjMTwLvpn4ZSnFfZLpfTnT+sHUc7Fj2v87vYR3/vUENjxAcP19uGd9BVdNRLqpuiL1uK230d25JZ5CLZqEu6wMrXgS3uof0vLqjZid27DbX0ctHI+7tJjC076HJGs0Pvs/aCUTCO59ncqTzoYdHUDPMyLQERr4DpJaDjyQ70cCQX98+OGHbNiwAUmSmD17NkuWLMmY5oc//CE//OEPufHGG5GHsLfWmGxYEQgEYxvLtxc71IpavhjL8GN1bgM70UIvuysx9S6Klt5G5/s3xhtVeqOWLcQ960sjFbZAMKqRJJnCOefGG1YATH8j4ZZVqEWT8hfYCKG3bUZSXaNmaIJAcLAQ3vtfjMY3kLRCzM4tOKZ8Dq32lGGXxOaKJMl4pl9E95p70JvexVF9TL5DGjSS4sQ99yoCm35LYOMDmO1r8Ey/CNvUMP3NdK15EADP5FPxTv84irtn5kTVU0nhgi/RtfIBOlf9ITljABRvOcE9a7EP1V8/RxkSEpIYCpQVu3fv5sILL+Stt96ipKQEgPb2do499lgeeeSR+JTKqfD7/Xzuc58b0kYVgNFVIwoEgkMCteJw1NJ52Ho3jorFkZ+KFRda+SK886/DUXM8ZvdukLVIo0oSWtXRFB57L94F30B2jA55nkAwGpAdXgrnnoerbimyM3JvhBo/wOjem+fIhh/bNlE8tUiKaFgRCIaS8K5/Yfn3YHZsxDV1dDaqxNDKD0OrXEpw2yNYUcHsWEeSNdyzr8A180uEmz+k/e1v0PLiV2h767sYnfU4KuZRtPBLqN6qPmnd447FM+3ciMhWdiB7KlGKxoFtImke9PY9SKoT+unRJBCMRi677DJ0XWfDhg0cOHCAAwcOsGHDBmzb5vLLL+837eWXX84//vGPIY9J9FgRCAQjhm3pWKE2ZFclRtt6ZO94ZHc1WDpKwXiMji04ak9EdpahFEzAtg2s7j1IihPb6AbAOeEsnFM+I+SUAkEa/Dtfx/S3xD+bXbvwb3ucwgVX5TGq4cO2bfzbHie07308U87MdzgCwUGH96h70fc8T7j+MYLb/oK06ylcc65FLp6a79BS4plxEZ3vf4/gtr/hmZ1ZYjkWkCQJR/XxOErnEm56F62gDMVTjVpYg+ws7rehq2DW+RQt+CwgIUkSqkcj2LiO4O53CLc1ULrkbNFLYrQwauW1o++d+4033uDtt99m1qwel9ysWbO47777OO64/p1Bt99+O+eccw7PPfccCxYsQNMSf5C5++67BxSTaFgRCAQjhn/Dgxgty1GKpgE2lm83atl8tJrj0fe/CUj41t4LgFZ2GN4F19K96mcY7RtA1nBOOhfXRDGNqkDQH6VHX0vLyz+Mf5YcxRTM/nweIxo+bNtCb/yQwPancE8+E++M8/IdkkBw0CFJMo66s1BLZmMHmwjteYnA+p/DzMvRyhflO7w+yI5iXNM+S2DTQ+hVx6CVzc93SEOG4q7APemcuGMl5v3KRHLDi6t6Ht6JCwFwVLqHNkiBYASYOHEiuq73WW4YRsbplm+77Taef/75eKNMsrx2oOTUsCJLUryw/iRY6RisxGq0SVn7I5+ipv7KG+5j2N8QzUNNYjvcvWRT3U+x85vuGuiRAWafZ28UJVHcmW09YHTtQN/3BkbLcgDMzm2ROBwlKLJKwezLCbjKCe58Eu+8q7GNAP5Nv6P9ja+BFXGvFM7/OkZ3A13v3hD5fMRNyI7CrMofTtKJI9Mdm5iIr4/8MsP1MhQSwGTZX64S29R5Ja8xM6btTR8RadIzJlWM6Y5hOpJjMAKRa0pKI1zsiS13eeaQSWz7SRZfF7sPoxJb1RH5xcVdO4eq03+MZTlpefm7OEqn0PHBrRTMuQhn9RHxMmJy1+RYh+JaG2z9lyp9qnvGv/0Z/FsfQ3IUUrzgQiRZzVkEHnuHim/fa/9j/4u/aGWoO/tcU9EvPbHfH2PnLlmsm/y5N7EvTrlKXNOKdnO4NseStDbGUF7HyXkO1/aJaYcuL8j8LOpN8j2QfB9qJdOAaailC/Ct+V9C9U/gqFzcp4x0Ivj+9iWWR7r6vc8zNjmv2PuPFrnbnDUnoDe+S2DzH1GO+DG25Ehbdp9Yhlhaq6h9Ja7pykp+f0t3/8Y/p7lNkk+73auOsUKRZ4aj3JWwjTP6WfWYCXmHumJfXq2sYk5GCGsFw8Gdd97JNddcw/33388RRxyBJEl8+OGHXHfddfzsZz/rN+3dd9/N73//ey699NIhjUn0WBEIBMOG0bEVs3sXwa1/gaTZBhxVR+OaeHb8s3PcqQR3PonRvgnZU4t33tcx/fsJ7ngSsOhafW9CetFtVSBIj7NqDsHmPWCbhBpXAtCx7B6qzv5TfgMbQkx/I4H6F5DdFZQs/Q6SLF5pBIKRwAq1YgWbR7UcVpIkPDMvofPDHxCq/xeOyZ/Nd0gCQRZIcbGwoH8uvfRS/H4/Rx11FKoaef4bhoGqqlx22WVcdtll8W0PHDiQkNbpdGYcLjQQxFuIQCAYcvQD68AK4193X+IKxYln+udxVB2JpDgTVpm+3QCE9rwYWSBrKAUTiP1CIrsrcU85F9k9AaVgwqgV5wkEowXFU4Gz+jBCjauin2vyHNHQYBtB/DufJbD9SUDCM/l0VG91vsMSCA4ZjAOrwAyilh+e71D6RfFU45x4LqGdj6NUHI1SMDGrdLZtYex/Db3pHZTCyTgmnYekuDInFAgEI8Y999wz4LTXXXcd9913H/fee2/mjXNANKwIBIIhJbzvNQKbH0690gxhdtcj1R7fZ5VaMhvP7C8jO4pRi6bR8e4NmJ3bkbQCnONPxTP1XCRZxTLGzpBAgSCfSJJM4fyLCLduQnYUUbToinyHNCSEmlcQ2P4ksrOM0uPuQHEJP4BAMJI46s7EaFuHf90vcNQcj3Pi2cjO0n7TGJ3bwbZRi6clLDd9+wg3volcOA2tYvHQxzr+DPTGtwnt+Bvu+Tdk5U/Q97xAuP4x5KLp6PtexrZMXNO/MOSxCQSCgXPJJZcMOO3777/Pyy+/zNNPP828efP6yGsff/zxAeUrGlYEAsGQoreu6rNMqzwSvfkDIPJyZdtWnx4nkiTjrIl0y7PCndiGDwClYCKeqecNu7NGIDjYsG2bzlV/QHaVUXHizdiM/QaI4O7X8G36K7KzhNIT/lcM/xEI8oAka3jmXUt4z/OE975CeP8bFCy6EaVwUto0XctvAaBw8XdRi2f0LF/1U+xwByDhmn4hrvEfGdJZ/yRZxTXtc/jX/hx97wto407v8/5h2zZ2YB+2EUD21qE3vYVaeTSumZfj++D/Ialjv+4UjBFG7axABxclJSWcd97Qy+5zeiOxbBvJTi0FyySZGghjSVbbH5mEoiNJuhiG6lhn8+U3k8Q2OY9sJWFD8cV7oGLdXMrOJCbLleGQC8aOQzoRZ3/SWvesLxGqf5rw3pfBNpEcJbjnfA1J1gg3vo3ZtZ1g/VN4pn4qZfy2bdO18s6e/KZGKr7R3lMl+TwqpK4T48fOTBT1xeWtav/ixoGc72xlkOny7q/M2LUfOz9mOLv4eq6p1MuTj1+qMtOR6T6OiUL17oiQT/NoCWXHzk1/JN8TAxXAZson1bbJ3zmsaLxGwMC2LTD8yM5CQvveJ9yygbLjvo3iLox/WTGCRlZlpjqO2dZ1w1FvW7qP7g0P46w5Eu+sC1EcjmgeMbFs4nUuRYPIeF3H9j96HBOOb2wbJemLWCYpsxI7V1FpZWx5PF2iCFxxRF6kzXCi/DmyzIpuM7CH3FBIbHMtI9frv788s9m2vzIH+4wdDAOrr2NpY58Hd56SheD9yr9jz6UMzx9JlpAcXlxTzsM54Uy6V9xO94qfIDmKkNQC1NJ5OCd/OqEBQymZi9m+nq5Vd+Ga/Gm0cadE1lsmsqsK2VtHcOtfsbp24pn9ZaQ0z4BMx8E0+wpW5eJ5aLWnEt75D4zWZTinXoRSMDmyfecWQjsexereGd3YAVYYueakWInYpoFl6NjhNiS1AEn19BtDjPjzMYtzl1EAGz9v0ahiz5po1raZXH9Hz2W0LlKcPV/5ZGekvrGizwLZEauPYnlZCWlUPXpMA9H6agjrDoFgIPzyl7/k8ccfp6ysjCuuuIJTTz01vq6lpYWlS5eyffv2Pum6u7spKCjgoYceGpa4xG/AAoFgSPGvvY/wnhfBjnxBsMPt6PvfwjP78shUyYoTtTD9OGejfSOWfw8ARUfdiVY8fUTiFggOBvw7X2b/01/F3/AW7R/+Ctf4pbhqFuU7rCHB6NoFtoln2idQXP0POxAIBCODpHrwLvo2rmmfw1F9PLKzlPDu5zA7tiRs56w7EwDFW0dw+1/xrfgxevMHuOddi22FsQ0fzqkXRH+A2TnkcTqnXoR7/v8DM0Rg1a0Et/6R0M5/EljzU7BtXHOuxX3YD3FMOAfHpPPQak4GQC0/AmP/f/G/93UCK75LaOtvhzw2gUCQPffeey833HADs2fPxul0cvbZZ3P77bfH15umSX19fcq0FRUVnHXWWTzwwAPs3bt3yGMTfWgFAsGQYZthzM6tSUsl1NK5SJKMe+pn8Ew/v988fOt/CYBn9uUo7sphilQgODiJ/crb/v4v0EqmUHrkVXmOaOgINy1HUj0oHiGqFQhGE7JWgHP8aQDorasxDqymp58W2GYo0hME0GqOxznlfEK7niKw8VeoZYtwzbiEwLr/w/LvBUlBdpUNS5xK8Uzci36Ivu8Vwg3/BsOHY+In0erOjveuSRbcOiZ/BslTh777aexQC0rxPGzbHtLhSgJBD6N0VqBRdLk/+OCD/OY3v+Giiy4C4Morr+STn/wkgUCAH//4x/2m3bRpE0899RSPPfYY3/jGN1i4cCHnnnsun/jEJ1i4cOGgYxMNKwKBYAiJvEg5J34Ms3sXWuVStOpjsp7Bx7ZtbL0biEzHLBAIsse/81X89a8BoBaOp+yY65FVJ3Y/Q/fGCkZ3A8FdL+KZ/mnhVREIRjFq6VxQXBht61GKZxHe+zLhhmew9c7IMKGyhciOEtQF30I/sIrAhl8hOctwz/oKeutyXLUnIDuKhy0+SVJwjPsIWtVxWIG9KIXT+t9eVtGqjkctX0Jwwz2Edz6C2b4G5+xrxeyEAkEe2LFjB8cee2z88zHHHMPLL7/Maaedhq7rfOMb30ibdtKkSVxzzTVcc801dHR08Oyzz/Lkk09y1113UVpaGm9kOemkk1CU3Bu4xNuJQCAYEmzDT3DnEwCEdj1D4VF3IrsqcspDkiSKj70HSfWKL08CQQ6EGpfTseLXALjqjqbkiCtQtINnetBIbxU37sln5TsUgUDQD5KsopbMRd//GmbHRsyuHWjVx6HVnIDirkHSCuLbamWHYU36BKEdj+Gc+DG0qqNRlJFprJBUd8ZGlYTtFReueTdg7Psv4fp/YPv3InnrhjFCgUCQioqKChoaGpg8eXJ82bx583j55Zc59dRT2bNnT1b5FBcXc+GFF3LhhRdiGAYvv/wy//73v/nSl75EV1cX9913HxdffHFOseX0zcW27B6RW6p1g+RgkdWmYzRJbJPJNqahPEeDFVAOxw8F6fLsK9jMPe/Bnve4eM5K/DwQ0smmk6W1yeuTy4wtD+1+jtCOf8SXOyd+HMVV3m9X2dgxTJaYKq6SpJjyXy8MRn6YvJ+SlVr6Fj+2RmxJTGqZNHtSDrFkEuCmk1kmI6t9L/i+10hqUWi661ROEjPmQo/UMfXn5PszXRkxia0ZMhKW5yLNHKwQtM/xMhIrm5THPilrM+Snc81DOCrmU3TY5ThKapAkCSkqQo73yE+6v2PC1OQyByrxziZtpjo2tj4WG0Bg138J7HgKxV2Gq8QbP1+Zrt9Y9RPXxcaEstHtrDSS4lSXbKxMORpXn7ottl9J+x/rLRS/LmKxJYlzY/Te7+Q6MCax7dk2dd0Ql1YmXTu51KXDXe8O7L4fWEzp6rvhYGhEwEMQSAqyabCIi277TCKQ+hgmi3Fj27mmX0xo1zNY3TvxzP8Gaun89GV6xgMWWBEvW0w+K9lpBPBpjnHyO1ZynTIUWJ1bMFo/BMWDlOKHo+F4L02WDSeL7tO9r8Xu/1id1fs5Z8WOceyZGa0bja5wdNvIubBSyLR7M5h7ajS8241KxKxAGTn++ON57LHHOOGEExKWz507l5deeolTTjkl5zxVVeWMM87gjDPO4L777mP58uWYZv/Xf8p8ck4hEAgEUWzbJrTzn4R3PweA5Cyn4PDvIzuKxfhjgWCE8G16FFv3U3zYl1E8FQfVvWfpAbrWPgyA6W/G0v2AI79BCQSCfpEdJbinZ/dLr+woAiC44x+4Z3151PZWNVqXEdr8ALJ3Iq5ZVyIpB0+PQIFgLPGd73yHZcuWpVw3b948XnnlFf75z3/2m8fq1atTLpckCZfLxbx583A6nTnHNjprL4FAMCawfA3xRhXP3KvQKo/Ic0QCwaGD0dlA18a/EW5aRcHcL6B4cht6N5qxbQvbCBLa/z4ARQu/Qrh5eZ6jEggEQ41SMAnXzMsJbv49euk81NL5SIoTyeHNd2gJGK3LkD11uBb84KBqvBYIxhoLFy7sVzQ7b9485s2b128eixYt6vc+1jSNCy64gAcffBCXK/tGVNGwIhAIBoTp34fRtjb+2b/+fjxzr0SrXJLHqASCQ4euDX8l3LwGrXQW7kkfyXc4Q0r3hr8S2Pk8AM6aI3FPPInCmZFZR5KHbgkEgrGNo/pYwnv/S2jHPwlu+wuSVoh34bdQPLX5Di2OUjSdcOuHWJ2bUIpn5zscwUHLKJ0VaDRNC9SLYDDI6tWraWpqwrJ6xlFKksTHP/7xtOmeeOIJvv3tb3PDDTewdOlSbNvmgw8+4K677uKmm27CMAy+853v8P3vf5+f/exnWccjGlbywGh2raRjJP03+XCrZGIknCrpxpsmj2FNHsucTZ59vQ/9eyGy8UQENv4Gs2snAErxLMyOTYT2voKz6siUcWc6hn3Xpx5fPRjS+j4y/PqUTdlxh0qSUyU5j7RuGdK4V4zU6bKJJROZ9qvv2O3eZfRdlqpsLTbOO/o3fpySQoydGt2f+ktz6lizG1MfO4YxVFfiS8tQTJqTyeMw0PW9/Se9nRtGVwPhlnV4Zn4e79SPIEly2mvO0iN5yFHHguqOPPqTx88Ph9sh27ozdk5iHpRw80oAio+4EveEY5EkOe4rkR1J5y/JRWInOWPi91r0PNtp3Crx7XsdRsUZOVaKO1KmEb0+Y44COY23InkmprTenljMdtJy+l4TiiPqs4i5gaLOlWTXSrr06a6PVOTqCsqU50j4TfLJcPg8khlovT6QY5/sTknrqbL7L6vP86yf60ktP4Jw/eNIzgrAxrfyDtyHfR/ZWZ5VzMl5D/W5UKtPwjiwguDGe3HNvhK1dP6QnPd074rp3yES64HYs7WPWyXmlIr97e1citU70brQDJgJecSfHdH1yR6uXOn9jpXumhLOFUGuPPfcc3zxi1+kpaWlzzpJkvp1pNx666383//9Hx/96EfjyxYuXEhdXR0/+MEPeP/99/F6vXzrW9/KqWFFzBMmEAhyxrbteKNK4dF34T3sBpyTzsVRdVR+AxMIDgGscBddq/4PxTsBZ+2JSAeZ6M7w7cf0NeKZ8hE8E48XU5oKBIcA2vizcC/8Lp5FN+E57PsgOwhu/u2omS5ekhRcs65GKZpFcOMvsQKN+Q5JIDikufrqqzn//PPZt28flmUl/Msknl2zZg2TJk3qs3zSpEmsWbMGiAwX2rdvX04xibcVgUCQM72HAElaIZIk45r8SRy1J+YxKoHg0MC38WFsM0TBgmuQlINL5GrbFu0f3INSUEvhnPPzHY5AIBghJElCKZyKpLqRtEKc0y/B6txCeNe/8h1aHElx4px5BZLiRt/3cr7DERyMSERmBRpt/0YhTU1NfPOb36S6ujrntLNnz+aOO+4gHA7Hl+m6zh133MHs2ZGhfnv27Mk5bzEUSCAQZIVtmYR2v4hSOBn/mp/HlxvtG9HK0k+lOFD0to1YgUYctSeIX6wFgii2GSbctAzPjM+iuA8eWS1EGlX05nUYXbspPeYGZGdhvkMSCAR5Qi2Zi1Z3NvruZ9CqT0R2ZTckaLiRFCdK6XzMzq35DkUgOKT5zGc+w6uvvsq0adNyTnv//fdz7rnnUldXx8KFC5EkidWrV2OaJk8//TQA27dv58orr8wpX9GwIhAIskJvfp/g9kf7LLeCfcc2DgbbtvFv+RvBXRFxpVZxOJJDfMESCACQNSStANvw5zuSIafjg58RblmDVjodZ/Vh+Q5HIBDkG9sC2YmkevIdSQJywSSM5vewLWPUTg8tEBzs/OIXv+D888/njTfeYMGCBWialrD+2muvTZv22GOPZefOnfz5z39m8+bN2LbNZz7zGS666CIKCyPfOb7whS/kHNOoqg2SBU4jKUw9mEh13LIVqY7mYz6aOy0Mp4g4F/lbujjieSjZxdlzrHsEhrYZ6S7nmvBRgg3PIylutOqjcdUenzBlWbLENXl5Jvxbn4g3qnhnfR7VUwSAZSTtSy9iMrRMEtpkIV+m7XOhrxg4USSXSVqaWW4azX0Q90FyWYNhsJLp5GHz4W49mi57oV3yMZPV/iWd6Y51puPRW9wnq3Ladb1JFgxmuv6TBYRxeWCSeNf07cPWu5BdtXHhq+KMiV+jsaU59nYa8XV2cub+1/eVGKdeHjtHiiNRViupMqY/4iwoXXoVstK363HaODPIOmOfrAzS2pRZ65Fx2jF5bXIZcYlt0kGP1YmZ/BDpJLbQc03ErqGeayMxj5jENtP1P1Ah7WBId93nI5Zs6r/BCpxHQmKbiaGSl0PmZ2Q6IXyf7QZ4nm0ziOQoglE25FHxTgTbQArvQymYOKh35+QJLeLPszTHPllSm/xZ0aLyWk1JyC8mMY+sS32BStFniG3oCXknP4cy0d91k/weFi87D3XC6GS0zgqUPbfffjuPP/44GzduxO12c+yxx/LTn/6UWbNmxbexbZsf/ehH/PrXv6atrY2jjjqK+++/P+M0yb3561//yvPPP4/b7ebVV19N/C4iSf02rAAUFBRwxRVXJCxra2vjjTfe4IQTTsg6jt6MqoYVgUAw+rD0bmzDQCtbAIDsrqJo6R3IrvIh/6XGCnUS2P4kAJ6ZF+OacHBNISsQDJZgw/NIWhFaxdif1lzvqCe0903cdcfhqJhGwcxz6Fj5EIhfgAUCAaCWHYax/zWCm36Ne/bX8x1OHNk7AZAwu+tRCibmOxyBYFTx2muvcdVVV3HkkUdiGAbf+973OOOMM1i/fj1erxeAO++8k7vvvps//OEPzJw5k5/85CecfvrpbNq0Kd5jJBPf//73+fGPf8x3vvMdZDm31uw//vGPKZdv2rSJ+++/n/b29pzyiyHeXgQCQVqMjq10LvsJAN5510QWSgqKJ3dRVDboHdt6Ptgm4da1SBKoRZNAFsOBBILQ3ldRiqYhKVrmjUc5nat/i9GxA9+2/6AWTcBddxRgE9q/CnXqafkOTyAQ5Bm1dAHahHPQG/6NFWxGdlXmOyQg4lmRtCLsUFu+QxEcdEiju4t+Fjz33HMJnx966CGqqqpYtmwZJ554IrZtc8899/C9732P8847D4CHH36Y6upq/vrXv/K1r30tq3LC4TAXXHBBzo0qANddd13CZ9M06e7uRpKknL0qvRENKwKBIC2hpvfj/w9s/zsAatHUYSnLtm3CTcsiZRRPx7/tcbB6bN1a+UIKD/vmsJQtEIwF7Og4g9HmGxgopr+RgtmfwfQ3Ez6wia71jwGgeqvyHJlAIBgtSNFhEXaoDdtROiqcJla4A9vojgxTEggOEcLhMJ2dnQnLnE4nTqez33QdHR0AlJWVAbBjxw7279/PGWeckZDPSSedxNtvv511w8oll1zCo48+yne/+91cdgOIDPlJprm5mSuvvBKHY+BDD/NfOwkEglGLVjqHUMMLANhmCKVoKtgGRscWZFcFsrN0SMoxg634NvyJcPMKvLO/iHviaVimiRVowQo20rn8LszuPUNSlkAwVrH1bgCcNcfnOZLBYxkBbN2P6qmicNankFQZ29SxdB+KqyTf4QkEglGCWnkM+v7XCKy9E7lgKpKjCOeUC/Lae0Xf8zzI2kExJFMgyJbf/e53/OpXv0pYdtNNN3HzzTenTWPbNt/85jc5/vjjmT8/MoPo/v37AfpMZVxdXU19fX3W8ZimyZ133snzzz/PwoUL+8hr77777qzzAqisrOTHP/4xS5cu5a677sopbYxR1bCSLHCK/R3NQtXBkLy/Q0Wq/Ib6GKYTFQ4FY6EH3FCes1zktEMdSzpZWOz8OqsWIx/+bYJ73iTc+BZmuJ3OD38MgFIwgaIjf9RnKuR00tpUZdm2RWDnf/FvfwxJcVEw/yrU8iPQu9vRm98l3LIao30jklZIwcLr00rNcpXQDqW0Nh2xY5hJStvf8Uncbuhiy1YQ20cC2iuGmMwuOW26vM2wmbA8WYaXvqz0xyWdKDntdZJGPNu37MzXR7rzmvw5JmlN3v9k4WByjEbQ6FNmuPEtANSCChSHHBe/xkSEdlTOKlnRGGIu25ioMCbWjKYzk6SoyWRzzaV7FiTvd7JYEUkDWcU2/UgxwbOioSglactKe90mC2Bj5yYmd4yd56TTmu6eSygn+n89Sa7cRwibLGKUUl8X6cTBseS9k8WXJYmQ0xG7p2I/6GcrMR0OMpWdjaAyU90yVAxWWDvSDPa4DKUcNJ2INH3Zkb/91S3J28iucjxL7sDqrsfs3Iy+71X8q25BLTscSXGi1Z2N7Cge6C5EysjwfSMeiyxhhdvR97+CZ8rZ8Snhk3cnm/e45He35POY7pgqSvI7V/Q5EJucQE6s/82QmbievvJaOyrhjv+NFh2X12Z5fpNjH4l3rYMNW5KwR6m89vLLL+enP/1pwrJMvVWuvvpqVq9ezZtvvtlnXfJz0rbtPsv6Y82aNSxevBiAtWvX9pt3tnR2dlJRUTGgtDDKGlYEAsHoQyubQ3Dfe32Wm90NBLY/jmfaZwaUr+nbT9faX2N0bMM5/lTc0z6DpLgJ7X6FwI5/Ypth1NLZeKZ/DkfVkUja4F6cBIKxTLh1Nf4tj+IcdwJq8bR8hzN4ZBVJUrDMUL4jEQgEoxxJUlAKp6IUTkWrOo7glj9g+RqwQi0YLe/jnHoxasUSbMMHirvPDz5Dha37CG7/O5Ks4Z58Jkbf9m+B4KDF4XBQVJT98LdrrrmGp556itdff526urr48pqaGiDSc6W2tja+vKmpqU8vlv545ZVXst42maeeeqrPsv3793PPPffwqU99KmH9ueeem3W+omFFIBBkxFl7IuF9r/ZZHqx/GveUT+Y85tkKtdPx4e2gOCk8/HtoJTMA0Ns24t/yRxw1x+OZ/lnkXuOXxRR8gkOZ0O6XUIum4p3zpQH/EjPakBQHoX3LKZh+JtIom05VIBCMTiStEPfciEzfCncQ2vpHgpt/g7L/VcyOjcgFU3DNuRp997MgO3BM+tSQNLToze8T2v5nMAIUzPsSsuZFtKwIBH2xbZtrrrmGJ554gldffZUpU6YkrJ8yZQo1NTW8+OKL8R4n4XCY1157rU+PmGxpaGhAkqSEBpz++OQnP5l23caNG7nnnnuASM8X0zTTbpuMaFgRCAT9Yvj2Eqz/d8IytWQmjsrFyM7cp1y2bZvu9Q9hhTspO/HnoER6opi+Pfi3/g3ZVYln1mXIyhgYEyYQjAC2ZaC3b8Iz5Zxh+yV2JLFti641f8XGJty6CaN7P1qxmLJUIBDkhuwoxjX76wQ3/QrLvwdtwsfR97yA/4P/iYzfsU2QJLTajyDJGshaVu8stt6N0b4eO9iMpHoxu3diNL2JWnEkrqkX4C4Tgm3BcCGBPBqHAmX/g85VV13FX//6V5588kkKCwvjTpXi4mLcbjeSJPGNb3yD2267jRkzZjBjxgxuu+02PB4PF110UdblGIbBj370I+699166uyMOuoKCAq655hpuuummPs6V3ljW8IwBHVUNK0PtGhkrDNa1MhIOmnRjkA+Cd/ysGI5rM9fz1mfc8RDGFBujqzh6PABG1y661z+M0bE1vp1WOgtH9ZE4xx2PrLoTepFkGudtGTp661p8mx/F9O0FoGvd7/HOvozQvrcIbPsHsquCgvlfT9mokov3IlsGOmY/l3JyHQ8/nF6ETD6XdGXH/Bi9t4+9m8YcGsnOlMwOlXTOmXSf+26frv6JeyusWKz9+22y9aX03jYd6fKKHUPVHTlwMc9JzItiBCK/fMaOZ+/73ejcCWYQR8U8ZFWO5xVziCS7UzL5eqzoOHojlFhWjFzcKrFjq8X2KxpTbAy/FL2XDd9+OlY8gt7VDJaO3r4TgIKZZ+OsmNxzzszs761M+0mW92n8XKU43/EyYn6TpHsoRp97SclwH8fyiaWP7rfVz/7HzrsVd+Ok3i6T12k4GImyBrpf+ejtmO09lY3fpY+HLclfka4ez7TfQ/lMTXZpxGK0kuri/stK/TndO48Vvx5U3HOuji9Xi2djtC5HqzkJo2UZ4YYnI71XYrEWTsM95xokraBPXgCmbzfBdXdj652gesEIgCTjmv5FXONPRpKk+L0Y22+TxOOUy/tZttdzrKzY8Yi7VZKeB7H3p/h7nTM6q1KvZ3Kf+ita75jR51C68z6U3qN0fp5sr1/B6OWBBx4A4OSTT05Y/tBDD3HppZcC8P/+3/8jEAhw5ZVX0tbWxlFHHcULL7xAYWFh1uVcffXVPPHEE9x5550cc8wxALzzzjvcfPPNtLS09BHtjgSjqmFFIBCMHsJNyxIaVdwTT8U75xIkScqtYcG2Cex4msDOZ7ENf3y5Z/pnCdT/h/a3/wcsHaVgAp7pFxBuXkZg51NoZQtwjj/1oBn2IBAMBNu2Ce15DUl1oxZNznc4A8LoauTAu/cTatmCZ8Lx2JaOd/pZOCvnoBaJX34FAsHQoRTPQimeBYA2oRaldC52uAvbCoMZILTzn4R3P4NzygUp0+sNT4PsxH34T1Hc5di2hSzZSLIq3kcEgixIlrmnQpIkbr755n5nFMrEI488wt/+9jfOOuus+LKFCxcyceJEPve5z/VpWPnmN7/JLbfcgtfrzSr/G2+8kRtuuCE+TXQ2iIYVgUDQB71jO+HmVfHPJUfdiKN87oB+QQg2vIR/6z/jn7WKxRTM+zKy5sU57kS6N/wBvflDzO4Gulb+DEkrRPHW4d/8J4L1z4LixDvnMrTi6UOybwLBWCG07y0CO5/ECjThnX0J0qjsHtw/3ZtfoO2D3wDgrjuC0iO/nrBefFERCATDhSRJKIWJsm8r2IK+/1W08WemnE3INoPInlpkZ3k0DzmvM2wJDjEkCUbprECjDZfLxeTJk/ssnzx5Mg5HX2/b//3f/3HjjTdm3bBy//3385WvfEU0rAgEhxq2bWH5GpC9EwblYLDC3XRveoTQnjdQCuooWvIdHGVz+kwJm21Mvs1/I1j/PACOysU4qg7HUXNcPEZJVjC7InPWO8efhrP2eJTCSUiSjH5gLeHW1YQaXqBr2a2UnfrQgPdLIBgLWOFu/DtfxDXhdAK7Xiaw7R8AeOdchmv8iXmOLncCe5fTtuz3OGsW4KlbgmfqCfFhSwKBQJAPtHEfQW98jfCOv+GcdgmS6kpYL6kerFBrnqITCATZctVVV3HLLbfw0EMPxad9DoVC3HrrrVx99dV9trdtm5kzZ2b9g47P58s5JtGwIhCMcUINzxLa+RgAnvnfQi2dO6B8TF8jHcvuwtK78M65BNf4kwb1C3lo75vxRpXChVfhrFkKJI6b7d74J2y9m4LDvoWjfEFCeq1sPlrZfGzdT3j/mxjdu1ELsrN9CwRjEf+O/+Df9hT+rY8nLI9d93r7NqxwF67aRaNOYmubOpYRQFVL0Dv34N/5Ir4tz6OVTaHylO8iq5HXDTOQvV1fIBAIhhrZUYxz4nmEtv8F48Bq1MqjUMsOwwo2YbatxWxfhzbuzHyHKRAIMrBixQpeeukl6urqOOywwwBYtWoV4XCY0047jfPOOy++7eOPP85DD+X+A20u0z/DABpWRkKUeqgylo7tKHunHzaGU6gcyzvdeU8WuSkpBJzhxjfjjSpARLZGZvlXbLniiDSchNu20v7+nciOIsqPvxmwMTrWopXNRtY8mGEz0ptlwx9wlM9Hqz4h2j02/f5pZQvxzvoCjsqFKJ6qPuJB27YIN32AZ9qncFUv7BWzSXDvm4T2f4jlb8IKd0SOk2limlYvgVvP8UiWufXd3/Rx9k7f8zmDmLIfyWUmko9DrukGQnLaHrlrdnLDmCyzN3EZqyu7x4gRNBLy7BtL6rJ7bZkxzuTYUsXdX/rk49LfORro+YhJULXCxF9JzUCAYMOr8c/uyR8jsPMZFG8tjorpYOm0vvsjAPRJp1K88BIgup9RGS3RNou4/Dl2XUdXx8Y923H5afJ1nf1+OLyR8664VcJtO2h+6U7MYDsFM85A79xPaH9kKKGzcjaSrPaV0kbLSietHU5xYXpxcvp7Ucq2115sf+Shiz+9VDk7MehghjHkYwhEunM/FqS16chG3to3Ter4k0WxA2U4j0/6c5hq28zbwNC+I2u1J6OULcRofBO98Q2MxtdBUlEKp+Ce9RXUiiX9Pud1f+R5FhOvDka4mq0QNq1cPirKTq7348+vmCi91+9ktpn4DMj0V4nmbZI6XZ9ncD/XaLKsNh0JeR5SQ7Ek7EPlS9YgKSkp4dOf/nTCsgkTJqTd/pJLLhnukESPFYFgrGJbOsHNkdZXSSvGtnWs4MC6rwbqX8LW/diKk5ZXbogvL1xwOc6aw+lc80fC+98DINz4Aax/iNKTHkSSnWnzlJ3FuCaclvZlQD+wHiwdtTCxEuxe/zDB3a+ilsxCq1gIkgPFOx6lIH1lKRCMVYKNG1CchTQ+ex0QGRIXblmOe9IZOMcdh+LyIkkSZrgzniZQ/zLuumNxVg2sd9pQYnTvp+XVW1A8ZRBoo3vz83imnhxfH27dlr/gBAKBIA2yswzHxHPRJpwD4RZkZ3lWUzELBILRQbY9UN566y1CoVB8uNBwImoQgWCMYdsWRvMHBOsjwwXU0gW4Zl6Kf+3/YQX2DyjPwjmfI7j7DaxgGxAZY+yddhZqUR0dH9yN4W/GWXssoX1vAyC7q5GUgVVQtmVidGyja/Wv0Epno5X1fDk0uvcQ3P0a3tmfx1X3EaBn2t5sf+UQCMYKgT0raHrxJ/HPztoj8c76At5ZX0BWJWRnSbz3jeKuwFF5WFwqrRaMy0vMfZBUbN2Po+xIjI7dKJ4K/NtfBcA94SgKZp2d3/gEAoGgHyRJRnbn1t1fIBCMHc466yxWrlzJ1KlTh70s0bAiEIxybNvGDrVg+bdjdm3HaN+A5d+LWrYI57zrUDyRL1iyswwr2DygMvz1LwHgql2Kd+ankBQnbe/dSfemyDAjrWweRmdEMqsWTaFw8Y0D2o/AjicJ7noe2wigeGpwTz2XrtUPoBZOwFG9mO61v0P2VOKeeOqAuk4LBGMFo7s5oVEFwD3u6H7TyK6eGSxkzT0sceWCbVsormJc45bg3/EaAKa/Jb6+/Pjrx+RMRgKBQCAQ5AcxK9BQk830z0OFaFgRCEYxZsdGQjv+jJ3UE8U141K06mOxQ+0YHVswOzZjHFiFc/KnBlZQtBJXPJW0vXcnVqgTbAvZXYkVaMHo3I6j6gg80z6Bo/pIbDP78a6WEUA/sJ5w4wpC+97ANelMHGVzCTevoHPZ/yI5igg3LcO/7QlkVxlFi78RcTJYomVFcPDSveXlPssyPfzDjSsBUDxVSErfqQRHEjPQSvN/vwHYSM4SiuZ9Gtf4w/FtfwXf1v/imXyCaFQRCAQCgUBwyJBTw4pl2YeMtFSQyKFy3odDVpurcC0Wgy2Z+DbeC1a4zzbBLX8guOVh4kJPSUWrPRnnxLMSphGTJRPbCGCrBUiS1DOcxojGFpVYGh07AfBtewa1aAKFsz+J3r4T/85XKJj1cQpmnoviLET365F0khVN37Nvcgq5rqX7aX/3JqxAE8gOCuZeilZ9El0rf4bRsRX31PNx1p2O6d+HrXehFs/ElhTCASOeR7LYzYztc6/JRWJitVQxQPbXbzpJZDai2UzC2+TtcpXc9Vd2thLaZGLDTJLTp5te2wybff4fEyDH02rRtNE8Td1KyNMMW9GYYrGnjjlZatv7HCYvSyfnzVUQnA3pBcmphcDx820E0du2oJZMR9bcdG99LTEDWcE7aTFGSEm5D7ZtY+ndABQtvDSSJrZN9NjG7n1JTZLxRu97K3rOYuekJ8aMux0/5t4aTyQvM0BcnhpqB8XGVTODA+/+AsVTRtG8c5HkFOc3uazYuZR69rP3viXGkCRKjP1NFimqiddgn/aqNMLFVPdRnzohScqY3BgWP+bhxNmP0l6DsWs0VnYWdUzsnovV31ZcRpy4fTqx5EiQbX3YX9pc4+9bD8Tyy7roAZOtgHQgeQ1X+lQC+Ngxi+URe2cYrDC3v3MwUu+XsX1LNRFA7B0i3ZDj2PEwo9LX5OORrXC5v3OTTgCbTs7epx6UE9eTFKPi7nlWW6HEsuPycKcazTv6rIjmHX/eRwuxpdRDtLO5TmLbZBre3Tsve4iEzQIBgGEYuFwuVq5cyfz584c0b9FjRSAYpUiSgmvK+QR3/APZU4tSOA19X+RXbsf405HdNUjOcmRnGZKzDCwds2sXetM76C0r0KqOQW98AzvcgeyqxDXjC2hl6SqQyEOrcN5ncdcdA5KC0b0PANe4w1GchQPah3Dje1iBZkqOuSUunw3ufhOjbR3e+dfiqFgMgNpLTDuSXfYEgpHAMoK0vX0zZvceUBy4ao7E9DXG1xct/BTOioXIzgII9W1IBQjufh1sC+e4pbiqDxup0FMS2P0hLa/fCUDlKdfRseZpjM79hA/swOjcR/UZP8BRNjmvMQoEAoFAMOaQGJ2zAh1EbVuqqjJp0iRM08y8ca55D3mOAoFgyHCMOxXHuFPjn11TPwuAJGsA2LqPcNM76PtexQpEGkIk1Ytt+NAb38IOd6CVL0JvXUlw26NpG1aKFl8F9tcJ73uNpuevByRKj7oW39bnCDWuxVk+J6e4bdsi3LIW//an0crmohZORG/bTPe632P696FVLkErX5T7AREIxhiW7iO49x3M7r14pp6Df/vTGJ0NOCrmYlsG7vFzKD3yYkxf/w94o2svAAXTzhqJsPula9N/ACg5/AK8008i3LqTjtVPEmraiKQ60Uon5jlCgUAgEAgEgr49TQG+//3vc+ONN/LnP/+ZsrKyIStLNKwIBGMISdawdR++dfdiGz4s/z6wTdTyxaA4sbp34pr2OcJ7X8X0NQCgt65GcpbhmnJeyjwtI4B/6+OEGpdjBZpxjVtKcO/7hFs2AaCVTMK27ZQVU8r8wt10rf4V4ZbVqEVTKJh7Caa/ic7ld6EU1lEw7Vok1YPRsQmtZPbQHBiBYBQS3PM63Rv+FB/O55lyFu5JpyO7SlFdkcevs9wV3br/hpWCORdQOPsTyJp3OEPOiG3bhJrWUzDrI5QcfgGSJFE472w61z+PrHmo/ugPUb3lWPrQ/xIkEAgEAsHBjI2EjfCTpeOpp57irLPOQtO0rNOk6gl/7733snXrVsaNG8ekSZPwehPfrZYvXz6g+ETDiuCQZDhcKjGSnSqxskwjNl58cDEZnVsw29dH8nJV4Z71ZdSiadh6N2bnJtTyRSDJBDb+JhYRzvGn4Ko+os+Ydcuw6FzxC/TWNTgqD6NwyVdxVS+g+fVbCex9H8VbzYG378ZVexhVH/k+ijdSZSjRL4VmsMeFYnTr6G3baHsn0uhTtPh6tIrDkBWZjhX3IWkeXDVL6F5zbzxN6cm/hegDJDbeNq2jYgBj9GOkc4nESOcYSefu6K+s5OXZ5DFYhtqhEBtPHTsOshLJX3X2POzlqOfBjvod/j975x1mR1U34HfKrdtrek8gCamEGnroKqjw0UQRUBSwggg2BAuKfihgQ7GggiLFDxWlg/QOCUkgkN432STb9/aZ+f6YObN75965925JdhPO+zzJ7p055TczZ87MnjvnnVS37d9RUvk9NW4+Pf+cc69TxS+/vSz/Or/57MJB0RODmjed4s4nFx4YKyd9jvvEE7/7evDYBrre/j2Bhvkoik6q+TWM+E6CtVPsgkQ7cEJTnX0brLSltIbjGVIDPfvcSKpZ7UfxtFMlkL8dGEmj4P7wIo5BINpzixCqsV+vrgRVsAy63nuC+qMuASVEoHIEkz57F4oWxEw4c/F1J68zIJvpstuH99yy8Hg0XMdDr/n1nnjd7fXE3VOGpw9xFnvvrfri4il1YNkt28quAyN/v+ZdnrcsH9eItx0XO65+9Nf7lK+MwWSgbpXi+YqX1V9KdW7sjrqLIfrgQKTn/E47/Y3XJeKilfjFite54bO9fXXPFaLU453v3st7PIRrRfH4Srz9u/js+kKKzNxwfSmB3ITefS3SiuPkdarktCHvvnTya841RQ05+bWeuo243U8LH5d7T9jLb9d7udeR5o21P5Sa17QsOUVc4vLRj36Ubdu20dDQgKZpNDU10djYWDBPZ2dnzrKPfOQjuyU+ObAikewFWJZFZtdijI5VmKm2nuWJZmJv/YDI/p8h0HgogYaDAAg0HIRlJAmPmEd83b9IrP07VmIn0f0uBCDTtYn0jjcJ1O5PetcyAFI73iJ8jP0a5ar5n2bnU98g2DgNLJN0++a8cWW6mule9zyYBt1rXyDTsRm9YjyVB1+DGq4HIN26itT21wDoevdv2QUomuvflUj2FizLJLnlJbRoA3rVfnnWWyQ2PwlamIrZn0NR9RzJ795Komm5+3tq5xpCI2YCoOqhoQpJIpFIJBLJ+4CGhgZefvllTjvttD49Te/luuuuG+TIbOTAikSyF5Dc+E9SGx9ECTeghmrRGw5FDVZhdG3EaH8X9EhWekUNEBp9LFpAJVAzneSWp+3XMse2YSZ20bX0JgDi60CNjsSM2a9zNpKdaKEK9GgD5ft/hM63/0blAWfR8fa9mJkkajDs1pHY9i47nroFI9aCEowSKB9D5cLzUMtnOK9LtkdMulfeB0Cgdn8A0i3vuWVYRhxFzY5dIhnuxNf+i9iaBwCoOvgbBGr2d9dZZobYe38ktf0FyqZfgKLuW5fZttf/QrBhKvVHXkKocepQhyORSCQSyT6EMjzltcPEXnvppZfy4Q9/GEVRUBSFkSNH+qbdHXLaYuxbd3wSyT5IctNDpDY+SGji/xAaV5q40rIsjM61xJv+S2r7q+hV+xGe/BE6Xv16Ttqy/c5FDQTpWvGXrGdqA9WTwDJQAlGwTIzuHajBcVimQcsrd9O+5O/olaMZefpPCFSOwui2HyFNdWW/1SQy6QMEG+eiaCG63rmTyIST0asmo4RGourRPfb4s0QyWGgVPXLWjsU3Ex5/IpFJH0VRFOJr7iXV/DLlB3yG0KiFQxjl4BDf/AKd79xF2cSFVC/4BMkdq6k9/NOER9qDSaU+hi+RSCQSiUQyEK6//nrOPfdcVq9ezemnn84dd9xBdXV1SXlra2tZuXIl9fX11NTUFHzapaWlpV/xyYEViWQYk2l9h+T6vxMcf1pJgyqWkSK94xVSW57C6NqAGmkgOuUMjEQrXYt/7KarWvgTut+9AzVYQaBuLnpIJ9RwI1q4lwzKtAdKzHgrSiBC07+uIDTyAIx4G5mOJmoOvYDy/T+EUmRkPdQ4D5hH5/Lfo5WNonzG+UDuXF2JZG8h1HggXcEKFDVAoG4W8bX/QlGCRCZ9iEzbuwTqF+wTgyoAiS0vYqU66Vr5KJFxB9uvfB6xf/GMEolEIpFIJIPM9OnTmT59Otdddx1nnXUW0Wi0pHw333wzFRUVANxyyy27JTY5sCLZJ9mdctrelCJgM13xYP71qqpgxneQ6lyNogbQa+ehqDqKqpDa+gRaxUTCEz+S4yKxLAuzexPJdfdhxLZgGQkw7KdF9NpZRA74PMG6uaiqTvtLXyHQcBDpHW8AFqm29YQm/A/pbU/R8uSnqD7sWwSqp4ITox4KoE2cT7L5Q3S++wChkQdjdG8j07mDUON06g6/jFDD/gRr7KlBlmkQarCn9KhNMQBi27uddXbgevX+JDY/Q/fKewg2zCVQPRlFC5F0pKd+lPJEiyvMc7xrYvZFMdmjXx1eSZx3ULs/HrW+ihgHIuvtax1+2y9kmGa2z85Ok7bXiX0arLClq0I0KsSqXrGeaWTXKQSxfRFverdXSBhNHxFosX3q3V43VldU6OyHZCsdb95IeMwiQiMOJbHpCcxkJ1r5BGJr7ic09iT06qlkWt/Nkf4JAbDYL7oQR4omaeTftt7SPvGr2x7FPvTIDU3n2IhjIeoutofF0yfhGuFLaUVRew7+jie/D0CoYZIbhBrIljIKeXEm5pUgOnV4nszNFTHixNxzrvr2s8UkjiXitgtv26WXtNbTdViiHTt5ikmq/T4XEzD7Lcu33i+dn6R3MJ4WLLXv8dbpJ5oeCH5PT4nlbhscwjH94fCEptj+dC9RaSad3Y7FOad5BclOJ2R4+kpvOj/yncul3q958w7GcXRlvc4Nlq7md2G5/bjuyed8QaQWiaXn3OtZJq4vAiHOVT1CWb/7lp7gssXfbvnpbGm5ovck0J0XEbjXRicWIbwV1xDVLVR1YhafC/chgyFp9oqQ3z8oWMq+4WTb3QhPyo4dO3jvvfdQFIX99tuPhoaGvOk/+clP5v19MJEDKxLJEJNpfYfY27eCZd/k6A2HEJ3+WXtdy1sApLc9T2DEkYD9VEpy/f2kd76JlWpFjY4iOOo4FD0MShC9egZKIEzX69eSCtZQPudKtIoJpFuWI0Zn4u/8PDuIPBcwRVGpPOA8tHANHcvvpOKAC6ia8wEURcUyE3SteoJ0+yoSTe+RbttK9YIPUz5tIW2Ln0Yva0CpPNSe6pOJk2p5m2DDPCKTPkRsw2PE1v4HrXw0dUf/aDftVYlkcEk1v0rX8l8BEFt9t7s8NOpIsEy6lv+STMc6jO6tGIldQxXmoJFu28CO/37LHVVT9BBWJmmvfN/e8EokEolEIhkOxGIxPv/5z3PnnXe6PhVN07jgggv4+c9/XvKTLPF4nHQ6+0veysrKfsUkB1YkkiHAskyM9ncxY02kNv0TrWp/otM/S2r7cyTXP4BlJFHUMGqkETPeTHzlHRixJpRgNentL2DGtxMcdSxa1X4E6mZjZWJkdi1Fq5yGEqoluf5erHQXpmXRtfxWymd+hvZXvpEdhB4lOvksAnXzCVTV+sZaNuUU0h1b6Hr3HqpmnURix3vseuEWzFQ3oYbJRCfMh0kH0fbGP2h74x9o0TqMRAdq6CECNTNIbX/VfppGDRIadTiKGsQyUgSqpuzmvSyRDB6pnW/lX6FoaGVjAeha9jOsTIzotLP3YGS7h3TbWjAzRMYfQnzjq+6gSsMJV6H4fKsrkUgkEolEsie44ooreOaZZ/jXv/7FEUccAcDzzz/PF7/4Rb7yla9w2223+ebt7u7mmmuu4d5772XXrtwvw/orvpUDKxLJHsYyEsTfvhmzcw2goNUcQHT6Z1H0KHrdfJLr7iOx7j4i086nbP63MLs2kG55m1TT02CZqNFRlM39OmqkkdjbPyO16WHM+DasTHdOXeGJHyG+9l53UCU49hQCdXNRyyejqDqqClYq9/3uXkKjDia+8SmSO1fR8tIvCVSNpe6ILxAdP85NUzbpQIxkF4GqgzC6drDj2Z+R3rWM8LgTCdTOINX8OonNT4EWpPrQrxOonT5Yu1Qi2f2YGbTKKQTr56NX70/3O7/GTOwi2fQcFbO/QHS/C0hseoTo1LMIjz12qKMdMFrZCAD0sgZCIw8gue1tAIJ1k4YyLIlEIpFI9nGG41uBhh9///vfuf/++zn22GPdZR/4wAeIRCKcffbZBQdWrr76av773//yq1/9igsuuIBf/vKXbNmyhd/85jfceOON/Y5JDqxIJHsYK9mC2bmGwKgTCE46G03r+fZXi4wgPPUTJFbfSaBuLoG6Oag1B6DXHEB40llZ5aS2PYfR/h5oIfTKqYSnfpyu1+y3/oTGfwgz3kxwxOFY6Q4SGx5ECVQQnng6ZmInRvtKzOROEqv+BEDtMTejRep8Y063rUXRwySbV2AkWhlxyvfQy7PnMJZNPgiARFMMvWIEVQdlPyETqJuJVjaSQPVEgnUz+r8DJZIhwUTRQkQmfgiAygVfp/vdPxKsmwNAeOwiwmMX+bqUhjuWmSG14y3MVDuaNodg/XTK9zuJzhX/oWru/9Bw7BV0vP0ftEjVUIcqkUgkEonkfU4sFmPEiBE5yxsbG4nFYgXzPvjgg/z5z3/m2GOP5eKLL+aoo45i6tSpTJgwgb/85S+cf/75/YpJDqzshexO8dre9EfBnhLU9qYUWa0XEacrgwvXAgpmYhtm2zK0mv1R9J55gMGa/UkAipVG7WVNNT3Hxh4IUQjUH0xkv4sAKD/oB5jxZvTa2XaagEagZjqJDQ9ipTvpeP7ynPi0srEowRos08JMOnMUHbFmoDqEmY4T3/QcamQEqbbtYFnEm1vR4xWu4AxAdaRn6Q57yoBXzKaoCqExJ6GoYKQMd73YxmKiskKyQ6+AzrSUrLL95Kyl4pXIFXhDm69+oq/SQq/sMV/+YkJIvxj8yuzpW4rvL28ZmbjHcOuR27plCc+eJ78WzD+9pJTt90prRR2u7LWIjNhIZ3eqoh+M1NpC5kRbAjPVjhquc9cFKhqpPvjqnH0j5H5ie0RdOYJRn0ZkChmicz5ZeYS8vpJS55xK7VyDFm3EUuz4i8l7LRO63/sryS1PARBbqTLuE/dQf+SlaNFq2t/6O5HxB1J76CdQHUmt6CNcUa4TpxKw49ZsrzVGwtMunO1WHKGuZXguaHmuQWogu22Y3jzu8tIkxTkSYAevxBZ6tsfjcHSltn7XhFLPzb5IHkuV2JYqyi0lloH2nX4MRM6d24+VWmfJVe6TiGus5opHe9Z5pbUCtdDFDv/7ML+22J/7toFKawvd14qy1Zx48wvNvRRrx15pbb7YxT72xum9XhVVW4n8TkIz7WRI51bqlh1Q8y734rcfivU5xcrNqkO6uyR95PDDD+e6667jz3/+M+GwfdMRj8f5zne+w+GHH14wb0tLC5Mm2U/gVlZWuq9XPvLII7nsssv6HZMcWJFI9jCKHiE8+TySWx4h/s7PiTvLKw65ERSN+Kq7UEI1BOrmFSxHrzmA0KQzSK7/B2ZiB+HJ56CVT0CNZI/epnctA0UnUDuT9K6l9kItTKD+QIK1swk0HOT7LnfLzLDzmZ9gxrYBYHRuAKD1hW+hhmsJjZhBeOQ8ohOP6vf+kEiGO2ayDaN7C1rZ6KEOpSCWkabtzd8R2/AMetVEahZ+p+jr0AHMRIs7qAKgV45GURSMRAcV+51Aomk5zY/9kDFn/wo1ULE7N0EikUgkkvctlqJg7U3fcg8ht956K6eccgpjx45l7ty5KIrCkiVLCIfDPProowXzTp48mfXr1zNhwgRmzpzJvffeyyGHHMKDDz5IdXV1v2OSAysSyRAQHHM8gdGLMLs30734egA6X/0aqAFQdMpnXoaiFj49zXQnWqQRLAOj/T2sdFdOGsvMkNj0CADpXUvRqvYnsv8laBFbVlvs26i2N/9KYssSwH5dctnUD9D+xq1gmZiJFuIbXiC+4QWsdIzK2R/s416QSIY/yea3aX3uewAoWqhI6qEj072DHU9+HSvdTaB2GumWVVipTpRQ8ak7KWfAVdGjhEYfhaon6XjnP3QsvR8tWsOIk65l8z2XEFv3AlWzT9ndmyKRSCQSiURSkFmzZrFq1Sruuusu3n33XSzL4txzz+X8888nEokUzHvRRRfx1ltvccwxx/D1r3+dD37wg/z85z8nk8nw05/+tN8xyYEViWSIUBQFtWwsoQmnk9zwL1A09No5RMadjF41LW8eM9lKYv0DGG3vYSZ22OUEKglNPhu95oCc9EZsu/t7+ezPoVTNK+kbbIFePgKtrJ7Q6BMJjzueQDSMeug1tL/1O6xMHC1aQ6Z9E21v3iEHViT7HN3rn6bt9V+7n0Ojjx7CaAqjqJr7auR0yyq0slEowdJeFxhsPIh06zukm18lsdH+lie29mkAzGQnie0rAIhvXSYHViQSiUQikQwLIpEIl1xyScE0H/zgB/nd737HqFGj3GVXXHGF+/txxx3Hu+++y+uvv86UKVOYO3duv+ORAyuDzPt9Du/uZCicKgK/Ob75xihUr0tBLHd+alp2Jm3iRwjUzECJjkENlKM7c14tE4zuJgwL1EAl8ZV/JNO5ASvRjF4zk8ikM9AqJ6OGG9ypPIbHPaAG7cf2g2NOQKtdkOta0LJjFY6CTJf9Pne95ihqjzrKnV9rmRaB2pnUHfMTO128g9ZnPg8odG6w3y4k5sn6PQ0j6tKCnrm5jopBuGR65h3nn3/c+1wT2+3dvrTpJMp+PX1OGaJscex0x6vQMy+6sJsk3/YVcsL0/lzMvVCKW8Yvb6llessrxX/g+mY8ZfZuKwAZx7Eh1uuOO0R3HB2Iuf15XCL5Yi8lTr+yRBmBiqD92Wn/6a40lmmQSZooiuoe9+ROe+pb4yk/Qy+zZc1mKv8r+MT0cD9XjEALZbct4TXyu3b41QeQ6dpA+9K7qJpzHqnWdYTHLCC+8UUAquZ8zO0XvPvLOy8+XF1NW/OrvvXsfNr+9qb24LNc54he5hw/p450m+1WstJOvKIfEP1ZRsQgnCzZ7SR3w/Ms8rpV+tBe8+Gd0u/6f7Laj709itPeLeEtEHV7yvDu4z77nHol7+tW9bXP8fMjFCpzoJRS555iOMSwO+mPs8Lv/sVdLxqoXvgLmoHs24E6VQTeewav7673MoF7D2WIMrJ9bd7263e/43ff0htvXuGd08PZ11Yvom5VK7ze/Sz63l7tQVz7vHG7fYS4dni2x+9Y9OW89tuHEoGCKacCDSrPPvss8Xi8YJrx48czfvz4nOWzZ8/moYceYty4cXly5SIHViSSIUZRFALV03MuLpaZof3174CRyE4fqsOIbUOvmYla5BtpNVhJ1aE3YIVGDnrcAIpjqFSjuVZuiWS4k2pZR+d7j4ISoXvVv1H0KJWHfA8tXEli89Okdi5DjTSiReuHOtS8GN3NpHa8w44nr3WX1S78IpmuFpLNy7CUcgLVU33zW0aSxKYnMapGEqibTnrXu6Dq7pMvvSnf/zhCDZN3y3ZIJBKJRCKRDDfWr19POu3z7Wwe5MCKRDJMsKf5/JNQ3XSCIw7BTHXkDKqokZFgGZiZBPHVd1M287NFy9XKxuQ8yTJYKKpO+QGfIVA7c7eUL5HsTnY89UOMeKv72crE6Hj9e0QmnExs1T32Qi3kK3ceagK19qBJ2bRTiW96iWDdFGIbXiCx5U3AItG8gtojv4+RaAUzgxqux7IskltfJNX8JpmuTZix7aRrplF35HUktv6HrjXPkWnbbH/VapkEG6Yw5swfoerBod1YiUQikUgkkmGMHFiRSIYBZrqb7iU/wky1kt72LMqqe1wZbWjCR0g3v4QZ3050/wvpWvpT1FAtqeaXCU84DdQgmEksI4GR6sbo3IASrCAw4kig8LSEwSA0aqG9DRn5OKdk76FrzVNZgyoAwRGHkdr+MqmdS91lZdPO3NOhlYwWqUOvHEu6ZQ1moo3EljcAKN//dFBUulb+h+SOZXS8cbO9fNaldK/4A1YmDmqQYN1s0ukutGgjZrqbtjfu7inceeZ75KnXyEEViUQikUj2ABZgIacC7a3IgRWJZIgxYk3E3vsTVqabioO+R3Lzw6S2PuNOzk1ufJDyBdejKipa2WjKZ3+JrrduAqDjtW/6lhuoOxCCxd8IIpG8HwlU5c6lTW1/GSVUg9G1uSddzfQ9GVafUBSFylnn0vKi3R+ER88nsXUxXe/9y00TX/sftOgIlECUrmW/7Mlspig/4BK63vk9ZrKN5LY3Aag78jIC1WMI1IwnUFFhS3ElEolEIpFIJAV53w6sSMmszXDyIw2lnNaLV57mpZT9JsRcrqxWy5WfWZkEHW98B4DyWV9Gj45AGX0Uqa3PEKyfj5mJk2l9h8Sav1Ax61KMzvdIt73nPKafLbVUo6PQKvdDr56BVjUdJVBOxhFJihgURyQppgaJn2Y8O1YhIO0RkZL1Of8+cWRops9yXfzM3nk9sjM7o2IWbgf5pXDOdpEtxCzapjzHURz3VDLjlGMv1/T+t80cibGPBM+vTRWT3A5Wnt7pvfnyldMjucteLo6vV5gqlkfHlmelN9POMXOeeBKyVjPltEExja3XOZmOZ7LKFO1SC7jm47yxJnaup/3V61EUjejkD2THHSwnMvFEohMWsePJrwBQMesCwvWTS5MVO58NZ3ty9mVOTE5+XeTPrkPsl6y6FJFHdWJWCTVOcddrkWqCtZNJtawFIFi/P2qkinTLCsqmnEq4cRaKFsJIxlGjDZSNriW20iCx9W1SO98mWDeRytknowZyB1NcZ6Uj/hXxG4l01vYpmjj+2cfN8jik/NqaOO5qsOeEEMdXsfILEkt1HxYTK+ZbK46C6ulbRJ1iv/hJbIVg0pveK1h2+wMrz7I+ikC9+9ZPLF1IsDtYYteBSrwL5Sl2H7evyWmLST5dCWo/ZKB+16liMXjr7M8+L3a/NViYpd4X5MsrttvIFs56r+cCbxstdEy8ElvvtTVHNu13H+YstkRPJj6LY5OVz7l2kn0faRmli/oLbYtbSz+m0earc187lyX7Lu/bgRWJZFigaih6OWq4Ab1iAumWt8m0LAYgteMNN1mmdSWtz30ZAEUvs7NWTCI88aMEKia6b//ZXS4ViWRfwDKSYGawyNC96gF3eXTS0dQd/nnSnSkAqg78Cum2lUQnLBqqUEtGj9ZRu/Bq4ptfpHvNfwFQQ1WM/NBtKJpK2+I/2Qkti4oZZwGQSfbcTEcnLCSxbSmYGcIjZwxbn4xEIpFIJPs+yrCcCmSx994bfOMb36C2tnaP1CUHViSSPYDlfG2heB5LUNQAkWkfJ7b8Vtqev9xeFqhALR+P2bWxV0pnwEQNQrAaYlswO9eh6BF3UEUikRRGr5xM5YHX0P3uHSjBCqrnfhQrkyI64cisdIHa6QRqp+8102DCo+YTbJiBZcQxkx1UzDjL7Wu0cDUAoVEL8uYtm3Q0ZVNnsenOSzES7XsqZIlEIpFIJJIBsXLlSp5++mmam5sxzewvl7/97W8D8PWvf73f5f/mN79hxIjS33wqB1Ykkt2MEdtOx6tfA6DioO8QqJwA2G8gMZNt6LVzKJt/LanND2OlOgk0zCW++r6sMsrnfB4sCzOxk0x3M6n4NrAMuhffQPDYO/b4NkkkeyOJTY8RW2kLWpVMnOj4Q4Gex5/3ZlQ9TOMiu58x4j1PpIRHH0jHsrtpeeEGGk/+pTvQ0ptgzRgmXXaf/yPmEolEIpFI9gAK1nDyNAxjfvvb33LZZZdRX1/PyJEjs564VRTFHVjx48knn+TJJ5/MOyjzhz/8AYCPfexjfYpJDqz0E38fwp6No68Mp3N1sJ0q/XFQePGb6+s9rmI/5tsG12ci5rXT80RJcvNjdO1aCqqOle4GM0Vo/Acx4ztI71yMFh1NfPW9dn69DCvTbf9upQiP6flW3Zr1cWJrH8IyUtnbbYj48u8L71QhbzrhZNHDWt7t7gv5XSi5zg3/ucneefXub3nz5au7r/NyxfE03Xn/fcpeEn5ztYWlw29/lYKfr6C/+6NQuarHGSQcG6qnLuEK0cP25SbdkXbykZVPuDiEB0hzylcNx5/Ta/pKUHg+nIEA4TUxjfxtx3C8Hcktz6GVjSXUOBO9aqK7XhHb4rRJrcBu8mt3bl7RhjyOFDdWZztUZzsVPf+5ltfN4npMxOR757Nn+o7rpTFAi44hNGI+ye2L7fyqQrg2DECwPuKWp2kRd4ApUBnM2QYRr+b0DcKF01Op5/gFshuy0W0fd8PMiC3M2iZT7JeQ85RQCZ4Iv/bc3/ZeKL3l093kuFO8bc977vi0n/56kXrn8cYvzlGBOCZev0uhMvvKQPuYQnUXc6vsjR6G/vhQ3L7V4wwxnVPOcPoaVc3uo13fm6cc6LsLY6Bulb54VcS1wu+4D+Z1uli79/XYeM4p7/4oVK5334u84rqmh7KfnFSDWlY6N597b+GJId89letbyva2+LmiCvn18m1Lf9q1m9c93nvf+SzZs3z/+9/nhhtu4Jprrulz3u985zt897vf5aCDDmLUqFGDNg1aDqxIJLuB5Jb/km57GzO2nfK5V6BoESwjTqr5NTBT6LWz0Msnkm5bQbr5ZczELspmfIZAw0G0PXcpeuUUMu2rUPQoViaGFs1+DE1RA0Qnnw7I1xxLJIUwk22YabDSnRjd9tt+KmfdOMRR7TlaX/sFZqoTRQ+z67nvUXfEN9AjpT/WKpFIJBKJRDLcaG1t5ayzzupX3l//+tf88Y9/5BOf+MSgxiQHViSSQcYy0sRW/dn93P7iV3pWminUcD0Vs79ApmMTiU2PoIRqUSMjCTQean9dYJnoNTPJtK8iMvl0wqMORYvUYRkpUPUcT4tEIslPbN1DdL/3N/uDYl/uyudeOYQR7Vk6V9xPYvOLAGhlIzBiO2l56ceMPPWHKFpwiKOTSCQSiUTSGwswh6G8djhy1lln8dhjj3HppZf2OW8qlWLhwoWDHpMcWJFIBgEz1YHRvhKtcgpqxDZPK4EKotM+Rvc7vwEgNGYRyaYXMBO7aH3uC2CmUQLlWIlmLCDTvpJA9XT06ukkNj0KQLLpJYyOdaRbV2ImW0FRqTrwSrpXP0B43PGERx8xVJsskQxrzHSsZ1AFwMoQmXQGwbo5QxfUbsJMdaHoESD7kfHYuidA0aiaexEdb/8VzDSZjk10rnyEyhmnD02wEolEIpFIJANk6tSpXHvttbz88svMnj2bQCCQtf6LX/yib95Pf/rT/PWvf+Xaa68d1JjkwIpE0k8syyLTvpJMyzJSTf8FI4GilxFoOBgArWICwRGH2Z4UywBFAzNJcPSxmPFm9KrpJNb/n1tefM296POuoXzmZ+ha/isyHasxOjdgdG7oValJ+xs3AZAuH0uwYT4okT263RLJnsbMpOhYfh/hMYeS2PwyWlkDZZNPyJvWsiy6VtxFfMNjOeuUQBmWmWFfuvSl2zex7d9fIVg/nYZjv4IWqXLXKWqQ8v0WEZ20iPDog+lYdieZ7u2ER80buoAlEolEIpFIBsjtt99OeXk5zzzzDM8880zWOkVRCg6sJBIJbr/9dp544gnmzJmTMyjz05/+tF8x7Tt3l3sYIdHyzsrIN0tjOAhth8PskcGS1fZHqueVYBUTp3mPr6ZnS+CsTIzYitvItL6NopcTGn004dHH0LX8NlLbXwRFJzzqcBQlQ2j0cXQt/wXpnYtBUTG6NhCo3p/w+FNRVJ34WltWa3Suo2vZrVTM+RKVB30Lo2sN7a/9EKxMTnwAyS3PkNzyDOVzv0qgZmbWdlkZrzit8P7xOzZeaZyfaNb7e3Ya97e8eYVgUchs/cvxl+SpuojLEZ068s5ibcWvLq/EVlCovP6K1oTkTXX3k6ij/zJLP4pJIb3pvPs83zYqHkGikJx65a2ZhN2OlWQmbyxC/up+7iXeTO1aR9d7/6TrvX+6y2oWfJBMly1ERbVtfZm4XXa6bU3e7YytvJP4ugdoOOlXKIrqylqFmM/7Vhwh+dSDPbH4tk9PXs0RDnqXu5JAR5RmqdlSW296NZD7yme1174yEh2ARWrnClrfvIu6wz+HHrEv7UqwDDPZAaaFGiin9tDPAxCozp4GlOlM2dtZZt9YiPM+VBPqFbhnu4V82iPrdpM7+04cV9UjszUdobDlnKtivegvCp5Poj0Okl4qV5SdW7D3Mi76LVeY7CwvVcbtXV+KjFu0U+8554fYPyJWb59baP/1tz8bjP7Ku0/2RYllf+SexfCT1pZCoWt73rqMwje2fZHTlspA72NLuQctJp31Hrdi+6kv0tq+njs5x0xcOzxCePd86n2NFYJccd0p0j95XX5+/ZZ3/4jPGrnXUL+0EgVLTgUqiXXr1vU779KlS5k3bx4Ay5cvz1o3EJGtHFiRSPqIEW8m9s6vMBM7KZ/9ZfTa2aia/cdP+Zwv0fnWLZixrXS9/Vu0jY+hBqtJ71oKQKB+Lpm2lSQ61qFo5WQ61wL2tCEr3UmmbQWtz32e8lmXEx61gIo5l9L51i8KxqOogYLrJZK9nWDdNGoOvYDWV3rcRanWjaiBUXnTVx70Tcx4M6qu07HsdjKtK1HLx2N2bcRKd5FpX0egesqeCn+3ooV7nlCJrX2ausM/535WtBDptvVDEJVEIpFIJBLJnkG8FavUQZH//ve/uyUOOSQmkZSIZSSIr7qLrte+iZXuonzu1wjUzc2SyWqRBqoOuR69ZiZKsBqjcwPpXcsAi7IZnyQ86gj7NctAfN3fMbo2E93/IqoO/wmRqec4FWXoXnknlmWhReoBKNuvx3od3e98ymddSsW8q6la+BP0qml7bB9IJENF9bwzaDzxGvdry9jG133TKoqKFh2JFm3ESrYDYHZtBEArG53zlq29Gb18hCuiVSM17vLkjvdIt6wEVX5/IpFIJBKJZN/jz3/+M7NnzyYSiRCJRJgzZw533nnnkMUj77gkkhKJr/oTmR2vopaPp3ze11G0UN50ihogPHYRXct+jhoZgRnfTmTSGShakM6l9tMnWvk4ymZ8Fq1sjJsvMv5UjI71pJpfwUq20rnsNspnfBLUIJZlUTHr03Qu/x1adATB+jmlPTIvkexDlE0+nPpjPs/Op39G22t3YcTiVM0+u2CeYOOBxNc/7H6uXHA1arB8d4e6x1C0AKM+8gcsI4EW7vEtJbYtRdEj1B31rSGMTiKRSCQSSanItwKVzk9/+lOuvfZaPv/5z3PEEUdgWRYvvPACl156KTt37uSKK67ISn/GGWfwxz/+kcrKSs4444yCZf/f//1fwfV+yIEViaREtPIJZFqWYXZvLTrZN1A/n+i0c8m0rSI45SyCjQdhZVoINh5EcMQhBBsPxjLy5KubQ6r5FQCsTBJFj6IGy4mtut9N07nkp6jREYTHnUxo1NF43wQikezLlO93LDuf/hkAia1v5B1YSbetAssg1DAT03liBUAN1aKGqnLS7+0omo6ilaNoPX1BYtsyQo2zUFTdnU8vkUgkEolEsi/w85//nNtuu40LLrjAXfbhD3+YAw44gOuvvz5nYKWqqsqdKlRVtXvuBfs0sKKqSo9EbS+9URtskexwENMOV/orqx1M+Z2g1PbqSt/0XqKtdDdm2iA45mTU8gnEl91EqulZQmOOd6WpvWO2TAsFlfC4U2DcKe4YjBKspWLO5+02YyH+c1FU0MpHup/DEz6MmbZQAuWQaMnenth2Yu/9mVTLSsL7fbpX3fm3Syz32w+WE6MeLCyQ7Yk1d7sHKpYT0yK9Ekh3uUfg2DtGV5zq9mjZElvfOovIEfvShvvbbr0COy+FjsVgiW0HUo73OHmltQJX4ikWGNnyO5Vs8Z4Q8Qk5KCTcsqrnn0vb4r+hhStRQxpmJgOWgaqrxNY9RufbtoulYs4XiO53Pmaqg/Su5dQs/CZ6KIAethuKEPd5BX6lSHu92+XFdMp05cxBLasuRc8W57qI/aHlnlBiDjGeNqPqKpaRpuWV32AZaYI1U0ntWk3V7I+haipKyE4fqLKfshNiYFGMFs32NKXbbZltujPda4OECTVbUuxKDL3xKpYI2s4u2kWR9i7KzTp3PU/n9bSJPYf3OBs+8kav1NFPBJ0jby7QF5XSDvOV5ReT+1n0rXmKLSa67q9Yti/5cqXCfapqWCP6/b4IO908zqkmzrhi9zd+15j+9PuirLQ5+Aejr/eM3u32e6mEt9ze+YrVORRPBHufRhb9nep37nj3g1eYLlb3Wl6qrLiY2NtPRFusnELr/PpOicRLU1MTCxcuzFm+cOFCmpqacpbfcccdeX8vxAsvvMBBBx1EKJR/loIX+cSKRFKErqU3YXZtAD0KmRhqdAyJNfdgdKzFSu1CDVVTPvNC1EDZgOvSy0a7v2faV6FXTKTmsG/bbxPqWE3ryz/ISp/Z8TKZ+oPQa+cNuG6JZG8hPGYuLP4biaalJHesZPtD30AJltFw4q9Jtbzrputc/hsik04j3fIOaqQBLVw7hFHvXmKbXqF79X/RyuqJrXueYP1+vq+klkgkEolEMhxRsOj7oOf7kalTp3LvvffyjW98I2v5Pffcw7Rpg+OfPPXUU1myZAmTJ08uKb0cWJFICmBZpj2oAihaBCsTA8sAK0O6+SU3Xcv2V6ld9GtUPeJXVEkoegQ1OhYztpn4mntQg9VExh2KoigE62dSd+xNdK64n2DjAlJtm0ht+heJFb+g7LBfoGjhAdUtkeyNND/+PQCsVDctz34Dq/ccOzNFfM3fCY89hrL9z0XR9t03aBnxVhQ9zOgzf0Vqx3oClaOxDHmJl0gkEolEsu/xne98h3POOYdnn32WI444AkVReP7553nyySe59957B6UOq4+vAZd3XRJJIczej8JnAFDLxmLGt6FVz0BRINO6AoBU85uERx+RU4RlJEntXIrRtRmtbBTBxsMKVhmoX0By4xawDLrf+RWJDf+gfMb5hEfORS8fScXsS+2ElfNRIiPIbHuWvMIWiWQfxUz0eFOsdNz9PdO5yf1dr5xE5cHXYqW70KPVezK8PYplmSSblhLf/Bp65WgURSVYM9FeV2QqnEQikUgkEsneyJlnnskrr7zCzTffzD/+8Q8sy2LmzJm8+uqrzJ8/f0hi6tPAimlaKHvRXLd9aT5uXxio62KwEPNYi81hHagnotD8S7+5x6pnDmfOejGXWQtRNucq4qv+ghm35+tldi4mOPZkIlPOQReeASOJooVsv4qqYFkW6V2v07X8d1hGIqvsmmMPQlF1d06qZSQxY02kd7yGmWwhPPljGPEmMjteAyyM7q20v/6/WAdeQahxPprjatDSJtqow7FG9AzUmPjNk/XdRVlojidB1bP9CV6viVgvforae6fx4p0367vvHf+Dq5PwSd/bTZHrNXDiND15fEaei83lHSyXCRR3qvjV3eNZ6FnXczxKK9NbtevMEr4Tj3NhIHOcxXE0PS4VUUfOPhWffTwaRjzj/q5VzqFy7ifpeOtPvvWX7X8OWkCHQDWaOE+dIjMJu6ySXSq9l3viFPh9qeGW6bRX4XcR34K4+0EoZkKecy/ZM2iqOOdb7z6+Y+nfaX/L/mam7ujPoQZUt98LVAadQp38Wv5zyT3u3n3encaL61KJ2tsh3DHieOtl9lNBGSevkbLjN8U+93HwiP1qpvwHia08fqV82zNYLpJSyvL2iX59hd+55J6DXtdOnjpKXZ6zXSJZP87jgdYttsvPNVOojN3pb9mbKHbN8N5jud4qpfC1thDpdP7zsK8elFK9J33Bz63iZSB19JfBuFcQ+8p7/yX6WEGO78TKv9xd3+v3oNNPW6bop3PvLwqV1Rc3UF/T5/VUDcGxHCos5FuB+sKCBQu46667hjoMF/nEikRSBL1mJtG5XyPx3u+wUDFa30INZbsaFC2EZVmYyRYSmx4nvXMpRvdWd32g7gBCo44iUHsAiqpjGSkyHRtIbnqYzM7F9L7khSadS3T6Z7GmfoJMyzISa/6Clemm482bCTbMp3LuJajBij21+RLJsENRFMqnnkLn2/dQMfN0ks1rSG57w11fddBXCdbNHMII9xyJpmUEqsYSnXw05VOPGepwJBKJRCKRSHYLHR0dVFZWur8XQqTbk8iBFYnEh+S2F0nteA2tfAKpbS9gJXeh1cwGILHmb1hGEtItmIkWzMROjEQLeJ5OqTrkWvSqKYBFsulVYmv+j0z7GoyujT2J9ChqoAIzvh0AM74dNViJokcJNB6KVj6arsU/BDNJumUFrS99l+qDvwrU7KE9IZEMT0IN+9O18tGsqUGhMUcRrJ89hFHtWQLV4+le9yyRUXPtVytLJBKJRCKR7IPU1NTQ1NREY2Mj1dXV7uuTe2NZFoqiYBgD1yTkK78Q8i5MIsmDZaSJvftbADK7lqA3HIoaXEBqy6MiBanNj6FG6lDDtQRqZxIK16GG60jteIPUtleonH8lgeqpGLHtdC67nUz76px6lFCd/VOPgqKBZRBbeiPRWV9Br7G/cdfKxxOdeRmxt3+GZSQwurfR8vy1VBx2kxTWSt7XVM3/ONsf+ip6xViqD/48O5/6Goq67wpq81E150y6Vj5K+/IHCI++eqjDkUgkEolE0m/kW4EK8dRTT1Fba88a+O9//7vb65PyWolkEDDi2wAIjfsAWtV+GF2byLQstZftfzmhhlkoWth1rPQmsdEefIlveorUjsUkNvec+GpkBMGGAwk2LICyiSi9Jx6nO+ladgtG5zrS219wB1YAAnVzqDnyhySbXiG2+v+wMjHSOxcTHHH47th8iWSvQK8Y5f7e8tKPAQiNPGSowtnjWJZFcsdKUDVCDfsNdTgSiUQikUgku41jjumZ8jxp0iTGjRuX81SJZVls2rTJm7VfdHZ29in9XjGwsjdJaAdTHOu33cNFTlsMP3HYYIlA+yOt9YtBSFsFiS2PAZDa9hzWpodADRKomUlw2scJ1O6HqgZRFAUzkys7DI05EaN7G0asifTOJfZ6vYzyuV9Gr5yK1y/rSr0CFZTNvYbkhgfRKnPfl66GRhCZeDpm92YSTa+SUxD++1xIbTVX7if2Q3a6gCOkFH2U2D4Ro+J81hwnptZrYMkrnRXkiMh8BKqu1FCIU5X8+XsEbj11e8WPblpdlOHkcH4Wk9h6Y88ntRT4iQVFHcXEg6WeDz0it9Lj81vufhb7ybs+5/yxK80n2MyR0Xryqk4bMb3SUj95cciWoVqOrFZIbI1edWe2vUTbG7ejBqP2587NAJRN+RCRkbMw0tmSU8NTd5/llnliLbUMEb+32xY3AqKcQLVzUjmhGo60Vov0XKatTLZgML7lVXY+cxORsQdSNeuDPQLcgL0PFc/Ar5DTKnr28t5i4Kz0mZ5tVIN2Hr3ceSJIHG5HNmsI8a2nbYk6xU/TeVORV2Lrtm8te78AmI5Is5gguK/y6VKOoZ90VUiIA87+SHelC8bilXDniCfz5OvvtbKY3NeLV1qdtcxTRn+FsoOVbneXtbvEt359c77rQ6nXDr86xP2M3/Wh0PXMcM5PcU3w3kv53Vv19X612D1aKXjrFHV5r2feugZTauvdh37HbDDat5+s1i+dN33vlw0YycJTJLx53ZctFGg7+fIP5nn9fmH4ymuH37GcNGmSOy2oNy0tLUyaNClnKtD8+fNLntrz5ptv9iumvWJgRSLZ04TGHkey6XmsTAwUjcjkc9AidXSv+B3xVT326UDdfMpnfzE778jDCNTOJLnlceLrHiRQN5vKuV/Awv7DqdBjZYoWJDz5TDudz42HXjkBml4lUDdvgFspkeylmAaYadetUnv0dehl9aj6+8s7ZGVSADQceyWK9v6aAiWRSCQSieT9i3CpeOnq6iIczlUlfOQjH9ntMcmBFcn7GsvMYGW6wYxjpruxMt1o5eNIbn0WsB0oesUE4qvvRNEiWEac0LhTsdKdpLY9T6ZjDe2vfpNA7QzCY05AjY5AUVRiK+8k1fwaAJnOjSh6KOvb34FQNvVDRCccRzIp/SqS9yfRiceghippedGe/tP+xq+pP+67QxzVnifdbj/qmtq1jvCoA4Y4GolEIpFIJJLdy5VXXgnYT/5ee+21RKNRd51hGLzyyivMmzcvJ991112322OTAyuS9yVmqoP4e3eQaXmrYLrK+V9DCVYTX1VOcqvtSlGDVSjhelLbnsdKd2ClO0jGtpLc/CSKXkZwxKFkOtYTqJ9DeudSrFQ7lplmsE43RdVQQpWQTA1KeRLJ3ki6wx5UiE4+ltjap0luf4vwyIVDHNWepWPZAwBse/hawmPmUX/EpejljUVySSQSiUQiGZ4omMNw2s3umSTZPxYvXgzYT6wsW7aMYDDorgsGg8ydO5errrqqpLLeeOMNVqxYgaIozJw5k/nz5w8otmE5sPJ+darsybIHm0JzVgd7jqXfFBmj1xMhYt9pzpxSMe9VzBPtfvtOjM61RKZ9HDVUhx4pRwmUo2garc/Zb9aonHsZgQr7rT1lMz6BEdtCpm0lihYkOPJoLDNDfM3dAFQddhNGbBuZ9vdIbnkKK9ONmdjhxhNb9wRGbCuZtpWY8W0EGg6mbOZlBef6efdbxnESZNIp3/0g5hJ7j4d3vrSmZ8/3F3OyhUMjkxDehOyT0XAkDpbjEwhV9Ew/UIOa77YUQmyHcHAUbS/CVdBr+8XcYT9vQc+55DhFPH1Mqc6VnhCKt2lvGr+yvOd5X/o/Ve9fJ+HuF7cgZ784Tg4tlP9YZmI9Lg4xR1v4OlSnDRnJbDcKRva+zZmT7vEbYXrSOfn1XjEZSYPUTvstW7G1T9uxdW7HGpE3bN8+o1SfQu/56N59I7bT65/xHhvRxIRjxN1uz/YqQeGkses0e9WtOHlEm6mc/VHiWxYTqBhBbMMrtC/9J7WHfRpFnN+apw06MXmbr7sfhINIeFB6O1ac7Ta9c/M9bh3ha3Hn+QvHiluHR6LkQbT/3nUXc4b01Yvh10/kw69vEe1AHBPhWhHbn3Z+luK1KEYxv4nr6/DE6utW8uTLW6aPK8uv7mLk7nMRU0nZ9xj9dcn4ldOX9X7eFb+Y/PwepTp28m2jez3u4/HyW17Md5KvjlLL9q7vS12lUuw49vc635e63fPa2Zy+9iXuMc3jSOvxsXjS+jhVSnWr9IVi3inpaZF4EW8Duuiii7j11luprKzscxnNzc2ce+65PP3001RXV2NZFu3t7Rx33HH87W9/o6GhoV+xDbNLmkSyZ7CSLaiREYTHHE+wfh6Bmv3Qy0ejl40k2DAXgGD9LDe9oqhEJ38ENdKIVjYeRdUIjT2hpzwjRaD2ACKTzqB89pdy6ouv+RuppmcxnbcNZVrfATO9m7dSItl3Mbq3u79Xzv4kFfufMYTRDA3VB55Pw3FXk9j2Dnr5CMomHzXUIUkkEolEIpHsdu64445+DaoAfOELX6Cjo4O3336blpYWWltbWb58OR0dHXzxi18sXoAPw/KJFYlkd6NVTia15UniGx7ESneB0Y0R206mfTWh0QupmHURaqgya4Q/UDuTqkN/5H7u/apkNdrzVbleNY3w+A+R2PjvXjUqBEceiV61H3rVNNRIY8lmaonk/UImtpNdz95AeNSBVMz8mG+6+KZnyHRuJDz6YCITjiXcOG/PBTnMyHRsw0x2UnvYxYQa9x/qcCQSiUQikfQT+61A8u+DUnnttde477772LhxI6lUtiLh//7v/3zzPfLIIzzxxBPMmDHDXTZz5kx++ctfctJJJ/U7HjmwInlfougVACQ3P44SKMdM7ALTPiGTW18k1bwENVxHoHZ2wXKi0z6BZSSzBlkAIpPPJDTuZJKbHiax8SH0mpmUTb9492yMRLIPYJkZOlf8H5muJrpW/Ydg/WxCjT3nX7pjE+nWVWjhOjJdTQBUHfhZ1EA05xXP7yeUgC2xNuLtQxyJRCKRSCQSyZ7hb3/7GxdccAEnnXQSjz/+OCeddBKrVq1i27ZtfPSjHy2Y1zRNAoHctykGAgFMs/9OEjmwInlfEp54OqEJp6Fiktr2ArFVd2attzIx2l+/ifKZF6NXTUEN16NooZxyQmMW+dahBsoJNB5GYvOTBdNJJBJoe+O3xDY8Q9nkE0l3bKZj+V3UH/dDALreu4/Ymn9lpY+MO9YeVHmf073mGfSKEVTO/OBQhyKRSCQSiUSyR/jBD37AzTffzOc+9zkqKiq49dZbmTRpEp/97GcZNWpUwbyLFi3iS1/6EnfffTejR48GYMuWLVxxxRUcf/zx/Y6pTwMrqqrsESuw+PJ/MCW2w02Qtq/glYXtTsmUV2zlFZPpwV5Tc3ym2aiKgmUkia/5G8mtT7vLQyMPJzLpA1iZGIktz5Dc+iIAXe/8wUmhUHXYjahh+40bfrLTnPrKxlKx8OcoipYjgi1VilZqXVC6vM2V3DqfLcX+nIpnstL5xSi2JdnZ44kJ2Q8BEazOHoByz2PLI1ATPzKGky6/qExsviurzSdR86zzllVMqFaKjNaPYmLA4rK3Ysv7Jo8rFIu775Ts5UIwKiStXkGpKz3tJUPVw87lQ4iihcxT99nnzvYIua0WsNOHGiMAZLpXU3vIKdQe8XniW1ew5Z6vktz+CmrZbGJrHiQ8/gTKp3+MrhV3YSZbKJt+rlu04YiPvXK+gQoo3dB7letXh/f4FBNImp7+wEw5wlhn3xteSSygaKJOkcnCiLWS6dxOunUjwYZJAOhl9rcwmW77/NScY6WF7QLE8RbH2Y3ZaWt6OPdbHHd7PXFbThcgxMdCQi3KtsRnkU/sJzzSRCGrFSd8r2u2G59HhDxYx7cQfsfRymRvp2j3qtOuVU+bLCZo7E9MOW3KU1cxCvWPfn1oX+Wug7G9gt1xb9hfdse9TrF97cpMfbZf3CuI65mfrFik03qJw733Jz158tdV7BiIY+UV6hd60QGePMXw3tfvTlmt3z1CriC6b+UWwiujLnZP4U1X6Nwr1lf0VyTr1+akgLZ0LBRMqUAtiTVr1vDBD9pfKoVCIbq7u1EUhSuuuIJFixbxne98xzfvL37xCz784Q8zceJExo0bh6IobNy4kdmzZ3PXXXf1Oyb5xIpkn8ayLDASpHa8hpnqwEq1k+naiNG+0k1TMe9KQo1zMZNtxJteJLn9jXwl0fH69VQs+A5apG+maEXp39tyJJL3E1UHLGTXS/+mcu65REbPIDzmYNqX/JnwuBMAi8TGJyibdiYVB1wob9J6oZXZg72dq56iruFTQxyNRCKRSCQSye6ntraWzs5OAMaMGcPy5cuZPXs2bW1txGKxgnnHjRvHm2++yeOPP867776LZVnMnDmTE044oWC+YsiBFck+SWrnEuKr/4plJAiOOIzk5sdBDeZO6VFDdC79Jd2BCGayLasMJViJGqzE6NqMopdhZbrpfOO7VC28ueerY4lEMiiMPPlCdr3yEB1vP0HtoedSfeDFtLx0K/H1j7hpzMQu1EDZEEY5/Cifejxd7/6bzhWPUDnzFNRIFXpZzVCHJZFIJBKJRLLbOOqoo3j88ceZPXs2Z599Nl/60pd46qmnePzxx0ueznPiiSdy4oknAtDW1jbgmOTAimSfI93yNrHlP0OvnY2V7iK1Ywl69QwynevRKyagaBHMeDNWphvMJMHRR5Nqej6rjLJpZxEedywoQVK7lpPasZzkliexMl3E1/2d8OSzh2bjJJJ9lJ0v/gsz0Q2ONEyL1NCw6HqSbUksy0JRLBRVDmh6yXTaIl8sgy33fwGAKV/4h9xXEolEIpHshZiWfCq3FH7xi1+QSCQA+PrXv04gEOD555/njDPO4Nprry2Y90c/+hETJ07knHPOAeDss8/m73//OyNHjuShhx5i7ty5/YqpzwMrYn7kYMxlLIbfXEUxt1N6U/rOQI/fUDpVjEz2ZzO2BSyLYM14OxajCyVQQXL939Gr96d89pdItbxNbNnNRA64hFTzK2Q61mMZCbSKSaAoqGVjMbu3gKKjV4wl07EWgPCEHhFksH4+gdr5pLa/jJXpJrnpEQK1swnUzOyJJY8Hxc8J09N+s+ceu/OnPXN5/eZLk+fvJu8car9TpFhdXrzbJ+Zm914ufCtayPE5lDk/Q2LitJMwYTs2hFPC9Xc4/gQRguusEDF75hsPJqU7CfpUar9i8eLnWhkMvO4KsW9TjpvD9V/kmSct9oWYB645jg1XkeF8dn86DpZgXdipUwyg6E4++0myqlmHEKoJYcTsdmI43p98qqGMWOczp3yg9GVfF3OquHjTOfsvE0tnJ3McHcJdk11ZTxmhEbOomPFBOlf8x12WbkugaIGe89xxqxiJbG9LujOVFZPinNdKNE9D9/Rf3gMijqdwrojPrlvF59i43gzD/9iJfaQiyhwcb0cp+fzalvD6CGeMimj/jr8i0Lf+qpDnpBhFvQditTddgfKLOWH8PCB+MeeeH4XXDzWlnvu+Dp5+uCX88hQro5iHzetPKeQU896n5MZYsCpfD47hbltuHu995WD9nVHQ5+Lg3be726VSaH1fPUaD4S/yOsN2F71j6+s9jGVaw65/kAw9mUyGBx98kJNPPhkAVVW5+uqrufrqq0vK/5vf/MZ1qTz++OM8/vjjPPzww9x777189atf5bHHHutXXPKJFcleiZWJEX/rO4BJZsSRoKiktz3rro/udyGKoqJVTARFo/ud31I28xKiUz9OetcyYqvvwow3Q9tKMJNEppxBdNLp7HriQrt8y8x5hbKV6e71YRjY8ySSfYjQiMkAKIHct29J/FH1MFXzzusZWFFUWl75PVVzziBQOWJog5NIJBKJRCIZZHRd57LLLmPFihX9yt/U1MS4ceMA+Pe//83ZZ5/NSSedxMSJEzn00EP7HZd85kOyd6JoiEcg0ttfyBpUQYtidG8G7Fceh6ecg5nYQefiH9H19q/oWvZT1FA95XO/iqI635anugCoPvxGwhM+QL6nDbRy+wRUw43ovZ5WkUgkA0cvt70g2x6+jfblzwxxNHsZZq+3eVkmXSsfJ9W6cejikUgkEolE0mcswEQZdv+GI4ceeiiLFy/uV96amho2bdoEwCOPPOJKay3LwjBy38pYKvKJFcleiaKFCIw/E6P9Xcz2FYhpEoG6uWgV40lsepzIlHMwYk0k1j0AagjMJJmONURnfIZg42EoikJw1NEkNz1McvvLRKedg1Y2krJp+f0p0Wkfo3PxjzATzXQt+THhSWegV07uGZwxM1hGAjVQvqd2g0SyzxCsGUXdEefQvvRxNt/3A8ae+ysClSOHOqy9AjVYRvVBFxKsaUQvb2TrA1ehBiJDHZZEIpFIJBLJbuHyyy/nK1/5Cps3b2bBggWUlWW/3GDOnDm+ec844ww+9rGPMW3aNHbt2sWpp54KwJIlS5g6dWq/Y+r3wMqedK14kW6V/BSaTyqOU1+Pl9f/kbO+wFzdnBiKzAMWWJ5YvbNuNN2uMzx2Ed0tr9Mj7wAlWIuZ6gIjgZnYRvdb/wtmCiVYTXT6lwnWTkfpFXNo5FEkNz2MleogselxopNOzRuLZVroVdMJT/woifUPkGl/j64lP7TjqZiEZRmYXfY3xIHGQ4nsfzHFTi+xXT1zj526fJwrXqdFKfNU/ebPWp5929f5q25sZu6yZEcSgKBzvPXyAABaWHfyaFl1CjcBYgaIiMWzH9zjJuZw945H/CLKdPZR7vZbWTlK7Uv64zXpmWteeM66N/1gxiDI8QBonnnlwoPiLDed/WekDCd/8bK93gsjaecVrhCwn6pIO+0jUGkfcCNuvxIvWBemesHHqT38XFbd9FE6VzxK3cILUYN2exE+ld517i63iree/uQRbdAPsb+EN8TKZC8XbpWe/QeK8Ex5ilYVjYr9P4gaUEm3OU/rBbWec8Upw3SOiZEQlWWfa+JcFaeamer51iYT6/VUDD3no9sunX7ZcmI009ltJ9ep4fx0/A9er0Bvt4xoS5bp1FXAx9IX/FwGvc+1Ys4Qce64nqJMtgemmKuklPhKXd7X8kQEXsdS79+L+R6KpSvuXhGxlbIF2Wn7OiO3P96TvjKQOorl8TrUinmd/Nwq7vVb750+2wlkUvi65Xc+l7o+3/1qju/E+VnqfavfPXCh/bq7nCqDcfxLbUuDcf0TbcF9+LH/X9hnka9f2BPnoeT9gRDPfvGLX3SXKYrivPBAKfjkyc0338zEiRPZtGkTP/7xjykvt78Ub2pq4vLLL+93TPKJFcleS2rL45hdGwhPuwBFUUlteZJU03/d9R2vXouiR0ELUT7vavtVy15Za3QkamQkZnwbsVV/IzTyELRInW+d4QkfItO6nEz7KneZ0bkuK026+RXM+A6ic7+RU59EIimMlbaFqu1LHqBixglYRjmKFhziqPYeMrFdAOx68feM+vCPc1xREolEIpFIhicWinwrUImsW7eueCIfAoEAV111Vc7yL3/5ywOISDpWJHsxqS2PA6CVjSU46mgqD/4ukSnnuuvVcANWJoYarEIN1+ctQ1EUyqZf7H6Orbq3YJ2KohIccTgAeu0cKg++Ab12tlNfI2XzvwmA0bmWzI5X+79xEsn7FDVSQcOiTwGw+e7P0fSvT9G9pn929vcj8c1vApDauVZKtiUSiUQikeyTbNiwgTFjxjBhwoSsf2PGjGHDhg1F869Zs4YvfOELnHDCCZx44ol88YtfZO3atQOKSQ6sSIYtlpkmvePV7LfxOBjdm93l3Ut+gJnqsPOkOwHbhxIadyIAZmwryY0PY5npnHIA9KppVB78bQCS217GTLYVjEsN1bp1aWWjKZ99BWXzv0n5gm+jV04hMuNSJ0Ypj5RI+oqiKFTP73ndOWaG9iV32FP8JMURj/trAcx0coiDkUgkEolE0heGWlS7t8hrjzvuOFpaWnKWt7e3c9xxxxXM++ijjzJz5kxeffVV5syZw6xZs3jllVeYOXMmjz/+eL9jklOBJMOS9K4lJFb9GSvdjlo1g/D+X3CnA5ipdozO7BHFdPPLpDMxkk3224Fi6x8EZ5AFILHuPsxUK+X7fzxvfYGqyQQa5pPesZj4hkcp2+8c39gUPQqAEWuyPysKeuUUd32w8RACNQdgKXL6gkTSHxLbVmd9rjnsCtSglEKXQs2CT1A+7Uia/nEN8Y2vUT7t2KEOSSKRSCQSiWRQES4VL7t27coR2Xr52te+xhVXXMGNN96Ys/yaa67hxBNP7FdMAx5YGUqJ7fuFQlLafPTnWHjr8IpT9wSu5M4yiL/zczuOcCNmx2oSb99IeOZXQIsSW/q/WPEmUHsGLhJr7wPLcJcFKqeQ3rXEXR+d9j+ERx7qkbVB79cql+9/Pq07FhNf/xDRqWegqIGeVL0EXJn2lQCowWpfiRxatM/ju8VktmLOpeakE9sSiPQ6jcVxFALIgJq1XEggk93ZT+8Uk5+J7deFqNHMXg6gBR0BqhCfOnUJaa2QVKpOOsty5JQBRwJp+Ahnd8NsBqGdKFUWNxDJmlfeVkxm602/OwRvwiPtLVkNaM5P8dk5Vs4xMXqJVF3JqCOXFV2FIsTBaY84UcverlR70pNPyE9NMl12+yybdiLRiaejhWvIJHskZLtLVtsXRDv3E0jmtCHhXfXsF+9UapFO7HO1l8TVPRe8p4gjihXHq/W1u0HRCNbbA76ZznRWrEIwK9KLWIXU1kwWlxYrAadfEoLMtJDWOjJaTUhdHTmvj0MuR3bqxGZkeh1vK/tcEHEbyfyFFjtnShWy9v7dr0/wSmv7KlQulK5YH+DXf/UVt831IYZiMt5isfRHWuulWN7BmAlX6j4ttZ8uJPv128e+9xk+GB4hdCmI67crvO3j8SsuXy+0rm/tuNg9cV9etuB/bvWt7N1xnfYrc6DnXm/E9dtIZfelunMv4BUgl0opMQyH67hk7+SMM84A7C+2L7zwQkKhkLvOMAyWLl3KwoULC5axYsUK7r03V/9w8cUXc8stt/Q7NvnEimTYYcZ3AKDXzSc68/Mkdy4jueIWMi2L0conYcWbCE29CLNrNZnW5VjJVgC0iskEamaiRkcRHHE4sZV/JL3zDbAsMh0bUCeflv/O0UGLNqBXTSHTvoZU82JCIw/JjS3dRXzt/QAE6ucN+rZLJBJQVPuutnzaSShazRBHs3eR2rmaxJYl1B39eYI144Y6HIlEIpFIJCViWQxLee1wGgarqqoC7C9dKioqiEQi7rpgMMhhhx3GJZdcUrCMhoYGlixZwrRp07KWL1myhMbGxn7HJgdWJMMONdIIepTMrsWYyRa0qPPHgZkis+t10CLoDYegjzkKAGPXG3Qt/yVmqpXwpDN6HguzTKy07WFJbX+NxJZnCY8+umDdWrSRTPsaMp0b8w6sJLc8BYCilxGZcDrJ5pdJN79GZL+L3SlCEolkYHSufAY1XEWgcgyZbilg7Qutb9wJQKhu8hBHIpFIJBKJRDK43HHHHQBMnDiRq666qui0n3xccsklfOYzn2Ht2rUsXLgQRVF4/vnn+dGPfsRXvvKVfscmB1Ykww5FUdEqJmO0Liex6s+o1XPRqmeR2vRP1FADmClS6+7Fqp+DXj2dQO0sAKxkK93v/JryAy4DINOe7WnoWnEXRmwnocYFaBXjc+blWZZFsuklAEKjDssbm5V2BJqKRtvzPe8573rj21QcetOgbL9E8n4nvmkJ0YlHomgBQApYS8VMxUhuXwFAQD6tIpFIJBKJZB/luuuu63fea6+9loqKCn7yk5/w9a9/HYDRo0dz/fXX88UvfrHf5Q7awIp3zqN0rhSnr+4ULwPZx6qPB2AwnSpiXnDRWJw606bpxhaefB6JDf/CjG8ns+4vqOWTbadJ93oAMrveIL3tvwCUzfwsVQt/QvuLXyG941WwLsAyTMz4Nmf9Z+h+53YwksTX/pP42n8CEKidSXTK6QRq9kdRNRQUymecQ2jEfPTysUDPvFMxFzQ0+kiSWx7HSnf0xB8ZgRIdm3M8vPtY88ypLnb8irUP03ERJDt7fCl62J4XK9wqwpnhvv/LM/+/rzGIOl3XQS9nje64IEwj298gXBoh1Z4DqVfYHhzNOe6W42QwTCOr7Jx5w9555nk8CH6fBb6eBM+898GYL+0ty93nHhdDsRgLLS/mivCS40vw206nvWi6fUwt51iaRk9b863TWS6cKqI9uDE7bhLF0xbTbT0DKEa8AzVQiZk2XCdJ7+0v5qlx69qNDgYjJeKyP7uuGXHcxYNzzuYLR4zbHwh/jbNec84fb/vu7aoReU2nXxL7Nlhpn1NGwn5CLzrpGMwkgMdB4jmHLHH+Cq1C0sxKp2i92oe7XZ4BaadPsLxz8a3sfkBsR8/2iXLJXp4H4S/xOqT6S6nuglLSCs+L99Lp24/1IfZirifv+Sy8P94+Rni6xH4U56C33N5LxeHx9lt+/Zo3Jv/P+WPfE/SnrmJ9bH/jL7T9fm4Vv3sMbz4/RHmqewz887r+RAr3tX115fTnvtfvftU3vc99bKH8xR0xffMc7RY3WglOqL6WJc5r142X8rjRFOH465vnR9J/rGH8Fp7hxvbt27nqqqt48sknaW5udv9OEBhGfg9bJpPhL3/5C+eddx5XXHEFnZ32y04qKioGHJN8YkUyLNGiIwlPs+fHZdqWk1x5O2q4jsj+nyG+6o9oZWMwuk2sdBfd79xO7aI7qDnmF6Sa30DRwnSv/BMASrCa4IjD7YEVQCsfh9G1CYB0yzu0t7yDGqqi7jhblls+9TSg548dL3rFBCoP/g7plnfRq/dHcaYpyYFEiWRwiG16HSsdG+ow9krEK6nLp/XPZi+RSCQSiUSyN3DhhReyceNGrr32WkaNGpX3DUH50HWdyy67jBUr7Cd8B2NAxS170EqSSAaBdPNLaJE69Kr93ddo6dWzUGZeSWLZ90ltf57QyCNIbrWfVolM+ih6zQwA1EA54THHYKa6SDU9B0DZ9AtRFIWqQ76FGqpFL6sHwDJSpFvfI77hMfTKSX2KUa+YgFY2Hui/MV0ikeTHjLcBEKzfb2gD2QtJt24EQK8YNcSRSCQSiUQikew+nn/+eZ577jnmzZvX57yHHnooixcvZsKECYMakxxYkQwbLMskuer39gcthKKVEZx0HnrtfDDtKQhG2zsYbe+4ecLjT0HRQlnlmMldAOiVUwk6b+4JVGdbnxUtSLB+NsH62btpayQSSX/oWvkYAMH66UMcyd5HvGkJgZoJaOHKoQ5FIpFIJBJJPzDkQ/AlMW7cuJzpP6Vy+eWX85WvfIXNmzezYMGCHAHunDlz+lWuHFiRDC/UIJgpMJJYRpJ005NoNXPJND8PgF5/MHrZSBIbHiQ88bScQRUALTqK6LTzCY0+Zk9HL5FIBkCyeRmpXWsBMLq3o5ePHOKI9h4syyS+4RWiEw8f6lAkEolEIpFIdiu33HILX/va1/jNb37DxIkT+5T3nHPOAcgS1SqK4s6W8POzFGO3DawMRMw6nH0VAxXO9ofB2B/euF1ZXYmSL69MzS13ALJbV1qbthuvpmmEp36cxMo/oNcvwOhYg9nxLrGXPwNAcPLHCI5aRCCgEZ7wYRRV84i0nFiUINFJJxXcHi+uoM4pTog3FUcomTYz9nozf74s6Z9XNCdknl5RcJGYdEc8KwSxrrjSkY0JkWzvY6JmlKz43eVuWXakIUe4mIqL7fIIRn1i6y2rhR5hbe86hDDT3TeakP9ll+3uc2fnKU7ZhhNTjuyyAF4Zo+qoF60+yv0Gg2KSux7RZP6YxPH15ssnxfMu66vEVrRNLZL/UqBHA1np1V77WSxLdaTsBU4MQubpjR9NtAdH2qoKq2vP9natehA1VE3FAeehRUb0GDSBTCL3IucnyBZ9y0DktMXo2edOLJ7j5t1n4qcrrXXW6+HsfW9mPBLnXuVmCpwTVjqBZRl0r3ma6MQTCNZN7Tlenn46p3/3TGlUArkmRyGpRfXU7XMM/OXGIpvTds3854uZb5qlKNNHZllMMNojPc7f3xU6j4qJI4Xo1y3DKE32qOr+1sxieUvd/v5QTNrbX0mnkIR6z59S5ad9YTBFoqWWkdOfC2GsUlzA6gqRnbZvuvtaxJCdvpjM1l3uU3cp/aMo0yjStnLvjYqX7Uex+9NS8+cuH3gZXkoVypZSnl97HYgAu9Q6BYorExefnViG8BEK07SkNFeSl3POOYdYLMaUKVOIRqMEAoGs9S0tLb55161bt1tikk+sSIYVash2oGR2vpG1PDjqWIKjFmFZFkb3VtRQDZnuHajBCtRQzVCEKpFIBpFE0xukdr5NdNJJRMcdWbKETGKjBqPUH/l1dj77PbpWPUSZeRKRUTOHOiyJRCKRSCQlYgGmJe9/SuGWW27pd97BdqsI5MCKZFgTmXI2SngEatkYUpsfIr31Sax0e1YaNVSHVj4eJViOooVR9AhqMIKqR1C0CIG6WWjhwTM+SySSwSe58x20aAOVs84f6lD2WgI1kwg1zia+8UXiG1+k4bhvEh41d6jDkkgkEolEIhlUPvnJTw4o/5133smvf/1r1q1bx0svvcSECRO45ZZbmDRpEh/+8If7VeZuePhSIukblmWR2bWE5IZ/YWU6ic75Gqrz1p3EpkeIvf1zul79GqkN/5c7qBIZiZnchZFoJr3jDZKbHyex/l/EVt5D1zt/pHPZbcQ3Ptb3mMwM8S0vYSTbiyeWSCQDRtVDWEZy98wJeJ+gBqLUHfUNRnzwFyhaiPZl9w11SBKJRCKRSCS7hTVr1vCtb32L8847j+bmZgAeeeQR3n777YL5brvtNq688ko+8IEP0NbW5jpVqqurB/QkzLB8YmUoPCbDgcFyy+Tbf311qvjmFz4Ba+DOFeFWMbvWknj3FyiBcqx0F4pehl5/MAQqsZItlM26ECvVTmzln1AiowmN/wBk4qR3vo4ZbwYthNm9xbceLVJPunUVgZppvmmMlB1LuvVdOt+6FSsTt7c7WEV4zLFYpkl43KkoeiRrf2iO18VSeu+H/POjDXf+LFnLvX9HiuOXcfZPQNWc9Nnl5fNLuC4cZz5ssCz7FFecyspGlwMQTtg+k3Sn7clIO34TMe/f60kxHMeD8EQEKnvkwWY6v+hJ+E80x8ci/A3CQaCo2W4WzfF6qE5dhhOjmXI2XOyvXm3WO23Ene7t+CnErvJzKBTymOT93OujKLvUOcDFzjW/+dT58vnFWSwWbzsJOMdEdY6REbePRXi0bUkXx8CIZXrKcPKKPJrjClGdslxHjvMz2ZrIikGks5ydqUZqMZMdJFs2EKic4MYm3Cp9ebW5weD0pfn2uR5Q864TziMtmO1UUT3uDYEadM5rpwF53TQZH/9RPuI741l1BCI1qMEKzEQnZsp0/UWKVuKglcdlAj3nr3CfuM4VD6V6AsQ5m9el0juGAmWKfVusZXjzCx+OX3n0clSZRVwpOW3E492yzOw6i8VYSpq+OkPca4fQkPUpd376HsMgVNpHhBNsMOoudvy9/ZO4FyrmVuldrtet0lOHN0/2cr97ZrdsLTtGEVOkLtxTh7Ms3mL30+Kexq/fLTb+7RdTvv3g3Ud+ZRe7Lpfa9/SH/jpXSnHqDHS5f/nZnwsdM+/9pRfNuXYYwl8nnSe7DQswB6WX3vd55plnOPXUUzniiCN49tlnueGGG2hsbGTp0qX87ne/4/777/fN+/Of/5zf/va3fOQjH+HGG290lx900EFcddVV/Y5pWA6sSN4/mIldJFb+DiXcSPVhP8Lo3kqi6TlS256FTAz0csxkC5nOTQCE9/8cgQr7TSHB0YvsMtKdZHa8RmLNX/LW0fW2/Qrn8Nhj0MrHYSbbMJOtqIFygg1zCdROB1Qs06DjjRuz8lqpduLr/glAoG4eeuXk3bEbJJL3PZ3v3AOAHh0xxJHsG4RGzCO+9WWMZAe6XjXU4UgkEolEIpEMGl/72tf4/ve/z5VXXklFRY/y4bjjjuPWW28tmHfdunXMnz8/Z3koFKK7u7vfMcmBFcmQktrwd6zEDvT6Q0huf4lg46GEJ50Fik5q078h00V81V1u+kzzswQqzs4qw4xtI7nhn751iCdhEpufyVkX3/AoihYmUDcbJWA/xYEapG7RbZiJVmJr/0ly63PoNQegVUwanI2WSCQ5RMYdSWzt40Mdxj5D+f5nEN/0HF3v/pPqBRcMdTgSiUQikUgkg8ayZcv461//mrO8oaGBXbt2Fcw7adIklixZkiOxffjhh5k5s//ifzmwIhlSAmNPxehcS2bnq2R2vkqgdi6pHW/agyouKmCijzwBfeSinDISa+/BynQBoNXMIlA7F618LGaqlfiK27HSXW5aRY8SbDwQACvTTap5MZaRINX8mpumbPonUFQdLdpA+cxPERp1JEp4tHxLiUSyGzETrYDFjscuoeGUP6Ko8vI0ELRwFcG6aXSteZTolGMIVu8eA75EIpFIJJLBwbKG9O3W/gzDmKqrq2lqamLSpOwvvhcvXsyYMWMK5v3qV7/K5z73ORKJBJZl8eqrr3L33Xfzwx/+kN/97nf9jqlPd659nVMrKczucqr0Pk5e54nf3NO+zpf0c6nk8354MXrNNdfKxhGafC6JFb8AoGvJDzG6N6PXzCLTuR4yXei1BxAa/yGUsil5ywuN+wBmfDvBUUeiBivd+BKbbWltePypGF0bSLe8g2UkCDYeQqjRflNGsuklYusfwky2YRkpAnXz0OoOJRXvcUkQnYphWhi9HCJin+sB2zsg5nLb+0ARvwCF5gtnlyXag7ddJLozBcvpjXeebKYrbed15lirTrx6ue0xCVXYzpjQiKhdV5P9+JvrTxAxOvkCzjXr6lIAAQAASURBVPEV+XuT7nC8BY5bwnKOs3BwKHp2m1GD2Rsk9q/YTnc/eNtwvrYn8qR95oN7s5Q4N9vPj9GX86VUN4M3hv7MYe7rHHOxPNmaBHq8JyJ/1+o2AII1tktHDfdcMkyPEwTPue+2V6fMYJVdhuWZs59J2+27fMZZJLaKAU7V9R75eQf2BPlOuYynjQnnSo/PITtOkVrxhJ/pTuats5APwm/+fo+3yV4vXEk1B1/Otv9cTrJpOYHy8Siq48Vx/C5uO3E0R36epN7r3Pis7GuHt+25ZYuTbxA9F1YR70mx/H5OpXyXL/997vz09C1+Zfud133ZBr97sGKOKC+ib/b2g/niKuaj6i/9cVSXWnexdF7P2UC2ReQtdq/lTW9aufvX62XzIuLu677z3peJz5le9zmhGtu3Em207wm6t8Wy8mh69n1KqS7EnGtqnuu3tx/LOcdKvF7352+Ukt1J/aS/XqR8ZZSePvtzvvbSX+/QULhWVFXBkn9/SvLwsY99jGuuuYb77rsPRVEwTZMXXniBq666igsuKPyk7kUXXUQmk+Hqq68mFovxsY99jDFjxnDrrbdy7rnn9jsm+foFyZCjVc9Cqz4AJVCGVjGW0JRzybQuB+cplEDDwehV/uLZQP2BhMad6g6qCJKb7WkFetU0ymddYi+0TDqX/BTLtG8oQqMOp+bw71Fz5M+oPebXRGd8Rn5TLpEMAYHKsQRq9yNQs/9Qh7LPYMRbAAjU5B+UlkgkEolEIhlsnn32WU477TRGj7af+P/HP/6Rtf7CCy9EUZSsf4cddlif6rjhhhsYP348Y8aMoauri5kzZ3L00UezcOFCvvWtbxXNf8kll7Bhwwaam5vZtm0bmzZt4lOf+lSfYvAi/4KUDDmKqhM54AqCQYP2176Pse3lrPVqWeHHufJhZWKYiZ0ABOpmowWDVB/xQxKbn0VRNFC0IiVIJJLdjWWZWEYaRXPeBBWIYpkKqZ3LUcONaNGGIY5w78YynadMjPxPx0gkEolEIhlOKD1Pvg8j+vpsUnd3N3PnzuWiiy7izDPPzJvmlFNO4Y477nA/B4PBPtURCAT4y1/+wve+9z3efPNNTNNk/vz5TJvm/2V8Purr6/uUvhByYEUy5FjpTjItSyBaidG1Ca16BkbnWjCSgIIW6cdbQpQAevV0IlPORFHtP9r0stGUTTvHXi19KRLJkLLzhZ8TW/ssAHrlOEINs0juWA5mhtSOxSh6GTVH3ghEhzbQvZhg3TT0qvHseu4HVM//FBUzTh7qkCQSiUQikezjnHrqqZx66qkF04RCIUaOHDnguiZPnszkyX1/a+v999/Pvffey8aNG0mlUlnr3nzzzX7FIqcCSYYUy0jS/eoVJFf/icTmpwCIzryMigXfQa+ZTXDsyaBF+lyuogWomHcNgQJTiCQSydARqOx5Ei3TsYnuNQ+DmUErH0flgV/GMuKkmvt3YZPYKIpK5cz/AaBt8e9JbH9niCOSSCQSiUTih4WtaBxu/wBSqRQdHR1Z/5LJ/j8R+/TTT9PY2Mh+++3HJZdcQnNzc5/y/8///A833nhjzvL//d//5ayzziqY92c/+xkXXXQRjY2NLF68mEMOOYS6ujrWrl1bdECoEH1+YmUgEsf3A/nEXn7SKs1Z3lvmmg+vJEzIo/rDYB2vUiS1pdQtpusAZNpXE6idSSBSgaJUos65ws1nWVZBSa+3fFNIV51da6Sy69aCpT2x4pXJ+Ytoe8or9fjkyu7sukR78MrFSpGNmZ6H9UxHAKpF7FNdCChTrdnLNUdKWjmjFoBMty29TTbH7boNEZPTZh1xqSu5Jc/xFVJeR/aZarM736Cz3YEq+5E/IdIUQkqvFNWtO4/sz0VkKSJjdo+TSGd5lnu2xV3v2aas9B4RZDE5pZ+Qz5u+L5LIgZ7XIr84rt66kzsSuXk8fYDhSJaFlFgIkwWiHQiZccX0j1A2+SR2PncTqR1vu+kURSFYMxUsE9PUeq7oQ0C+/ty7r70yW0GoLJCVPvdn/joH85qajqVRy3ucNVqkMtu2KiSeGZ+Yesdi5W/XbrweEaiFOIfsn6KPEeezn2ja2wbzUez8LlW42heZezH5ZI/M1qlLLPdkK1W8WkoaIdcu9XKc05+VIK/37ju//q2vcs5i19RC5MaUvd703FOJ+xVxzRXp8wlkRdmupNMj2/YT9xfDT1rbW8rdX6FoqXULxDYKQThApsv+tjbjnH9+93jFpLXFZLX52slApbVeBkMIXazMvv4t1Jfr+EDFud5zKn95ha9DxRDnR8b0F55L9j1+//vf8+tf/zpr2XXXXcf111/f57JOPfVUzjrrLCZMmMC6deu49tprWbRoEW+88QahUKikMp555hmuu+66nOWnnHIKN910U8G8v/rVr7j99ts577zz+NOf/sTVV1/N5MmT+fa3v01LS0uft0cgpwJJhhQ1Ogq1bBxm9yYwkiiBsrzTdIzOtRixreiV+6FGGocgUolEMliYqW5aX7+L7tW2YDo0Yi7hMUeS2vk28Y1PE9/4JGCLp3fT3xrvG8xkG0qwisi4wwhUjRvqcCQSiUQikeyFfOpTn+JHP/pR1rJSB0G8nHPOOe7vs2bN4qCDDmLChAn85z//4YwzziipjK6urrxelkAgQEdHR8G8GzduZOHChQBEIhE6OzsB+MQnPsFhhx3GL37xi1I3JQs5sCIZUhRFpWzO1aSbX8ZKbCG55Wnaur5py2UVFdCwrAxm1wYAAiOPJjLtk0MbtEQiGRAtL/+W2Lrn3c/VB1+OopQRHn0oqZbVdK96ABQdNVSL/EKs/yR3LKX9tf8FFGJrHiUycgbRiUcMdVgSiUQikUjyYFlgDEN5Ldhy2crKyuIJ+8GoUaOYMGECq1atKjnPrFmzuOeee/j2t7+dtfxvf/sbM2fOLJh35MiR7Nq1iwkTJjBhwgRefvll5s6dy7p163KeyO4LcmBFMuQoepTg6EUEQqCXj8aI7cCyTIx4C5n298B5NTJAZucbZOoPRquegcLw7HgkEklheg+qALQvuYPq+Z9HUVSqD/4KsXUPo5ZNs199bsiRlf4ixN2KFkKvHEfX6sflwIpEIpFIJJJhxa5du9i0aROjRo0qOc+1117LmWeeyZo1a1i0aBEATz75JHfffTf33XdfwbyLFi3iwQcf5MADD+RTn/oUV1xxBffffz+vv/56yU/M5GPAAysDnQuYj/7P2d1zc/H9YlMLrPfONRVzWDW9f04Ov5jyzRf27hvv/NliZQ/EqZLPUwA92y3qVlSVyISTMZ35/l0r74Zdi7PLzHQTW/4TKudeSnDUQiefv7PCjaGIx0bMSdWcI2gpYnuFP8ObXsnK17tuVRfL1Lx5BGYme59qzkCR2B9px4eSM3+8QDtXnTJSScd3oTtlOh4TMc3KdOaNZ2IJJxb7s5Gw84UabGFwZGy5vd7xIZjO+nS7PR/b6hWcGrDrMPE4UjLZTgUjlnZW2NsRaow6+bP3l/C8uP6HIsewFHLmSStZofin9/hCso6lOH+FG8eTxq+vEHULF4l36wZrvnW+WNy6Pf2D4umL3GPnKScr7nT2OWKmPFsiPB6OQyexfXnPqnA1esU4wiMP61kWqqN8+sdJdqdz/AZDRe9zztuP+V13kk77dfMN4pvIvP2Pd7kgUDOd2mN+QiCskti2mPZld2MkO9FC1UCvc8vZz6I8P/8J5Nle4VbxcbCozlx84U5yXUme81kXThpnufjcO07D6ddK9RkVW97fdFDAkeTZD6bhF5O3vNwYSj333aZVopdJxOTtB/LFWsxXU6p7ZqBOh954r52l9hOG286Lez9821aha0GB/H5ulUL7oz/+mb7Qu27hVskkxH1HrgMG/B0rfvvB67cpRF/dKXvC+bg7+5RS2mF/8PqLBsPX5nfe+7mIJJKuri5Wr17tfl63bh1LliyhtraW2tparr/+es4880xGjRrF+vXr+cY3vkF9fT0f/ehHS67j9NNP5x//+Ac/+MEPuP/++4lEIsyZM4cnnniCY445pmDe22+/HdO02+2ll15KbW0tzz//PKeddhqXXnpp/zYa+cSKZBijV04mlWd5oG4GwfpZezweiUQycBRFc383E21ED7iA8KiDhjCifZdE08t0vvUrQCFQMxnMNK2v3k7joq+gqFrR/BKJRCKRSPYcFuAzHr9X8frrr3Pccce5n6+88koAPvnJT3LbbbexbNky/vznP9PW1saoUaM47rjjuOeee6ioqOhTPR/84Af54Ac/2Of4VFVF7fUF+Nlnn83ZZ5+dk+7yyy/nu9/9LvX19SWVKwdWJMOW5KaHc5Zp0RFUH3QVihaUb6SSSPZCgg37Z322dterMCQu4TGHkG5bD0B848s0P/VjGo//2tAGJZFIJBKJZJ/k2GOPLegqefTRRwetrlQqRXNzs/sEimD8+PEDLvuuu+7iqquukgMrkn0AxW6e0WnnER53PHrY3zxtpmNgdKOGalC0gG86iUQytCiKSuNJP6D5sW8AEKo/YIgj2ncJjTyExManSGx5BTVYQfVBF9P2+h+Ib3wNo3sXWrRuqEOUSCQSiUQi6TOrVq3i4osv5sUXX8xablkWiqJgDIKjr68iWzmwIhm2RKdfQuy9PxBbdTeJzU9QNuVDGPFdYJmExx2DFhmBZZl0Lv0Dic3Puvnqj/8ZWqR2CCPPJrVrOZaRIDzy4KEORSIZFgRqJhFqnEGyeQWZ7iaCob49+ikpjpmOEV/3LwL1s9CilSS2vIqiqIw+8/cY3ZvQy+vlU38SiUQikQwjLEBemkvjwgsvRNd1/v3vfzNq1CjXIzmUDMuBld0hxB0sShe19eAn7RqozNArk+rLTXJf6/YT7woK1e2VnfnJzwSuSDbSgJVqteuL76Bz+R1umsTWFwiPPorUruVk2tdm5d/55Bdp/MAfUVTd3UeqI+UUklZX1ieEox7ZF44EVshsvdsrhF2iXD3Uy1fglJ3q7KRr+e9JbnsVJVDuDqy40q9g/uMn1gcdC27Gkdi6EuACb0MS8Xv3sehsxMir4YjqvFLfVIstszW6Hflt0Nm+Cvs98aG6sB1TZzor5t51u+3SyN4u8Tndkcr6rIbtz8Fquw73WEXt7RfSS4Tzth9XHK+c0dv8vRJbPylej/w1V+KK0yYUR+LmlXO6ZYqfnuOuliixLdQH+cnw3DI8sko854fu7HPRPsQ2iXaj9BI3ak6bFz/TXaJNOJJiR4CqOVJibzuPTjyOZPMK2Eff7uU9bn0VhuejVGktgJXqIL4+ezqlogfQo5WE6ufZMTjHU4ii3XPNsw32ShF4/th8JY8eaaf3jlFIr4VgO1htP5moRXvJa4VMt4usOI0iYlUvor9TiwjjC51jOf21R2bqCp99Jsn3R+bqL8p11ivZP0uW+3r6ooJpB4h3u/3X5+Ld565Y1du2HHquz2I/OOUo+YW7vfOLMvsj7C9EKdLa3S2rLYSQ1hbbbj+ZrZ9YtuflBPn7rt7r/D67dZX4ooc9STHZ657Ery8ZyLnstgdvfybu3zzHVw7WS/YkS5Ys4Y033mD69OlDHYrL8OulJO9rzEyc2JoHaHvpW7Q9czFmvDl/ukQrsbX/cgdVolPPoOHUP7vrU7ve3SPx+mFmEux64rMkt70KQNWBVwxpPBLJcCO+5TUAWl78PpnubUMczb6HVjaSqkOvQ6+cDEDlrHMon7poiKOSSCQSiUQiGTgzZ85k586dQx1GFsPyiRXJ+5Pk9tfpfOvnWcvKDvg8wYYFGN1NmIkm9MoppJqeILb23wAoepSqg76KXjUZRVGoP/4XpNvWEqwbutFLy0jR8sKN9gdFo/qwbxOomiRH8iUSBzMdJ+EMrGAZfl9iSwaIXjGeyOTT6Fz6KzpX/IPK2aeh6v6uKolEIpFIJEOIBYY1HJ/kHX4x/ehHP+Lqq6/mBz/4AbNnzyYQyHZsVlZW7vGY5MCKZNiQbHopZ1mg1n6tslY2Cr1iNADl088hOvV0Ml3b0MvHoKg9J5IaqiI0Yv6gPIYZ3/gwyS3/pXLB9aCFi6bvfO8BMl1bMVOdpFtWAlB79P+iRUozSUsk7xdi654AQK8aT/X8z6GXjxziiPZNut/7K4lNTwKgRuvBSIMcWJFIJBKJRLKXc8IJJwBw/PHHZy0vRV67ceNGxo0bl+NlsSyLTZs2uW8U+vjHP96nAZp9amBlT8xpHKgXpRT6uh17ci7nQOYdi7m5mjNP1js3s2LO5XQu/SWp5jcAKJ/zZRQ9SCa+CzPRgpncidG2kvSO17Ay3VllVx7yPYLVPa/VKnWOrvezOw/aMImvvsdeZqRyBlZyvBe6SrL5LdItq9w05fufRaCi0Z3XrzkOAdVxTuDW5fzM5J8g2zNPPP/c7N5Pwoi0wbKAU5fjwYjYP4243ckIt4JlZjs23MMrdounvStO7NEJtmw0sa3nOGS6sr0rXseIHtazYtEielYVYrtUx9kRaohkLTcdz4KVyu0o/Zql1zngnfuYMy/c02xEuW75wsnTq315O2XVmd+Pe5ydH0a238f1G3j2k4jR8s4793hgesdf6hx14T3xEnDaizgmAuG5EI6LrLbm+HcUp+24TgwnQG97EB4PRVUIVNqDpJUHnEOgaizQcx4M5pNd3nNlMBwGrutogP2u6EuLXVN6H0uvx8gvrfgZGX8UqR1vYiZaaTzxO+jlVQBYTls0k9neE905hprj2kk0x3oK93OrWD5tUPQxPq4Rb34jYXud8vVzPfE6HghPW/H2416Hlne5X7688fm4I3rid37pY7st5hzpS0yiL8lxR/nsh5zycmIq7nAbLKdCKW4VgZkp7LPI9T2UVm5vRBmGp78u1sf6en1yfHQiv28IfabUPqlQzK77zflWOmMaBcssdt/pPRZ7ghynmJ+bqIQ26+uMKrG996UOrwMwN11JVRbIV3h/9I6lr/h5jiSSPcF///vffuedNGkSTU1NNDY2Zi1vaWlh0qRJ7qDMbbfd1qdy96mBFcnejaJqWOkYaqSB8JhjMGLb6Fp6S0l54+v+SXD+FwYtFqNrk/u7GqoqaUCp9tAvsf3hzwMQapxD2bQPD1o8Esm+RGjUAkIj59P6yq1UzPo4ZROPL55J0meCNVOpPeJ6dj75JdJtmwjVjRrqkCQSiUQikfhgMTzfCjQMQ+KYY47pd17xVIuXrq4uwuHisxT8kAMrkmFFaMxRdC2/ncTW5zFjuULL6MzL0ar2Qw1WomkmViaBmYqhBgd3Hl1ysz1VITji8JLzdK95zP1drxw3qPFIJPsSmY6NgIVlpOh46w9YqS4ikz+EMpSvxdhHUXT7ya9MV34RuEQikUgkEsneSFtbG7///e9ZsWIFiqIwc+ZMLr74YqqqqvKmv/LKKwH7afNrr72WaDTqrjMMg1deeYV58+b1Ox45sCIZVoRHH0F61zskm553liiUzfs63Ut+AIBlJNxBFEXVUYLlKHr5oNVvP5ZukWx6FoDIlPNKypdqXUfXyn/ZcQWiRMYdPWgxSST7Gt2rHyG5bYn7uXPFvWjl4wiNmD90Qe2jqIEoesUo0m3rhzoUiUQikUgkkkHh9ddf5+STTyYSiXDIIYdgWRY//elPueGGG3jsscc48MADc/IsXrwYsP/eW7ZsGcFg0F0XDAaZO3cuV111Vb9j6vPAit98cL+pEnvCSTIYlDoPtNg8woHMJ/V+WVvqXNz+zr/sC37H13WSlPDcmuYzn73HIWLQ/d5f7EEVRSM08ggCDQsI1u6HOemjxNc9gNm1ATgSgLQz375nn/eUrwXzz4cWbhF3u3r9nm5dTdvrP0GLjrDLqBhHqLrGTufnP3HKM80ud1moca4j1RXz2+3lhuMGSTnuCYGYy+1Fd/woPduQvV7s+2B5L3mv4/XI9R0IH4YzbzztzKcO5D8mpsfFYSbtdMKboTt1Rsb0DGoJh0ZyezwrFuHtUMPZThUjYe+PQJXdqVnO/HnhZlA0e/vDI6NZdRtJfxmVF9FslSKeADe9j3PF61oxe3lehGPEdat4dqnitG89qGcVaqbtMrSQvS/dNuZ16HjmMCu9YhTieNXx94h9l4ll+rSdmbidPr2x05Mv4VuOaPvC4yPahHCv6BXBrLzC32EaJjWHXkB804u2v8ghNGJuliOilD6lVPbGB2FKuZZ4/Q+Kx7WhRXQSTYvJdDYRHjXLbYt+jg417LiYnPaT5dxw2rfwnbh+AOc8d8sU7bfYdcmN1c9h0euD1eOyAlDM7L6/mFPBD798+dwTRcsSfU0fbwFKcZWU7Izwca2UWm7vGIp5WdxrqnNMjDzuq0L5SonL797G6ycS9xC55WSX50fv/O59l5X/uBjCV2Fle11KRbTrUhxNfe0DvelVT7/Ql1g1Lftewnuf4i2r9HtokT7fusLX577SH+9Hf90qA7kPH2y3SikMliNJulUGHwsooiaTOFxxxRWcfvrp/Pa3v0XX7XvsTCbDpz/9ab785S/z7LPP5uQRXpaLLrqIW2+9ddDfHLQX3m5K9lXiGx4hselJQqOOpvKgb1M242KC9XMB0CpsMW1v98lgE9vwGFa6i0z7GgDKp59fct7wqLlEJ9lz/RJbXsIyM0VySCTvX7RwJSM/9Btw3ujVcPyNchrQbsCyLNqX3g1AdPzBQxyNRCKRSCQSyeDw+uuvc80117iDKgC6rnP11Vfz+uuvF8x7xx137JbXMcs7WcmwQdHtJxOSTc/S8dp1pHctJ9O1BYBAzUz06umExp282+oPVE5yfw+POZpA7YyS8yqKQtXss9zPZrIja71lZohvfJKOJT/HiEvXgUSiBiKUTTkRFA29csxQh7NPYiZaybRvBEB33sQkkUgkEolkeGJZYJrD799wpLKyko0bN+Ys37RpExUVFQXzdnd3c+2117Jw4UKmTp3K5MmTs/71F+lYkQw5Rmw7ZqqTyLjjiK2+Dyttv8K3862bAAiNO5no1HOpmHcNUPiVz5ZlgZkGeozOZrqbdMvbhEYeAuR/tDTT1UT36gd68qQ6MWPNqBUjS94OLVrv/p7cvhirbhrp9vUkmt4iue0Vd11o3IdKLlMi2VdJ7nyX7lUPEayfDopG8bkjklJJ7XqXjrf/Qs3Bl1C/6DvsfOo6Wl+/k5GnfG2oQ5NIJBKJRCIZMOeccw6f+tSnuOmmm1i4cCGKovD888/z1a9+lfPOK+zI/PSnP80zzzzDJz7xCUaNGpX3DUH9oU8DK4XmZ4p13rmvg8FA51kOJoMRi79LxVv2wCfZ+c1/LOZcEAyGW8U7l1j1zKlvffl6rEwMgOi0j2J07SLZ9Bx65RRQdZKbHkVRNaJTzrYL8Ew+NJz5qUbGJLb4eiwzTdmCG+z4utYRe8v+vebo27C0LlItK4mOPyYrBivThZWx3SChEQtINi+h5bnFqJEGAlUT0asmExl7FFqkmnTbGtJtKymbeiqarmPEW2h940m0aCPhMQtJbHmRjmV35N0XkWkfRy0fn7Vf/ea6ZtLZc9a9x0wPCLdHz/KA47lw5+Y69QgniOo6VfTsOsVcdCvbc6KFtKy6M522E0N4NHpz0EljAVj8rP02p+QOe39qZQGnLCdeH9eO2xs5MVU6/pbtb9hP+JjCqePxnvTGzxng/ZPdLcOT3u9YeLuzrLqd9ifOBdcD4WSycs5j4abIdugIF43rnBA+DMc9I7w3RqLXNLNMtu9CHDfd8dkYyWxXRrGhix63gWeufp5j5qo0jExWvN7LihZx2pBz/Ek6oXdtBiA68ThUVSVt2MfXzLy/3Speem+D12vh545qe+PnmMl2ut69h3R7k51WM9z24W337nkufEEhZ32iV7mWT5tw+3MfjxGec8rT1+Q4iYTbQVN7LXOyelwE3vO1v/P9++J26K/HpT/01x3jRRyrYt6U3hTrE71trlgdxZwO+bbRe1z97i+9fYZwpvScO4XdNPn6HPeeVvWkFW4hJ53rXPF4THy9g7vBreJXh3t+a9knWV/apNiHuiqOb/5zZXe4APvqNCzuQSl9u0tNuzs8KAMt0/X46P7HvedaYn8Ws9f72l9525a33Rcqz3vOeH0+0t8iKcZNN92EoihccMEFZDJ2Iw4EAlx22WXceOONBfM+/PDD/Oc//+GII44Y1JjkEyuSISXTvsYdVAGIrXqAQMPBgIURa8LK2E+vZNpWFizHsiyMlsWYMfuPtdSWRzE6VmG0LAFAKxtLpmsT7e/8GjPRQqB6MoFer0QO1u5HePRCjPgOFD0EloFeOR4rkyS1cznJba/Tver/0CvGkWlfC0DZ1FOxjBTNT3zdmfpjoUbqsuKKTjsPJdSIGihHKxuDokcKPnEjkbxfKJt8PO1v3Y0R2znUoexzKHoEku3EN78FQHjMAYz+6PWYcel+kkgkEolkuCLltaUTDAa59dZb+eEPf8iaNWuwLIupU6dmvULZj5qaGmprawc9JjmwIhkyLMuk443v5SxXw/bghBhUAYhM/BBmqsN91TKAmWwhtfUpzMROzFiTO6gCkNr4L9ToaJRQHVZyF0b3Zjrf/AF6+RgIVdG++DYq51xMoHpqT8UKWJk4qV0rAMh0bs5S2Gvhmp5Blf0+TOc795La/hZmsp1A7f6kW97DjO+y02tBqg//IVq4blC/gZdI9hUSW17DSnejV4wa6lD2OeoX/QAr1U3zo18AYOxZNwzaY64SiUQikUgkQ017ezuGYVBbW8vs2bPd5S0tLei6XlBO+73vfY9vf/vb/OlPfyppIKZU5MCKZAhRQA2CaU8vKZ9+Hl3v3o1ePo7IETfT/e4dpHctBaBr+a+xjATVR/8KlDBWJkZs2U2Y6U60svGoZWPQaucAoEZGYLS9i9H2Diig6GXuII0SiBIZMY/Etjdoef56tLKRBGqmYibaSO1cTrBhDpnOzdQceg3BhgPIxNoxEzuJrXuEZNOrdtiqTvfKf/ZsRaCMdMt7aNFGjJgjpjVSGF2b0MLZT7BIJBIbyxm0TO18l+i4hUMczb6FqodBD6MGyzBT3ShaoHgmiUQikUgkkr2Ec889l9NOO43LL788a/m9997Lv/71Lx566CHfvD/5yU9Ys2YNI0aMYOLEiQQC2fdJb775Zr9ikgMrkiEh07UJvWwkihbCcgZW9Oop7no1VEP5nC/T8cb3MTrWYhkJAGLv3UlwzEnE19yDme6kbPbVpJpfJtPyFtaOV7LqCIw6HjVYgRHbCkYMvXw8Zmwj3Wv+A4pGsGE2WqSBTMcG0h22VTrduhq9ajLBhgNQFBUtXI0WriYy/niSTU75nlcpW5kEFQd8grLJJ5Noeo22128FoHPJLdQu+j3y5VsSSS5myh7sTDS9CfMvHuJo9k3Kpi4kvumtoQ5DIpFIJBJJCcipQKXzyiuv8NOf/jRn+bHHHss3v/nNgnk/8pGP7JaY+jSwoqhKUYma5iMJk/jLvfyXF5a9lSK4Kl5G9vJi8mGjD/I7r0BNlBnf9BiJNXcTHn8KVrrTTd/28vcJ1OyHGqqk7eVrMOO70KIjiUw5m/D4U0hvf4muFX8gtf0l7EdRVLoXX+/mD4w8FsuIkdnxKlr1LIIT/wdND+bEEO5uIr72HlI73iJQNwc1OhraN6CVjSbYMJ/IxFPJJEx6qz6V0Dj0qmmYqXZM53XJFfOuQK+aDmoQRVFIdWdQK+dTtfBnGN2bUBQdy+w5uIPtVhHH30j3OiZdaXs7HUltdLz9ujEj5h0MckSojhDWSnukkE5+IbUUgspAdSgrXcapD2D5G7YrY9T0agC2Om0r0512yhLHwk5vOleOgCO3TTvpRKy7VrbZy9vtgTfTI/PNh7d/8goW/c6HYvLKYjLbrDRCKCvKMLLLFAJRIfvMWxg9sl5XcusRC9uoWXWLPIi6PPI68clyihDHoC/yTj8Mx9/hykcdgWTGOZ6iTYo2VzbpKNoX/5HwqAMB0B15b7K7p00NZ1yJZZF9VUxA6tfnivOkdz4hIxTt2nt8ATJd21CsLrpWP0Zs/fMoehgjkULR9JxrhnueR+1zUAiSLSNPWxNtyhWKZsfpJwh1hbmetqaqXvmtp55e2+2e+z6XHz+Jr2jfftJbv3IKSRP9jqebx1OGt0y/fKXUXSx+t0yfIvwEs1ogux+Bnv7LG5/IK647Iq9XduuW49O3FDovvGJNI5X/PsVbhjiH/O6N+iPD9EpsRTPNEcw6n8VVytsvePuLQsdb85GOFpPa+klrxbnl/6KEHuGve376xKDq2XmLnUuCvoiT/RBlimtFxscZtTsktbn5+pVtQGWVGquQ1wecfl1I7M1ef63nnDs+51pf8ZM3F+qz9LCWFZNlZp9zTsEDikuyb5JMJl1pbW/S6TTxeLxg3uuuu263xCS/SpfsUSzTILHmbgBSO7O/SVVDNVTMuoDOZb9ADVYTmfw/qOE64mvupXPJT9CqJlG98EbKDrgcFA0lUE5g5JF23uhoItM+gV4zC61iMuHpl6Oo+R9/V6MjybTbMtz0rqUktz6HXjWZ6sO/R9l+Z6MGc999rugRKhd8k5ojfuy+osIykihaKMddoAYrCNTMRK/eb2A7SyLZh0m3b8Iy0kQnHD3UoexTtL76M5qf+Dax9c8D9hN1qZZNQxyVRCKRSCQSyeBx8MEHc/vtt+cs//Wvf82CBQuK5m9ra+N3v/sdX//612lpaQHsKUBbtmzpd0xyKpBkz6Io2N9sWpixJsITTydUP4VA1STUYDndq/6JogapnH8llhWEcSeTaX2b7nf/QPtL38jypZTN+jJaxQTMqRe4X9EFRxxBcMQRRb/ZCY0+BiO2nfTOxQCUz7wIRS3tdAiPP4nEhoeJrb6PQP3BUgopkfQL+xzd8dS3qDvqG4QaZxdJLykFvayRTPt6AMqmLKTmoHMINUwa2qAkEolEIpEUx3IfgJMU4YYbbuCEE07grbfe4vjjjwfgySef5LXXXuOxxx4rmHfp0qWccMIJVFVVsX79ei655BJqa2t54IEH2LBhA3/+85/7FZN8YkWyR1EUFb12lvs5UL0/4ZEL0CK1KFoQI9mGGqlH0UJkOtZhJnYRqJtF1WE3UjH3S4QnnIyi2/ZmM9nqlKmVPChip1eITj2X8tlfdJdp0YaS8wdqZtj1x3dgdKwtOZ9EIulFrxuH7tWPDF0c+xihkfbUqrqjrmLEydcQrJs4tAFJJBKJRCKRDDJHHHEEL730EuPGjePee+/lwQcfZOrUqSxdupSjjjqqYN4rr7ySCy+8kFWrVhEOh93lp556Ks8++2y/Y5JPrAwh/fEYQO7c9v64VgzDzuSd1++dH1nq3F43f69t8s57FpRNO5f2V5aBohKomeYqJhRVQdVDGB3r6Fz2S1LbX0OvOYCqBV9FUYOERhxIaMSB6JXTiK//N4GqqaiK0jP3uVc9gVD++d5a0J7GI+biN5z0S/tpF832f4h5wH77NLljKV1v9YiSkttfIFAzJSuNyOvdh4OF2E5xDEn0rDNSjr9iTDkAqZ32SstJG6iyHSm640oRk6VSLXY64ccQiHxq0HExOHNh3TncPX0RmYRdd9sOuyyxr0OV9r6tHmUPiOnOnPy25uz5j+lOZ3955uYGKu0otYhdnvC6CFcHkDO8b/qYv/yOhTd9jnPG6wvScs9d91wRfgoxh1nP9RcAZNKZrDJdn43XEyH8EkqeNu2EaeHZLo/vwUVsh9gun6bZlzYr4vZ6XjRdd8J22ms825EjhNRV8y8iOrHnAtgXj5MfxbwnxSi1v+uddqB1CnLaWi/Xgdetkusx6MJM7kQvH0H32iepmm3vV8vHMaJFs28BRBdqeFw9duHeOfNOEuf4Cz+LyCH6Qa9bxevg8WurWb4P4Upx+iPRRfh5OlwvkWO8EHP2e+bwF/Z+5MM9Lk5VqtO/iX1reQ5/sRbkdVl4HSa90/j5S/zw9k/udgutUxEPCvRsp/dc8O6rYsfCm09snzdd78/eeDTn+qNksu9f3PWe65aft060Sa8nJB+ZdP57JNNtQ4XzG+7+8IvFXt87dhGXcGSI67lIm04W94zli9lbvrg253WFeY6n3zlRrC3mnJO69xjl3iu6bc57PfY60Zw2JK49hme/5LTRAdyDDaZLZbDw66/EctFuCh0jP9eRaCNmprR9NhjuQHHvmHPt89xLSyT5mDdvHn/5y18Kprnxxhu59NJLqa6udpe99tpr/OY3v8lJO2bMGLZt29bveOTAimSPo5WNoeaY36CoCpaRJLlzHcHa/UHRiG96DoDU9tcACOTxlARqZhComTEoAxZaqArwCGB9SG5/me63f529bPNTGF2bKZ/1WflqZYmkD2Q67QtX2ZTjUVTd/eNZ0n9anv9fUrtWogSiZLYsJrVrA8G6CUMdlkQikUgkkhKwAGMYDujtzeNbP/jBDzj77LOzBlbC4TAdHR05ad977z0aGkqfxeBFTgWSDAmKFsJMttL67BdofemHbP/PhRiJNhRVRwmUu+nCE08fwiizEYMqZTM/Q82xvycy6QwAMm0rSW17pVBWiUTiQa8YBcDOZ384xJHsO+hVYwGw0jEAmp+8dSjDkUgkEolEIhlSvE/CA3z4wx/mu9/9Lum0/RS8oihs3LiRr33ta5x55pn9rksOrEiGDMtMZX2OrXuc6MRFWEbSXZZPDGvEd9Dy1IV0Lbtld4eYReUhN1B91C8IjVyIompEJp1OoG4OQFbMEomkOOGRsymbfCyp5reJb3ltqMPZ6zGSHYQaZmYtS+1cgxFvH6KIJBKJRCKRSIYfN910Ezt27KCxsZF4PM4xxxzD1KlTqaio4IYbbuh3uX2bCqT6zxf1MhznJfam2Hb0N35Rbl/8KX7zJP0+Wz5zfPNNjRFzE/1cKt50fXWqCDRn/qzf3F7I4zuJjqN8zpfpWnoLAInNL1C14DOw8p89cfaaC53p2EB805MktzwDQHrXW2Q6VrnThXofUzGfV/X4LcSc3BwvREfKE2PuPtbLx/TaFpwYlgIQrJ/Va46qCNj+YXra2mA5V0Jltnuk93z6yKgyADRnXWxjp/3Z2d7Yli4AAo73JFQfASA6zn7FtPBjpNrEQJHjVonYGzV6Zg0AW97aZS/v5WgQcYhpVeFqx1vjmeKRdFwbtSPsukNObO1VdvodK9sAyMQcB4njS9ACwmngtGnhJKHHiSLmWqsUPoGLnXPedKbHUWH2Su86EnyavtdvkXP0nbIywrngzLkX2yc8N2776rXdBJzSnMPl9VnkVCXm8wu5TtqdxGz/8OQvpa262yf2iWjvogzns5FwjqfW4w6pmPkRutc+Tdubd9Bw/LyS37Dl5zPpq7fKdz953SUl7IdirpVS25z3GtL7/PZzqwC0vXYbye1LcpYH6yKYKadNiePuvaZ4HSzOccj6lsdbp9ge05PHjV8st39xHSzea6/YTse9JBwsZi9vgnv+CR+Akp3XTee234wTv4hl8N7c5nVQFF1eontEHGfhgxlQjCXG5l3f+/QTy0T/5nWjFNun3j7E69gwUo4nI5jfQZWvDkV1ynL2kbi2ppL28Q64bh0RY3Z5pbhVBoq3Tq8Tz9tP9PbFKKrjDEl5fFRuGf3t37LvawRaqOf6LfxFCGeQG1Nx/1C+9X5+INGO9N7XMc926UH7c7o7nbdMI124LXrr7ss910D/dilW10D6or5uj2hH3nOvN97zdLD/dhvMvvf9gmWBnBm9+6msrOT555/nqaee4s0338Q0TQ488EBOOOGEAZW7VzlWzFQnlpFADde5N2uSvZtg/TzK9vso3SsfwIjvQg1E7ZEJM0N4/EnENzxKeNzxoKi0vfJdsDJZ+ZNbn8nrYdkTmKmeuXmBmqGJQSLZmwlUjqbu6G+w69kfkOnYSKBK+kD6g5lJkOne7ozqKmD2/EFiGWkg7JtXIpFIJBKJ5P3IokWLWLRo0aCVt9cMrKRb3qFzyY/tD1qYygXfRC8fN7RBSQaF8v0+CmaGTOdG9PKRBGumkGpZTWKj/Q5yM91NsHamO6gSnfI/zlt8dEKjjx6yuBW9jLLpHyc06oghi0Ei2dvRorb0ObXzbTmw0l8sE6OrKWtRdMLhNB5/DoGKOlJtKZ+MEolEIpFIJPs+P/vZz/jMZz5DOBzmZz/7WcG0X/ziF/tVx14xsGKZGRKbHu1ZYCRIbHiI8gM+O3RBSQYNRVGpmHEO8c1P0bHsr0THH4llGaRbVgMQX/tP4mvt6UFqqJrIpA8BQz/dTFE1IuNPHNogJJK9nJRznpc8z1SSgxqI0nD8jbS+9nMCVROIb3qRTOd2wqPlk3QSiUQikewtWIA5zHUaextHHXUUkUiEm2++mfPPP59wOMzNN9/sm15RlOEzsFLKH7vF5hx706W2v0J611tZ68zErv4FKPIXeUd7sdgG4lLpr0PFu17g51HJt8z7Pvi+OlVUnzmtfXGreDHSJmaqk/bFfwAgtv6/VM27iHTVFIL1s0jueJv4+kcACI06ote82uxt6F2Pd06pm8eJUw3a83uFr0K4ObzzyH3npLvHJne997iJfSP2/UDnnIo56ZrjJKiYXtuzLmQvS7XY0g3hLRCEauwpAeku+xvsdKudLtlsv0Uk1BgFQC93/C3OftLCjgdlZwKAcJ1dTm9/iruvPPts3JRKu0zHIVBfZXc7W3faMYyos90qom3tdBwLhuNYyXjmWbv0rkccV2d7LY8jIsdv4Y3ZQ7E523nXaaKN5Q/XKyUX6dz8znIjI/wQ2RlcB0WesoVDRw1ku4PcurwuinT2HH43nXM8TWdutqUW3qas+LRs/4fwvWS60lnL3Z/O/gqPWGCn627GsvrnTynU/0Buv+dXZqnOlf7gF7+I3c8XUGp/EaiewIiTfgJAe7Scrvceo2v1ciJjD8hxkggnkddtYHiOVW9Vkbc9CheKcOoo5Obpnc9v3Mz1Izk/RZ+TVZ8o043L53iKc6qP89MLOQtyjof4WOI103st8XNOCLdKb6eO0Ucfl7sdJZ63Ode5Qv2b9/z1Ji3STjPCseS5fue71nqvw35xe0UEwlcS0EU/mD+WUsZwNS3b/ZLbpxYvIx8iJpNcJ1OPb0X0pdl1aT7vmxDumFI9GSKdOCbg31a8fjG/eyP/e6X8105xvkNPmxdpMkmvYya/M6VYncVitpflLaJkBsuZNxj4OXX65phx7gGG4N26fn2NhoJlyS9eJLm8+eabBAIBZs+eDcA///lP7rjjDmbOnMn1119PMGj/ffHQQw8BsG7dOjdv798Hk72ipSoB+4+9QP08d1n57M8PUTSS3YEarKDuqOtQdFto2r7kDuKbnkWL1JNuXQVqkNrjfkXZfmfnzZ9uX0u6deWeDFkikQwCarCMYOMs4usfI7bhyaEOZ5+gcuapAGy+9xt5XzMokUgkEolEsjfz2c9+lpUr7b/91q5dy7nnnks0GuW+++7j6quvLrkcy7IG7V5p2A6sZLo2E1t5J8mtz5DY/BQA5TMvdderwcqhCk2ymwjW7kflrPMBKJv6AVAUWl76PkasGcwUrc9eSeuL38RMd2Xls4wUHa99l/bXbsAa6vlBEomkT1iWRaBqovNBnr+DQaB6vP2LmaF7zctDG4xknyLT3Uzn23eR6W4e6lAkEolkn0O8FWi4/RuOrFy5knnz5gFw3333cfTRR/PXv/6VP/7xj/z9738vmv/3v/89s2bNIhwOEw6HmTVrFr/73e8GFNOwHFixLJOO179DcutTxFb+kUzLMgCS214EoGzmZ4YyPMluJDL+GCLjj6R79UNY6RiKqrtvuLCMBEbXZpJbnnfTW5ZF98q/up873vwJZia+x+OWSCR9x8wk6Xz7b3Sv+jfRyR8kMn7wzOzvZxRFoebgTwLQ9I/vY2aSRXJIJMUxYjtofeF6Yuseoe21n8qnoSQSiUQyZFiWhekIaZ544gk+8IEPADBu3Dh27txZMO+1117Ll770JU477TTuu+8+7rvvPk477TSuuOIKvvWtb/U7pmEprzXjzWCm0SqnYnZvwTLsP5STTc8BoFdNG8rwJLsRRVGpOfhzJJoWY6W70crHUDX/y3S+80eSTa+gBivpXnk3gdoZJLe9THzLc5DudPOndy3vmesvkUiGNTufuYnE1iWA/XYwRdWATME8kuLEtyzBSLQDUDb5EFQ9NMQRSfZmMl1NZDrW0/XevZiZOGXTPkr3qgcw47vQovVDHZ5EIpHsU5TqvdyzDL+YDjroIL7//e9zwgkn8Mwzz3DbbbcBtj9lxIgRBfPedttt/Pa3v+W8885zl51++unMmTOHL3zhC3z/+9/vV0x9GlixMpYr3BoMiolBtXA9Rud6UINgpjA6bdGMEW9BDe2ei3lfxaLFJJGF8hST0xaS0vammKA2X5zFTlqvrFFsl7euUrbXK3kT221ZFolNjxCoGkuoYW6W/K5y9vm0v3k7RtdWtIBGZPQhJLe+iJlsBSDZ/BqpHYvBSGRVpFdMRNHDrnDNK7E1ko5Az5G9CXltoNIWHJnp7INimZmsmMW29MiP/WV/fvKvYsczJ72eLfIKlNliWT1in76pXT1P6BhxW/omRKfBWkcym8qWwWlOXtOR5WUcUazqyGxVR1YbqLLrFLs52WELZ7WwnV/rJVoU8VU12J6cg2eWA/DWGluMazjPEm5c1+nU7cip07ZDqc0R48a3dtvpY86TSuKQiP1ZgihZCWaLIRXvOUK2HFERx8zneUfRjvLL75y83hg8YRY77H6CPvez0+YsrScGIa3164fEcXS3w0kfqrH/0Bb7J7bRnl6X7sx+LW/ONvQ6n7wSWtGmFK+MVcsuRIiRtWiA8qkHogYhvvkddj33NRqO+ypltWPtmNqctuiRPwMY4vwWAlDhUfXZyaX0kb1jLoW+9v1+sfnJPL19VyHc9u1kaV/2AImt9pOekbFzemSuhkdmKGSZQv4cEu3cWdxrP/XIqZ11ukf8i5AwZ8eiOFJW95wTxzOdXbcrI3disvKdi9597pHV+j1AIWIXkkw3fQny6oHKxgdSjmgDPYLb/CJQXzllUQm7v4DUsky6VvyVdOt7ZDq3gJlGCZSDmaZ71QOAghqMun2CYma3LXHeCwG22AbNkRMbqfyC0nzb5/eyAXFOiToMJ52m5e9LveV7r+v5KFXiWaysUupyt8cjIRX3AOKnn1DWK0T24ifIhuLCZ29eP4Gs977W+5IBQe8Yndusou26z+1/NzAcZLXFXq4gcO+1Rf+X55oylNtT6r2wqiuY8gtTSR5uueUWzj//fP7xj3/wzW9+k6lTpwJw//33s3DhwoJ5DcPgoIMOylm+YMECMpn+f8E3bJ5YSWx6jEDtASh6OR2vfg2AVLMzN9yCioN+AAqY8R0EquUrJPcFrHQH8dX3EAfqT/wtvZtj5zv3AWAm22hfdgeVsy7IzpvqQg3XYVl2dxsavZDYmn+R6drsLMv+g1IikQw/ag4+k/ojzya5YwPrfvtZtv37GipmnI0RbyHZuhEr1UZw5FFEJnxoqEPdK+h890HMVBeRsfNJbF3GiFOvpnxq4ZsLy7JyBh4lexZ7EOMekltfIjzqICoO+Lg9DXYIyXRsIL7+UYKNc4nWzyZQN5PY2odJ71oOlknVgZ9FDZYNaYwSiUQief8yZ84cli1blrP8f//3f9G0wn8HfvzjH+e2227jpz/9adby22+/nfPPP7/fMQ3plduyLDIty8h0rCax4UHSu6YTHHV0bkI1SOfr33A/pkcdS2TymaiB8j0YrWSwUbSw+3tiy3ME9j/F/Vw9/2JaXrJfHZrY/Dxlk04iMumDxNf9x1n2XzuhFiJQPQUUDbAIjTwEpb/vQZRIJENCsH68fQ5bBp0r7kWvGIsaHg2hWhLr/o4Zbya83yfluV2AxLa36Fj6FwDGnPNrOt99nO0P/xj19G8TnXhwTvpM5w423vlpKmaeQsOxl+3pcCW9iK9/lPi6hwnUzSC2/km0spGUTT6leMbdFc/G/9K5/A8AVC/4EooWpPWVH5PeuRTUAP/P3lnHSXLW+f9d0i7jMzvr7pLdJBt3I3AhgeAchGCH68FBkMMOfshhF+TQ4A6BYEk44r7JZt0lq7Pj09PeJb8/qp7qrurukbXZTerzeiU7XfXI93nqkeqnn+/7wTSIdK6eMPt8+fLl69kqAa891XQKmsT+/fuRJImpU62dzo8//jg///nPWbx4MW9+czWP9X3ve5/ztyRJfO973+Ouu+7i3HPPBeDRRx9l//79vPa1r62KO1ZN6MKKNrCR9IavOJ+N4lB5T2CFwtOeT/6Z25EjHRi5IxQP34upZYkv8V8GT2cJtx6woHiVCk8+i+SKm0mt+6F1QZKJL3g54ckXMPCQvcgmqyjhZuKLbqJw+BEwDdTEjBNut57roTS0j0Dzign/VdGXr2eDJEmi5cJ3kD/0NOHJlxFsnue4AqXzvRS7HiAw6QLUhvkYhUFK3U+iDWwAPUtoxosJNC+c4BJMvAo9m52/S4P7ic25iKG1v+bwnz7F7HfcbvNr7PtDXRz8vXUUoTbcddJt9VWWoeXIbPsFAKW+LQCkt/6G6KxrqOVqKmTqBUxDQw4c310jxb4tzqJKfOErkBTLTVbP9dkGWy6ahl5A8dk9vnz58uVrgvSqV72KN7/5zbzmNa+hq6uLq666iiVLlvDTn/6Urq4uPv7xj7vCr1271vX5zDPPBGDXrl0AtLW10dbWxqZNm47apgn7VmiaBrldlrtHdN5ryO74CXKwCUm1XhIazv8qmS3fQxvYCGoYJTEbfXi3E19SI+W/x+FvebQMleo8RHq1w4/l1NDRfBtH4wI4bIdj8JE8niyV8aryGarJWWh5DYwSatS6Hp97NcXeTRSOrMcoDlHsu5v09t8jqVFMLUdk2mXE5t+IpETJFQYBUKINKEHF8b13/L8dToXtq277Yhd6c67r3h3xwh9c+AMXejYzvPbzln0r3k+wZVnd8o2XpSIkbFWC7sYl/GNLGevFNm/zUCrbhezhW8SnWP3JYaoU3ZwDES4omBs290Af0u3wNrPFrgdt2LJBtTkvgUSgbLdi3dPsNO59pN+yN+9eLNVtG6LNVp6CrVLI2OFMdx8SzAWnDY6BtVLlU6+6OSWORDjR7sXlOj8XjNQPqvye64SVldrXvT7rIpTjbR+ojmeUBFPHej6CkeG1KWq3g4bJ1r/hqNUeBo5Y7T/zzLArnnjegtUj2CyyUsFY8TA2JI//toir52y//6LgRGBft563GrNsaVxxBay4wuG8JCIqpeHDDKV2Euo8k1DzPEr9G0lv+BamUURJzsPUcuS2fQdl9ZeQJGlU1opj2xiZKyOpXlsYLe/RxtKRuBdVbaIirdisy0hv+yMAxd5DFHv3Ofd233oDkSnLabv8XfT88+vkDm2smKQUh2dS5rzY+bgxGJbEPdGXRBzRNsT6jV2nXt6D6M/V6dplGcd85h0K6rFTvHXuPKJxMNHG+p4xGv/Aez23904AlGgH0bk3MLz+fzH1Alq6CzXeWTNNo5Si9x/vRA7Eab3y665Fs1p5ZffeSWb7b0mueh9GYZBg+9lIklzd1vQsqae/iRxuRU10Ep11NYWezRilNEpiBnr6IJIaJdC0AOQ4eslwxjOHwSF4VPZz9/LO6vHPKuu3Hr/DK2euLI/cABQLVsNV7DFKsdum6OdGyZNujXZel9ckOCZ13vXGemK8SKfWeODlLsme95hyXrXryRuuHq/Jy7kZKS+vRn82I96uydQZK+9jdLbIiWdBngyV+TT17o/vHdPFjnL+dPPjTPuEFdnO82jmxloaz/twLd7cqcC28XXqaePGjaxebe2e/PWvf83SpUt56KGHuOuuu3jLW95StbByzz33nHCbJmRhJbvzFxQO3AVAsPMS1Oal1t/tZyGpFsjS1HKEJl+CNrARWQkTXXATw2v+E7V5GYHGBYQmXzERpvs6jpKDDTRd/C1MbQAlNpncM3eT3vwTWi7+T4ItC+wjQ99G3wOfZ+DRL9qRAmCUiC99A9HplwLWoKvnrGO1JDlQJ7djl57vZ3j916x8AnECTYtOWF6+fPnC/jVeItx5Jka+l+H1XyfQvITw/DcgB+KU+jaR3fjfGJkDKPFpE23uhMoolSHWg0//HPQCcjiJkU8BkDu4noEnfknu4Hoaz3oVkqwy8PiPabv8vRNl8nNeRilDbs9fAYjMej7hyRcQal1Ads+dyMGEK6yp5cnuuQvT1DDyvWAaGMUUhSNrCXVUA/gqldn2G0y9wNDjnwWg4exbrMUR2wZtaBe5Z/6GWUxhankaL/gcwWQbpcE9DD5mxQnPuJbo3BdT6t/Kqbkp3JcvX75Of5mUufK+RlapVCIUsn6k/cc//sELX/hCABYuXMjhw4cnxKaTvrBilLLOogqAHGpkeO3nLGOalmDax4/omQMY9i4EtXE+SrSTpkt/eLLN9XWCJakRlHDU/ttirvTd/0mazvsgkc4VyGqY5gtuYfDJb5I//CQYRaJzXkh4ipvFY2r2l4qaP7GOX6ZepNC7CTnUipqwfPcyW3/mHI8TW/gG3w3Il68TLCWcRG2cQbFnM4a5E0mNklj2NnTDWkA1zZId0n8LUaIt5Q+6vZvNXlQJT11B/sA6Qm1zGN76D0Ais+dhAI787VOASWLRNSQXX3mSrX5uK7fnb847jxK2np8SbSex5DVVYbN77yKz4zdV14ee/Bqxha8gNvsFgO0ipOWRgkny++9Bz/ZgeubF4Q3/ixxuQZIDaMN7MUvWSWxKbDLxpW9CCTdbn+Od5VMZU3uIn/1hUsP70LNHMA297k4ZX758+fLl60RryZIlfPvb3+YFL3gBd999N5/+9KcBOHToEC0tLaPEPjE6qd8MTUNjeI21LUeJz0BPP0N+7x+d+0b2CFrmEMghMpu+Ub5eHEKJdp5MU31NgEIdZzPMdwEYeOQLDIWSxOdfh5qYQf7gI1YgWSV/+DGic64Hgk5c4VZk2C+IxyJTK9B7/0fQM12EOs8juez15A8+SrF7jRMmu+PnpDd9CyXSSmLVLT5I2ZevE6Rw51mkt/6+vB9aDjjrKKXux6x/e9cix6aXj/q1ZeT7SD35SQJtZxGbf/QwstNBSihJsHUhxd6t5WuxVvRML43LX0jXgXX0PfYT5EgDg2t+5oQpdG9HUsP03ncr0ZlnoUYbJ8D6555MvUB2958AUBLTCLQudd83DResudi7AUmNEGxfSWlgB0auzCXLbP0lGDrhyefSd+/7AYjMuIrcM3e70ozOuYFAy2IKhx/D1PKYeoHQpPMJtq0EOUCw2X3ioqyGiS94iX3s8laGN36XcOd5pJ7+H4rdawlNGnmnjC9fvnz58nWi9PnPf54XvehFfPGLX+Smm25ixYoVAPzpT39yXIROtk74wkqlT582vBejYAHQ9PQzzvVA6xmUep8mvcE68kgKt2HmrZeGYMf5qIlZI+bh9cfz+qe6w3rtG+3+aL6fY/cNreerWC+u8OH1clC8GslXt26cOv6Ox8pSqaxPh5FR58dkL49GCUaIL3wF6a2/BCDQPIfUhp+hNkwn0DSbhpVvpPfe/8TIHiGz83bi818KgJHvsV8yJdALSFKZESFYIqbjjF8if2gNkWnnIikqimozVOxwheE8Q2u+gp6xgI5KbCY9d72pynbDbp965hCgnhCfXt1hUoi0be6JXRbxDBWluqGL55A+6F5oCthsDeEXL9gZSqj2L4+G7asu2Cvl+rTvV/ATop0WvyPdb/0Cq+WtuMF4wFWOlmnWIlTQ5oHoNt8h3ZWtmbfDcPC2zcr+VIcJJDgQTlvz9kEve0H4lxt67fselkMt1etDjg0e/o8TzxvOM66JZ1Brc4aec9dVIGktOqph63kHbCbOlCnW7rBd24YASB9MW9FsHooad7vSCaZKTV9+TZTDrmsPl0bX3b+Si3C6zdxR7bZYGiq6yudwXex/m856CWo0Qu7A00hKkHBzhNKwtVNFXvgq8rF2cnvvQJZNwjNfhCTJ6GIfrZ7HLA1TPHQPkekvQA7X/gXjaHlIx0P1WAROnVeGdWNNyB1eQ6FrLcklL0OJNKGEm1xp6Jle5EgTet56zmYxi5LowGDIOYUJQE1MojSwl0N/+BCTX/wlJCWCJEko4fIrgpa26zzoZmWIxSzT0zAdXpcdXi94dhN6ASleNlFFe3L6rYfD4n1sTv/02OAwt0R8cV3kqbjn8Vr9uyov0X8rmEj5I+sYePQLSMEkTed9DDU2qSYvAEBLl6HByTPeDaZknZSYzzO88bsUux4jNv9lFPs2W0ccA/ElbyQ85SJAR8/2oKcPoGUOo2e6yOz4Pbl9Zf9x76JKePrVROe8CIBA4wJ3eZ25ulxw8XxDU64kd+BB9OF9FLvXUurfiqRGKfZvITTprPJjdCLW5n2ItOvxPsYzh1b3Gft5muJdyEqrZM+h4jeYsbzfOPMvIzPsxspScSwUvBQPoyVQya0SfUZ1v9N5uVzed10l4K6Qem1OsMNqPYsqFtIIrKeRNBpb5UTw+oTGyuQZKdyJYnmMpdz16q7e95TROTbuvGvx3dx0ojLbz2kP9jx/tKyVY5lb6/Gtnu0yzXGhxp7TuvTSS+nt7SWVStHUVH7/efOb30w0Gp0Qm07qjhUlMolA25nomcMY2UOWAY0LCLauotT7tBPOzPcQX/lR9LR1jJKk+OT554JMvUiwfRUJxWR406+Q1QjBtkWUBvchB+MEGmfQcuGH6bv/0+R230GgYTaBlsUMPPJpx20s0DDyIlz+4OMMPPFNTKNIbPblrryz+x8ms+seSgPbAIjOexnZHb9wwoQmX4bavAxJCVHqW4tRGCQ06WK/ffrydQIlySrJpdcTm/OCqntyqIHo3BtBiZDb9WvkUCuhyZeU70cnO3+XBrcSmnTBSbH5ZCm99Q+UBvcQnrSCyNRzaVr9dqKzLgN0JDlA732foXHFK4nNuRA10Y4khTh0u3XcYGTameT2PQ6SQmz2Rei5ZQxvvoPuu79AaeAAk/7lMyjhqRNbwNNMSsRyoTGLKfrv+wAtl38dOdgIQO7Ag8hqmEDrKgAkubzjUhveT3rrzwi2r0KSFIpd1k6szPZfO2EkNUpo8gV2XBU13oka7ySE9QUkPOVihtZYYHUlPpVA80Ly+/5BdN5LUBMzCIwAWh9JkqwQnfMihp/+GrFFryOz7aeYWnbk1WVfvnz58uXrJEhRFNeiCsDMmTMnxhhO8sKKHEyQWPZOAIq960iv/wpGvp/M9p9WhU2v/QwgXiYuqbrv69mn1NPfonBkDc0Xfphg60Jy+x9GbZgGRgk9cwQMnVDbIqLzX052+y9Jrf2aK35i6WsJto4MlFUi1i/W6R1/Jzb7cvR8iqF1vyB3YA1GYcgVNrvztwDIkXaSZ37SYcAABFuWABNLjPfly5elyIznU+x+gmLvk+75wiifSJXd+j2Cratcp5Gd7orNuYbMrjsJti0GrC/c4Y7lzs+Q015lfTGXJJlwx0JMzaTloncgq1G04SPk9j2OEmlg6Olf0XnD1zDyfWR2W+yVg795B40rb6D5nFcjKScOCv5sUiA5jfbn30bffR9Cz3TRd+/7aTrvP1ET0xle/78AJM/8DwJN85GCSSfe8NPWXFbqWYsUbAAgMus6lEgTwZZlDK39KpFpl7pcg6ryblpAy6Vfo9D1KHK0g1DbChKLLfe3Y52ngm1nIEfaKXavofHsW8gffojoTP8AAV++fPnyNbH67W9/y69//Wv27dtHsVh03XvqqadOuj2jbCQ7cQq2riAy9+WWS4VhVURk7surwkXmvupkm+ZrgmSUrO3qha6nSSx8MQDa0H7UhPWrc6HHOlc8Nvv5xBfdBBU7RdTENKLTL8U0RobXBtsW2enuo5Q6SM+9nyW3/zHkoOXGEuw4GznSagW291FGZr7Qtajiy5evU0/h6dei9W8gt+cPmDa81TRK7kAn8NSwSpmmSf7AP0hv/jalgc0nLJ/ozEtou+KzKKHyl3TTNDFH8FNIzLuc6IxzCHdaTA89N4SpF+n6y3/Qeum7ab30XbRd+UGSS17A4NN/4uDvb0HPDzth07seJL3jPutzfphC784TVr7TSbkDj5A/sg5JVmk44y3WRaPEwEMfpeeuNzjhUmu/zMCDH6D/nrcCOAspliTM4hCxBa8kNu8lRKZfiRLroOXi/0d01vNGtUEOJYnMuJpQ24rjWTRrYW761RS7nwA5QGzujQ7g1pcvX758HT9ZpwKZp9x/p6K+/vWvc/PNN9Pe3s7atWtZvXo1LS0t7N69m2uvvXZCbBrXjpWj8XMb6ZeSyPRrye38lfM5POVi12ew/Jpzu3+Fnu0m1HkBwbYzR/BDdNtXK2/vufBj9ZOtl7Y+hjOxxur36ZUyzvo+Gl/G4+W76K3X8eQt4qgN8yj1byWz6y4iM65AbZiOnu1Dy3QDkNl5J+FJZyCrMrE5VxGeehGlwZ3Isomkhjjy19ejJmfQesl/YQr//4Bi52FiGhqFQ+XVy+6/vx+QCE85l2LvJoLtS2lY9U6KvRsYesI63lmJTyfQtrrqOQtf7loSz8Hrkzra86nyYdVrt5uxPGevz7zw2dbymjtgxvriGW60Fo4ED6Gcjv2MStaClWT7g+tpzxdWoGSnNWme9UVhxhRrZ8CmzdZOIN1maGSHrYXU9KBl2+TpFnMl1m75Qxb6LEaLpBZdZahiKVX4CzvtTtR9aYynQ3n9yEUyDmulBluknI077hjnHVEPlNwMHcFBqUpalLsWm8DjIC3qppSy6k5wMUoD1kLD4NYBoMxScVhEwlc/VO4vlek6jIuKejBFH/BUtWCjeMcWwVDx8nwEm8W073ufncOsrSi/+Nvhz2gG4cmrMbKHye25nfwzfyI89zWEp1wKyKBYbhemlnXtFKjnNz6esbTW3FA8fD+5nT8DJYSe2k3DuV+oCje6f3y5vZt6CWQFCU/d2eOcWcFcGFz7ffKHnqTt0k8QaJwEgJax+71Zbs8DT/4SOdxIINFJoWeLfYKQRHzupRR6dpDJ9BGffynpnQ+w/xfvQg5GKQ3sd/JuvVSl994vATD9X3+BHLQWusXzc8b1mM11stuFw2sSZXDGOU/9VPRvEVcwk5zRuM7c6q1ahzFgzwcigMjbyUtgjCraYFXf9/AtxP3BJ28FIDb/RmeBPzr3ZRS6HsXUssiRNrSBLWCUMPL9AISnX0N+350AhDrPJzztSpRIC3KosWbe9cbCevfHKtEWK9Mrp1UCSSXUcSG5Xb8nu/O3xJfcBEStdikFkCRpzO853q51LB5FXp6eJHvnL+uBCtZKwDO/GU4Zq6/V02jMu2oba8erxcbzPgfvOCc02ruh5B0fvXwjW5XPzNuu9aJeFabW57FqPHybY0lj/LZUt4GJ0lgYMFa4keOXNQJTri47aJT2X2duPFoGy1hkGvgH//mqqW9+85t85zvf4ZWvfCU/+tGP+OAHP8js2bP5+Mc/Tn9//4TYNOHnxcYWv4XM5m8DMHDf22m65BtktvyIYvfjAGR3/hLT3skQ7JgYwq+vkyNJjdn/hkhv/hWBxpkYhRSJhc8HZMJT3HwESQkSbFlM3z3vchgrIx2BnNl9F8Mbym5nsbkvIPvMveQPryEyZTXJZa/CRCK35+8AqE0LiC99P5Ic8A+V9+XrFJckSURmXY+p58jv+zuF/X/BzHejxKegp60FgaGH3038jA858M4TIVPLkt1+G1KwkdDUa8jv/hVDj9+CkT1MsOM8Qp0XEWhePOb0DC1H/70fQI600HzhJx2AdD3lDz6OUUgxsOZbtF/5ybrhlGgL5pH1qA1T0TLd6Nk+jvz9M7Rf/WEO//E/XGF1rYDaOI1ow1T0YobCofXOooqVWP1xN9+9nczO+0kufzFqtKluuNNJpqExuOYHFHu20HTuvxNITKH1kv+i976PkNn+Oydc7pm/0XjuZ5ACcUDBNE0ym76JqRdILH8HkhJECTdT6HmK+JI3jDh/TYRy+/+PzJYfo8SnEZ7+AkJTriS/788Ue9aSPONtZLb/FiSZlos+PdGm+vLly5ev55j27dvH+eefD0AkEmF42Npd+5rXvIZzzz2XW2+99aTbNGGuQABGYRA56D6mVkvtcRZVgPKiSudFhDrOPan2+Tq5koMJABKLXkb+8BPo6S6M/CDZvQ+RWPB8lHBjVRwtfdhZVIlMu4Tm8z9SN/3I1Asc0GzrZZ9HUkKYpQyNq95C0+p3oESaMUoZir0bAIjOfL7PFvDl6zSTnj0CgFnop3DoHmdRRajUu/aE5i9cGs3iIPndYgemNdUWjzzC8NNfoND18IjuOpUqHHoEoziENrQbvK5NNdS0+p0okRYCjTNHDNe48jXE511Dbt8j6FnrtL78ofWYWhG1YbLrZ9Fg2zwKB58mu/cRjOwgLRe/FyXajBJrZcpLv1OX/aHnBjh8+3+Q2vgX8oc2jKm8p7L0whDDW35Dzz8/RO6Z+9Cz3eT2P4hpGgQaZxJs8xyZXBomvek7SHL5lLr40reTWPE+JHsXVWTm82g8+5ZTblEFQA5Y72d6ej+Zzd+2doJNvQy1YTZDa/4bLfUM2tAetOGDE2ypL1++fD07ZJpgGKfef94NUKeCJk2aRF+f9f4yY8YMHn30UQD27NlTfQroSdJJm8mNYorczl+gZw+hp/dVG9Iwl+RZtyBJMtEFryW77ceARLDzQpToJMLTrj5ZpvqaIKkNcwFIrb8NADlsuZSUBp8hd+gpQu1nVsUpdD3q/J1Y/ArnZbWW5GAMSY2gRFvJH3qM9PY/Ep19DeHJ5Z1QRn7A+TvQtAjD36jiy9dppcjsF6MNP4McakZP7SSx6uOkN90KmJiFAQoH7iQ8/fnIFS5Bx1P68B6CHRdQPPKQcy2+9J2kHv8QasNcJDVKZvN3MAp9RGddN2p6Wtr60hqafMGI45tQqH0pk17wjVHDSUqQxlWvRc8Pkd37AACxhVdj5FMEW2ZhFLPISgA1OYlSqnw0cGlwH4NrfoKe7aftqo+hxtxHWJuGTnrnP0lt+TN6yjr9L9A0nejMc0a16VSXNW/cjto0B+yT7DO7/kahex3N5/0Hxd7NxOa/lMi0S+j9v3cA5YW+01HBjtWEpmykcPB+51p+//8RnfNCItMvxyimSG/6EYWe9QSSUybQUl++fPny9VzT5Zdfzh133MGqVat4wxvewHvf+15++9vfsmbNGl784hdPiE3jXlg5Wh/HzOZvomcO1b2vxNqRJBnT0Jxf5UJTLiO24LWj+qILVfuCHpWpNdOqJy9PYzz+p0dbl8dyLvzxPg9+rM9mLHEz29ynQ+kZa5EjueImgq0ryrwQRfihSpT6twAQmnQWSrQBr4ySjmkaGKUSmAZGcRijMEh62+8JTb6U2PxXYGighO3nmLN/eVNCyMEwaKIR2WwR3c3FqCVD+FSP4ot6tL7K3vRr+UkLCbaK13/a8eEWbAHh2+3UrZ2AbasStoYKSRWsAivC4qvKx7EWbD/uXNb6tzlmhVmy2Houh3uL9n2L95Cz+R9Fm7kwb4H1RXedzVjRhm0+iM0LMb3L5ZX1K1amJbdvuiGen2CQiDoTaYn6qscsEFmJzyM8s3rd0rto7vWjdrgoNqNGsbknoo6FbQ43qIJR4jxP+7k45bc3WgmGhMO1yFvPRpB2TN1NUPemK9qFbP9hStXlF78KlPkXHh6RsEnxcDJs7oGkWv/qdvtxeE26u58Ivo9VPjevo8wiMFGaZxC67Kvk9t9DetNOsjt/hlmwfG2DnZdi5LsxlTCGaR53LpVpGo5ra6B5GaV+a5dGbs9vANCGdtJ06Q8ZuPdmcrt+h6RECU++oCYcW5Q7PPUyTF3DKAxT7N9FoHF2lbu57IkjmCuKqgjDgOr+YGJS6NnmpJPZehd6uo/8gSedYGqyEz3dUy6/GkYvpIhMOwdJijC08Q7icy9HksOYepHeh75O/oC161RSgph6kaazXoUaibjyNvDYIngnNerV6TOyPQfYLI2qNiL6g6gP0WdE+1AFg8lw3TftDiHbfctw0tUwDevIYUmWCLZaRxZrA7uQAlGCLYspdK1BG3qG7r+/za5TBZQESmIm+vBewtNr/yjk5WDVmkvHylyoF69eW63HaPEyViQk4oteixxMktt/D0qklUDDbLK7/kR4+hUkFt9EqXcTmZ1/QlaCRGZc7vRzow4jzDseHo+T9armNXuMUcS4aD9fXXPnNRJPZbwslWqbRrtf/WxlD0dLVjw2jNEmo1T7PUX0fzHH1NLRcnqORWPNq167PRYdbR87nqrFOIITzJwR5a7TT715yKN8nzqW7yWj5S3JYE6of4WvU1Xf+c53MOxfwN/ylrfQ0tLCAw88wHXXXcdb3/rWCbHp5O1YKQwSbDuTyJyXUOxegxxqJL3+qyiJWWDkiS/8V0zTJL3hWxR7rJe60/mXHl/jk2malAa3ozbMQRvaBUCgZRGl1D5S635Eav1PCbYupPmCDyPZr816rpdS/1YACt1P10zX0PL03vdRjNwAyeVvQHxVDrafTWzh65wt2mD90jq4xvLHSyy5+QSV1JcvXydDoUmrSW/6IXpql3Ot1PM4wc5LqP31/eikpQ9QOPhP9GwXWsUJQMHOi5yFlZI9p6mN8y3bpl5D4cCdZLf/BNDJ77sLJTaZ0JRLCE86y5W+Gp+CHEyS3/9Pij1P0XzhZwg0TBuXjaZeouuv/442fJjJL/k5UoUXcHLxSxl86rtIaohw53L0fMoVN39ovfWHrNJy/htJbbkbffgIeraP7rtuscraOI1A4yx67/sihd7t5ciSjJrsJDJ15bjsPRVkmib9D34cLbWPxnM/RrBlHrkD5Z0bZilHoWsNgeb5lPrLZc5u/xWR6VeSXHULSBKyenq7k0pygNi8lxJoPZv0+q9R6HoMwAHwxpe8lvTmn5La8EPAJDb7qgm01pcvX75Ob5nUPbvCl0eyLFMsFnnqqafo7u4mFApx5ZVXAvD3v/+d664bfVfw8dZJW1hRG+ZQ7FtHeMYLkIMJcrt/R3zp20lvtLYs9z/wQUwtB2aZXh6ZefIrxNfESJIkgm1nULRf2gBK/dtou/obaAObGHjsqxTt45aF8gcfLn8wNPru/xSNZ70NJdrqXC4ceRo9fZhA80KG1pa3x0fnVR/jbRRSVdd8+fJ1ekoOxIgvfw/p9V91rplalsL+v2HqeSLzXnPMeZh6gfSGr2Pkuqvu5fb8HoDYojeR2fJdANTEDAbuLS/ayqFm9EI/Rr4XI9+Lnu1yLazo+QGUcIPDhsLU6+4yGkn5w0+jDR8GoNi7lVBrGZ4bnXER8QUXABKSEqA4sJ/cvkfI7Lofbdh2AZIU2q/6D2IzzqLvQWtHTrHPOma5afUbKaUO0/fY9zHyg9YuFS1nRVNDdDzvY6cVq2po3c9Ib7vDdW3w0TKcVU1OR0vtA0yQZNeiiiUTPdOFHJnKs0lqYgbJsz9B4dD/oacPEJ17PQBKuImGVe8ktf5/Se+8g+jMy10/WPjy5cuXL18nQn//+995zWte43BWKiVJEro+xhNCj6NO2sJKaNKFFLseZuiRDzjX0pu+jdq4CG1wiwOpFYrO/1cCTQtPlnm+TgHF5r7UtbCiDe9HViOkd/zZuTbw2FdoXv0+TEMjf+A+V/xi31aG1v2QYNsS4nOfD1gLK0qsg6bzPkJ6yy/I7v4rwc6LkEPVp1MYpZzztySfPl8EfPnyVVvB1jOcv5XELMxSGiPfgxRowCgMktn6PQKtKwhPPTqGV2lwO0aum9iSt5DZZC04RBe8nuy2H2BkrUUJsagCkN9/t9u+SeehxidTsD+HJrkB7QMPvB9MneSq9wESieVvJtA4e0Sb8oefpDS0h9j861BC1klr4vhfOdxIsGVuVRzBbil0b0XPDdK44kaaVr2CQ3+5heKRrWDqKOEEhb69ACixNvSM5R408Pj3RCq46HaySsfzPkUgOWlEeydaWvowmd13Ep9/PaapOosqiWWvt+D6cggj12vBZWWFcMdyuu+03H5CHSsJtq9ETx8mt/9elEg74WlXocQ6T4njW4+35GCS2FzLb93rhhCbdQ35Aw+SP/Q4kannjZqWoeUwCkOWq5UkgRRwjpn25cuXr+esTHPUY98nQqeeRfCOd7yDl73sZXz84x+no6Njos0BTuLCSqB5MYmVH6bY/SiFg/fY15ZQ6lvvhJGCDZjFIcB+YS2miMy6wbVt2dezV0q0jaYLv0Rq7X+jZw4jqWEMQ0eSyr9+6bk+TNNgaP1t6Nmy378cbsbI91PoWkuh62lis6+hNLiH3P4HSSx9NfkDD5Dd/VeU5Gwis26omb9Zyjp/B1qWnLBy+vLl6+RJjnRg5I6gNi4iMvtG0AuYShhtcBva4Ga0wc1IgQShjtG/DHpl5Cx3VbGoAiCHyzvmQlOuoHDw/1xxpEAStWE+pd41qImZhCadTWb7LzFLw1U8DrH7wywN0/a8H43qU1/s28bA418GIL3tDwC0XPA+ItNW03LRv6PEJoMcILPnXtLb/4yWtuxvu/xDlPp3M/jUz6xynftGkoufj5G3ji6Ug3EO//FDyJFGAGdRBaxFllD7QgKNM1GjLfQ99FUAksteRKDh1AOaaulu+h7+Omqik4blb2B462/JH3yUYt821Hi7Ey7Yshg1PqmK6yArEpFpF5Pbfz8NK96AFEiS73qS7O6/oJX2Euo8F0lWJpTZMBEKNM4iNOlMhtb/EFMvoiRnICFjIiHJQeRQg9WeTZP8wYcZ3vgjTC3rTqNlMdGZz0dtXjrqseK+fPny5eu5re7ubt73vvedMosqMN6FFbk2kMs0TbTB7ciRVuRgS3UAW8GWBQRbFqA2zCGz+XvOokqgZRmlvg2YxSGUxAz04WcodT9OCcAoEp37inGZOZJGe9kRYNHRQEyGh8A2ItRylJfh0fIaLf6x5H2sOt6/yinRNpIr30Nm+68JNC/C1KDxnI+ipfbR/+BH0Ab30nf/xykN7iU29zoyO/9EsG2J4yYUaJpH46q3kN39TzK7/4YS6yQ05Uqy+yy3ofiy9yOpEXIHH0AOt0FLeVdUccD6shBqX4QciAIVL9N2T5FtGKQXPOhtD1AG3dZ7BkcLTXPyrNEXFbzwM2G3G+oq0tBsYKgSEQW0wqlRG1brQG2tP+SwVX41Zu3oOWtuGbq5f8DKbN06Czp836OWD/5CG17b2mTFSYestLIpC9Z6eI/15S280AqnhDwAPxsoqec113XxK7yrXJ4690JYHQCygLGK5+aFOErueM59rTYU0JWXV4Y7j3rPW8Q3PHkoAlYrnnuhXG4B5RRhxL9SwFOHHtir6cnDsV0qw+Jc8cPVU4UmoMKaG75pClBuwF3HzjPS3HmKtiW8XZx4HgCjeLZQBuE6dWJfV+y4uh1XDSs0nXsLg2u+TOHg3RQO3IXaMJ/48vcgVbidZrd8h2D7uXW/zNV6tpIMpb6nUeLTXSfdGYUBogtuxiwOE5p+LaX+9Ri58kKEWUpR6l1DePrzCHZYJ50lV30A0yg6x9sKJVd9AD1ziGDHeZiGOQK80YazBhLI4SbX6WbFoYNo6b+S2f1/yKEk4c6zSG34ibXzxQbF9z/ybddiSbhzJUZJJz7vSjK77qM0sNdK317kVqIt1kk/My4gNvtiJEnC1E2K/budNEJtSzA10wEem2J9XLQt7w5dB8ZdVdXlUnqg1OJ5SR4It5Cez6DnBwg2TrfS1ky0zACl/h2U+ncQm3Eu+YPWyXJaap/t4gNypA0p2FKG/VbIlKDhjDeTXPFGC7hvQqhtGfElNxNsW1HlBjPaHOntayPN2fUg5OPVaHNSLYk50As3LduikFz+JlLrv8fQ09+pnb4aAzmAWRwkNOk8QlMvsR+7iVEYJLf3Loae/BJKfBqJ5W9FjU+x065tZz17VXuekjVxX3eFd+bQooAh1+7frvKPs66rQPIOWL0+MFj8LcaxscJqxXhu1IE5OzZ45v9a4Pvy/COu4/pcT6PBeo9loXEkyHJl2qO9U438ruz8NWrYidZ466NWf3HCiEt1+5Qb4X8y6qUSWuvL10h6yUtewr333sucOXMm2hRHx2XHSm7vn8nt+h1KbArJ1Z9GGqU3hCdfiFkaJrvj1wQnnUd8yZtIPfFptNRuEktuZvDRTzhhdfuoSV/PHanxThpWvds1gKvJ6SRXvInUuu9SGtxDfOGLUWPWS1cleyXceRZyqMEG6UHyzPcjSTJqwzwAtH5rMS+37ftIoRaC53/JeTkv2iDcxOIbTngZffnydXKkRJppXP1Rhp78ItrgdrTBzQze/2bk+AyQg2AUkQJxrBfI8X15UuJTKQ3eU74gB9AGNhFb9CbnUuN5nyOz5YcUDj9EoHUFoUnnUxrcQX7f3ykceoCGcz+NmphelXbh8KMMb/gW8SVvGjOzQo130nb5f1Po2UB2z100nPEqin07GVr7QwJNcyj2bqGUsubU0mB5ESTYtoBcphcwCbbMc3ZuJJdchxJpou+Br1rpJyejZ/uc/wrdWwk2zSDYPBNwu1PmDqwh1LaQ3MF1hCctBU4+dyO16Rfk9t5DsHUhiYUvptCzkcKRDc79voe/7gofnfMvRGdcgTTCD0RCle85khIkMu0y4NT+QnaiJQfjNJ71HvRcP3puAEwDQ9MwjSJGYRCjMIRRSBFsXU6w1doVWvmlLzzlAkr9Wxne9GNST36Bpgu+gKSGJrJIvnz58nVSZZpgPAtdSU+Ebr31Vl760pfywAMPsGzZMgIBN8bhXe9610m36bgsrIjtnHrmIPbZhKPGicy4luCki5HUCPrwXmv7dGq3a1EFINB+Vu0EfD0npA3vI7f3z8QXvJzItIswiinSW35FuPMslOgUorOuQc92EZlxGZntf6LQs4HY7KsBieTy1xNqWwGAEm5FDrWQ2fK/TtpmoY9S71qCbasAMHJ9dtiGquNMffnydfpKUoI0nP1hhp74PNrgVuRwG2a+D4wicqQDKdyKWUojBZPjSjc85TIKB+8DNUbyrA9T7H6K3N47iMx9JXIgjmmaSJJCdP6rKBx+iFDHOYQmnQOmTuEAmFqG9IZv0XD2R6rS1vPWeJTd+VvCUy4cV1nDk84kPOlM5LBCaqN11HNpwDodSZIkl690+9X/TWrDjxG/TCYWvdCVXmTaWTSe+a+oiU70/CCFrvLChFnKoWf7wF5YCTbNsvJQI6S3/pn01r8AJsnlN9Jy3rHDgser6PSLye29h2LvVvoe/CxyKEmgaQ7Jpa+kcGQ9UiBEsGkmSmwmcqgBtcH61avWThVfY5cSaXY4Zt66HPnIeolgyyISS9/M4KMfpzS0g2DL0hNqqy9fvnz5Oj3185//nDvvvJNIJMK9997r2nUsSdLpu7ASnfNiy4c23GQB3sYoOWCB9YYe/2TVPSUxAz19gEDT4qp7vp47Khx+lMLhxyj2bKD9mm8Sn3sd8XnX2uwBg+TS14AiURrc4/wCO/jUt1CibZSG9hCafAkAppbHKLip0UpiFmqyAgTp+L3IpyalyZcvX0ctSZIJtp2NNrgVtXEBkdkvY+jhd1mclNwR9OE9yC0rxpWmEu2g8XyLaSIHI8jBJLndv2fooXdaizdaFtPUnS+Huf13UxrYilEou+pIaqRm2uEpl1A4eD9K7FjgryZ6xn1iUWzO1WT3PYQa6yC5/FWoiclEpp1D/vA61IaphCa5+VJyIExy6Q0YWoHBNT8BID7vKprPfXNVbkZxGJCcU4HEQBpqm38MZTh6pbfd7vrcfM67CLVbzyKx8HrkoDXmaxnLJco4Bc+4NLU8g4/+J6HO84jOuWGizTkpMkoZgJqQeV++fPny5Qvgox/9KJ/61Kf40Ic+hCyfGr5j41tYMer5WQaIzHrRqNFH9dEMxDBLGeRwC8kzb8EspVAibaPGG8vW27GyU+rdr8XQqNSIvslHCWHz+hl662E0VsOJ1Fj9bkeKW3292sczt/cvVj5alvS2PxBf+FIkVIySTqlvI4XezWR2uI/GzB96nEDTQrT0EQzNQM8cJrXuf0BSCHVeRLDjPJTEHCRZwTBNdN3AzJrIiQXQ9ThqNEoxI8pX21fZW355BBcCL49FSLSpY2WtVNqm6+4HoijuyhZN0WGqiLTqfKFQbJaKuO8wZ2wf8J3dZe6J4mnnwk+8d8D60tJ72NrZFm+0tnYLX/OmSRbPZjhtpTW01frSadhlMT1lcmxRyvmJX0W9PuRHK8OTJ8fBP9xbx2P1B9cLbhiFUsFPcVg5Oc0VVrGZKLKXtRLy8B9KdY6iE8/SbqOOD3+xHF7wWkbboCh+QRBsFafdqqJe3EwWkaeaCLjyNEqV/uEiqM2hEYggp7yaOy/blSbcuYzsDisBOZhw2WmM8xhjh0FgL4yYBkhq0nEvMvJlZkmxew2oMfTUHvTUHlc6oUnnAKBnusjtv4ti12MosckkV76Lxgv+H6ZhjMBWsW0XzBHv/bxB4+oPkD/4CMGmeSBLBFsWEp93g227VV/RmZcTnXl5Rf8RCQu+TYlDf3wHRs7qm7nD6/FKz3bTe9/nrbZTMV+GO5cRm3G2w8zxclAkGfT8ED33fBE5GKX9iluqy1fy9BHP8zcNjYHH/of8occJd55J8/n/bgcoR2la/V7UxgUYJd3hCRgZu23ZfdPLN7Ls83A57OtV47mHTVFZvpE0Ki+BEnq2i+yuPxCacglKuGncc7zX1tHyHOmeaCPetHW7n9Ybg0f7XKlAcipICvl9d5NYWj6e3GGQ2OOY09/tOtcL9nyk1OZFGJqbT6YI9lhFOHEah+x5H/G+x432TihL7viiHShB9xgsV8xjkjq+LwZiDB5N1fVQgx1Uxc4Zmw0nkoNRj6VTixFz/PJ0/qp5XbShU0HHm983Uppe1krV3ePI0HmuywT0UcYXX5aKxSIvf/nLT5lFFTiJpwLVkzb8jPO39WX4AEb2CHp6P4HG6mMhfT13ZBQGXZ/zhx4hvvClFAd20f/gf1oX5QCSEsbU8064yIwr0fNDmKUMpl4ktfZLIAVInvUp1ITFZak1CYQmX0rz8tUEGiZTzKSr7vvy5ev0lhKbRHzJTSiJ5VX3tKHthNrPPuY8GlZ/HKMwiKwGkSNtDNz/XjsDa7W2+fLvMbzx22iDOzBLw8iRdozCIIOPfKjClh303/tOGlZ/DDV5bFA2NdpGfJ7l3nO0L7BattdZVAHA0NDzQwys+RENy25EUkMcuv0dSGoIOdqMkekFINS5guLAHgaf/jWmVqTQswMt00PDGS8hOvNiQEIChtb/hmLvtjHZkjvwBHKgATUxmdzBx8ns+SdIEqW+7QCUBvfQ/8hXUKKthDrOoNC9jujMKwh3np5uxXIwiRxqwigMkNt9O/HFN48eqY5MvegcrX0qSw41EJ56Cfn9/yS24GXO7mZfvnz58uVL6KabbuJXv/oVt9xS/YPMRGnCF1bkYAPYJw1ISggjax3/qManTqRZvk4BSYE4SrQD3W4T4ieD/EHrhJ+GFW8gMuMyzFKaI397CwCRGVdhFAYpDWwlPPlC8gfvxcj3k1z9XyjRzpHzk+RT8nhQX758HR9JkkR0xpWUstYv25FFbyG3xToq2QJbv/qY81DjUyE+1VnEiC++GSkQJ7vrj+jpfaTWfJbwjOdR6l5Dw7mfQ8/sJ7Pt5zXTKvVtOuaFleMhxd7doyY60YYPY5oGB3/zRgCyex5AjVtHHYYnLac0uA8DUJNTaL3gHQys+SGpjX9GUoMEW+eipboYeOw2+u6/lcYzX0OodQHpbXda6cdHPjIx37WBvge/ZH2QVTCs5ygH4wSa51Hq32GDUx934kRnXkly6bE/14lUoGUphUMPUOyp3ik0Vum5Xvof/BCBpgU0rnoXkhoePdJJkGloDDx8C0b2CIllbyY0+QKrn868lvz+f5LZ+nNCUy5CCTehRJpPi4UhX758+fJ14qXrOl/4whe48847Wb58eRW89stf/vJJt2niF1ZCjcQW/xuZTd90zvMLT7vylJn0fU2cJFklOvdFDK+3vviE2s+g74GPoQ1ZW+kjMy5FkiS0XL8TJ/fM3VbcYAPhaZcy+Nh/oTbMGXVRxZcvX889BdtXOwsrRq4bPduFEj0Wpkm1wlMvBSDQuor0pu9Q7HqE9CbrONrCkUfI7/mTE1ZJzEC3d3FKgQTh6VceV1uOVnIojhJrRxs+DODevQJoaWvxO77gGnIHniC97U5aL3wXSqSR9sstt5zScDfDm/9CDlATHRQLaYzCMLmDTwKgxDtoWv0mainftYHsnvvIdz3tXIvOuBijkEaJNpNc/lqGN/6SUv8OV7zw5NU0rDj6HR6nisLTLqPY8xTB9pVHnUapfyvoRUq9G0hv/SWJpa87fgZ6ZBSGGN70U0oDW5DUKHKwEbVhDmrTIgKNc5GU8kk/kqyiJqZTzB5heMN3KPasI7H8LSixDuKLX0d62y/IH3ygHD4QIzxpJQ2r3gz4iyy+fPl69sk/FWhs2rBhAytXWvPixo0bXfeko8RwHKtO6sJKPT/xzKZvAlDsXmvdV0JIsuT4Mjq+zWP0aR3vvbHoWOPDsbA0vJ9H9peeSFX629bjr9TzQXf8pyu4EPFZF4GeJrvnbrIHH4ZiCiUxjeis51mARDVKauPPUKLtROfdQHrzz4nOvIrgpEuRAjHkYCNa+sCodSTalp53sxlEG6zPhRkxWVcYUW7DPDb/YK/Pt2CVWH9bmak2Q0X2MFYcbolgMnh8urV0yfU52Gy9AEenWhwULW/50RcGCgA8cWf5OPS2hRZocNJUa9t21t4VcNUyi0FxxSrrNJFfp1YDYGNA+P3fLbjm4Bb3lzXBd5DsMkgO76F+vY3GWnHagWhzuPuk00fF2ON5ViM9s9GYR84Q4hkH6jEL6qVTCdiUvHbb1w3BZfGMmQ7PRNhk561ErYdhFO32YbNX9JzuCl8pwTlwyhF017kTxy646FuOLTY3Q3JYBNXsHMs26xcIuZILMNpLhyif/VH8K6I5fUaDhgv+ByPfy/Da/0ex+3EiM8un4hzL2FrV9iSJ8OSLKHY94uy00If3u8Io0clE574SSQla4E4pWtMGQysiyeVfZurNLd5qkkxhi33BqVPZDl+//zSsvInU+l+gRFoINM8iOu18uu/6IMGWeYTaFxHuXEGofSmh1oXEZl1GoGk2pmGlUejdRddfb0FSAiSXXEdqk8XFkkMJBp+0gLhyMMrAE98ld/g8otPOp5TqQs90o+cHyOz4K8gKoY4zSC57NZISRgk3lBkwJYNg63JiBiDJZHbeQWjSShrOeGNV3VkFtcd3vXa/rqxzb93W+3e8GgvnRFwLNs2l9YpvHVU+TlqBuPWvGkUON48//hj7gqmXGHz88+iFFOGpF2NqBYx8P/mD92Hu/TNICmrDHAKNC1CSMwg2ziB5xtspdD3O8LpvUuh6jNj8G1HjnURnXkFk6gVo2T6MwgBmaRAtdYDs7r+QWHwBbeddA4CWteatzJ4UACV7HguE3GOrd7OLmM/c5axd3vLzttOidp8TY0vAnoO97We8HJWaqsP3Eari4ijuuaP2mOKeG6r7xDHYe5Qabx9zuFfj4BrVn29Hjzty/Hr8k/ph641D9b47jcbeqvVOXWWfaI+CETWqTSLvOul5NOIpYKOMKWN9nr6eu7rnnnsm2oQqTfiOFbOidyrRDiR1FtF5L5lAi3ydaorNfh7DW34FhvWypA/vZ3j9d9FTe4jNvoZi7yYazngT4akXE5l6Ifn9DzC88dsY2S6MwgBKzHcr8+XLV23JgThyIE6w/WyKXQ8Snv78cZ1uNx4FmhfTfMUPyGz+IaHO88hs/wUAoalXEOw4l0DDvBHjG8Vh0pt+QLHnKQCaL/kacqjxhNjqVWTymUQmn+m6Num6b6FGk0hKxfZbJUiwebYrXO7gU2BoyJEGMrvLuw+GbRcgsI5uViJNpLfcTnrL7dUGGBqmXkCN1XYXCrYsJNiyEIDk4peOs3TPfoXaz6Dx3E+hxDpRQiduR3Bmx+/R0odoOv+TqInp5S/HpomePkixbzPawFbyh+7D3GsthEhKGCU5nWDHapAk5HCTk56khlHjkyE+GVmVSW+zjg8PJEd2G/Ply5cvX75OtiZ8YUVPHwBAic9AG9pJZPYNSP7ypK8KGaUsGCVCk88lMv0yBh/7Apg62vBBsvsfBKDQvZ7QlIsYfPxLFHvWE2hZTmjyhUjBZgLNSye4BL7S/QOY7eaEbc3z5Ws0GcUURr6HwfvfTGzRmwh2nHdC8pEkmfiSNwCQWP52tMFdBDvPB3P0vjG87huUBrY4n/X8wElbWKklJdLk7CgbScU+y31Tz7iPvDfyKVov+w8kNUi4YymYJtl9a5ECUZRIO3IwQaFnE/mDT6KlniG57DUnpBzPFanJGScsbdMo0X//+zCLKWILXoaamO66L0kSamIqSmwKTL8K0zQxi0MY2QNow/vQUvvQhvehZw4zkD5AYslNBJoXVs0Zeq4fSQ0Sapt49pAvX758HW+ZZvl0Ml+nnyZ+YSVjLayIU13U5OyRgvt6Diq3/34A4gteihrrIDLjCnL77qHYt4Vin/UlQ8scoXB4DcWe9TSu/gBKcglwdMdB+zo+MrQSw3u389Of/46n/ngH9117Fh/5zGshNHpcX75OtpToJBtga5LZ8h2yO35GYtUtqPETB7RWopMcpstYTleUIy0wAEpyJkq4FTUx7YTZdjzVsPzF5PY95romh5K0XvIewp32CU2GCRKEOy1/aeHyF+5YTqjFXhw/hdxefXkkqchqDL2YItQx+glMkiQhhRpRY80E28qndGnpgwyv+yaDj30WOdpOZMoFhDovRIm2WfGUMEq0qV6yvnz58uXL14RpXAsrpmFW+XYejSp97pTEPKRAEiN3RFyoe068YErUY62MxmA5Fh0Pxsp42Sj1/CcnkqlS379y7GmMWi5ZQsv2kN7yWwLJaQQS7QCokQhKSCE64wpye+9CbZxHbM51hFoXYEoyma2/BiDUtgTTtPgPerEEmDW29lt5qYJbYfuXZruzLltG4+LUWrjxxhE+1w4bRbBW7DrTBRdkFD9ZJz0PW0X4cleGVW0uhXgugpUhC19bYYPN0lAEk8W+L9gsgrkRsIEooosZRZvBUSpXQDZVBGDFogRP3vZdHv3W1zGNsg/7//1tDfrUM1j0xisAuOsnuywbBVND8Ezq9X/BfZBH97v2slZG9UH3MiWEn73h9kOu9YRMT9pV7dvD+3DGUA97xQnv8Yc2Sh7bK4wQ/voOS8fTDx1WkP28FLsfSAF3nRs2a8DJy74uC46KXn+FUg4o7rB2mxJ9wxRpesc/22aHzSKeu13AliUWB2LmbOtEml3bhpy4g9sHrSR1T9qij4n266GMiD6m2lNf0WYxGKZJaOaLKBy4ywlrahlKPWtRopPrlt1VHqefjhbO/Xm08JXzYXTea1GS81CTc5yT88bC/annq++YUsVmqWGUAXp+iMyuOyn27yI+9xrCnavqMwbsfl3o3cXQ+t+77sXmXELTWTcjB2NlToqHnVQz3aN9//CyCQRPYBx8BG9YL3OjnurNlaM9G3cetcOOZG8t1Ys/EqvB0AyMUgbTBFmN1k0TExKrPsjgg++lNLALNe4GxtezWXbGMLtvhqYTuuyzFPu2kdv/ANndfyOz4w8EWhYSaltK/uADJBY/zxnTrMSsuKF2yz45YDHAdJs1pXjHiRHqY7Q5Xy+6xzdvPDEfKyF7rLXnae84PhaNxtYYTbXYGqOlc7QswNE0lh+5vGPjaIyRctojs/BGznNsHJN6NnrfCsbDd6lnw2hxRqsPr5zwI4XxZG3UGSNP5o+VlbyjU4kl6cvXSJrwHStKpJXk2Z9m6OF3A2Bq+Qm2yNepoELXWnL7HiAHtFz0Ueta9waiMy5GTUxBTUxHDiUJdazEyB2h955/d+JKsoqpmxiFIfr+7x2EplxMwt56D5avd/HIGtJbf0Jk2mXE5r34ZBfvWa1nHnmQR77xFeZd/3IaZ85l9113MOWCy+l54G9kBgcn2jxfvmpLDiAFGjBL5QUclFNre5WkBAlPvmTC8h944hsUjlhH/oY9vJVKmaZJZsfdZJ95mMKRjajxDprPfwvB5tl0/fmDyMG4taji65RX4cgahjdYJ2cllr6VYPuq+mEPPwiSQrB1yTHlKUkyodZFhFoXYSx7LfmDT5A7cD+ZnX8l0DibhuUvOqb0ffny5etUlclx2cPga4I04QsrAHIwSfLsz1Lq34DaOH+izfF1Kqhip8PQ0z8k2LKA3P5HiM64GIBg2zIKXWusALLihJWUEKZeBALl+xVL8Xqmi4GH/sP5bGrZE1eG56i6NjwNwOyrX8juO/9E35b19G1Zz9SlS9EKhYk1zpevOioc+D/3ogqcMIjt6arojIuRlCDx+dZOwXrK7X+UgcetI6WRVdTGKaQ2/hFt2NqZmj+y+WSY6+sYpef6GN7wvwRbV2AaGsMbvkmwfRWRWdehxstuaKWB7ZQGd5Hb80ciM646rtwfWQ0TmXYhkWkXlk85CUeOW/q+fPny5cvX8dIp89aoxDpRYp2jB/T1rJdpmqS3W8dxRmdeRnbvPciRZoximlLqIKauIqkhjFIGADXaRvvV3yTf9SSpjT9heOtviS98JaXUXgDkUAMAuf33kNlym5NPw1kfJmCfIuHr+GnSsjMAUCNRnrnnb7SvXE332sc5sHEjS666cmKN8+WrQqahoQ1sQi9lKOyxThtRm5agDWwisuB1BFpHZ0U8lxSdfiHR6ReOGm7g8f8FQApECCQ70VJdRKasJNA0nUDjNIJNJw6i6mt8KvZuQBs+QHjKBdYR1hXK7fsnkhwgvvSNYErkD/yT/L67GHrsk8TmvxI934scTJDdYbnhBjvOJeaf6ujLly9fvp6jGtfCimGaSMfAMRmzP7N+bHugxuIbWsVYkNwcjHp+kg43QLALxlAf9fgso9k5dr/p+veOlz/ksbBVxltOI3cYozAIQMMZryPQMJ2hdT8CoOduy+VHibaixjuRFQnTBCmYJDH/Kkx9mOHNv8PUUuTtE4Picy4jt+8vDoMl0DSPxIp3ooQbq2zw+rTXs3GkstVv5+60BL9jtPrx3tdtf3HJ3qmjFcq7e1SbcyH8uh15uQ6i3dYpl/BND9p+76GoNVQkmoIAnHVOKwDnVbAzf3RfGoDDGwcA6N7fRXE4xfJX3sw/1j5u5TtrBamsbb+dtjCl8lhO67NjbE0bx6LR/Kad61Ltfm9ihzM88Stskjx8lrr91sPtkbzP3XvfMyaNRV42UPmG7ecvWAMl+7JgkZQ064Koc6et2h+DSlW6grvinArjLY9dR6ItKqrVhvSclZdgsjj9wm4PSsziA4k2Vyy5OT8AoRbruFjBWdCywn53npLnpB2HNWPnndvxAwqHH3GF0QY2AZDf+2eUYDNyyzLGorH6vR+PMbma0zK2MaSqH4jPghMkWEI15iynX9phnXZf8oyVkkTbZZ/C0IYJtcxDUoOu+4LjJJgqDv9I/GO3q0p20XgZInUht84YM0r8Co2VrTL2OUPcr23DSNyLkcKMLW93vNzBR8hsstx8cnvvInnWh1Aibc79Umo/SnI2phFCkiXC064lPPVyBh76DzLbfgKSAqZOoPUM4gtfhRLtGPVZjeVZOm3L09bKdlk8r8KAtQMyELPGhlCzNS6E26wdLcUh635mT8pOz8PQEm2wgtci2kY9O6u5Xfa4ZbOiHFudcc3+w8NYGWm88N4T/dF0xlQ7L3tnbxUjzJNOvXRrtSMvj+xYNZ7xbqxsu3rlLec59neG6v48vveNelyYsdjiLe9o76H18hhN3ncsVxqiTZRRSe64dcareuPd0bB5/INgPTLNU/JUoFPPolNTp8yOFV++hORAGZB3+PabaoYxDYPkGW+uup5Y8EK0dBe5Zx5wrvX84/3O39FZzyO+6JWYxvgmJl/1NdTTS7ypseKKVbfdT9yPEo7Seea5zp2Whf7R175OHRl5axFQbV6OpIQo9TyB2rQEJTmXYteD5A/cRWCMCyu+ygo0TKte3PV1SknP95PZ8n2CHecRmfMShp/6f6Q3fY+Gsz7sCid5VuUlJUTjOZ9Az3WjxKehp3YRaFqApLgX0Hz58uXLl6/nmvx1Ql+nnJRoM21XfQ4l1lF1LzbvahJLXoGp50mt+17VfUlWUWPtyJGmqnvJFW8iseRfnZ0evo5d9/z4l7xv1SV89LLryB2xjk4PJhsBOPLIP2ldeR5KIEDjrHkAqKHwRJnqy1eVkmd+gJYrv09i+XtRk3MAAb8uYBYGCDT7C4G+np3Sh/eDUSIy+8Uo4RYic25EG9yGnu93wkiSgmlqVXHlUCOBxvnIaoRg6zJ/UcWXL1++jpNMEwzj1PvP37IyNvk7Vnydkgo0TMfUcgAEW+ZTHNgDRglt6CBqQwCzlKXUv80C1crll7r8kQ0Mb/4t4clnETvz35BCzWhDewg2L0UOJY/Fq8RXDXXt3gNA9959dH/gZUy//mYW3fhKAPJ9R2CHxOAzu7n21h+RHeibSFN9+aqWpJDfdxf5Aw+gZ/YDUOpbh6TuIjj1SkJTrphgA335OjHSM4dBCSGHLbfOQKPFG9OGdqKEVwNg6gUk2V808eXLly9fvsai476wMh7/unqck7GGL18fc5Zj9k00NLePo2GO7PM4Ylp17POWd7x+kyfSL/Fo0670px2NQyM7YYUfsf3RgGLfLoyC5Rdd7NvuxAk0zyW99Y+EOlZQOLKO9LafoUTbCTTNREuZ9D/yFYIt84lMWY2pFwm3TCPUUgEC8ciwWSKCU6LYLAnd8bk+eg7OaL7Fsr1VPmDvoKnH7xHtxNsGy6yV8sMSVa2lLYiGYnMpAknr5ViUV/AtBDsjOiUOQGKS5YZVyFjxh/cNA9C/13oWs1e2usogXfkW4nc9THr/bjB09v3he5x//RVMWXkmB9c+Sb63iz+94SW8+u4nKZbC9A6UKNm+5tqwlYcc9uwgcvzA7Y8lj795LZ90zf2cHAZKFTPEiit8tMuOxabrsxyw/YXrcCBqyWtXLU6Fy7Y6vtiCKyD4F7Li9tmXAxWnYAmWiCcvw65jwUExDbut6Ha5NOGrb9hpejq8KKciue5LFeHEiTnh1ojL/twR+6Qtrw+2XefRqVZbKw4VXfGEVJuxkrXvn7k4AUBvT/lEqaDdngVjQcpZ7doYgVsA5fZuGiamoZF68ouU+jcRaDub8MwbCLSuxCylkdSoa2db5Rg22jx1MjReTks9/3jRrp3+YH+umbyIY/cJWYTytmPE/dqTiIFgqHiZSqLPjodbNUYO0SjMAm96leGcutINjFw3cri8k1JL7UUKNDqA9JFsHo17Mt75f6S8RsvT0ExryDMNdF1HkRWkQANKYiaZzT+k1L+dYMdqtNQeQpMvRZKluiyJqnGvDmuhvi12m6vYGCPbbSzUZB137oxndpqivRZ7rB9fZMWatwIJ63rA5jMp9nhVGrTGiUJP3s7U+scZa2tUn3dq8JYjEFFdn70cGGfuqDjhsLIMtT6PdQ4RUkLu+V2wZ7S8e5eRlxsjGFOV8rJVjuZddyyq9W45XraIN5y3XYw1vvW3O8xYOYLj5T4dDfuxbNPY+veofK+KZyySlD2sO29a4mC8sfbnsZTXy7I8lrHPl69TTf6OFV+npPRsr+tzfOH1yMEo6R13AhCZeg6FI+vI7Pq/qrjFvu32YozElGm/qJm+aZqk1v0UJTKJ6MzLj7v9zxWpkSgXfu3XHHrg72z9/hcppobY+/ADXPLvH+Z3b309hVTKd73ydUoqf+hxSv2bkIKNxJe8DaOUIbPpG0iBBNG5rwL8duurrOKRx0lv/Baxxf9GaNJ5lAa2MLz28wAkVt6C2jBvgi0cn9SG+dYu0P6NKK0rAIgvfTeFg/+gcPgBCgf/gaTGCHVeNMGW+vLly9dzRyZjOxjF16kpn7Hi69RUxaASaJxJbNalDG+9AyNn+X8Prv2Bda9hOp0vuo2OF/wPoUnLnTjBlgUkl76ibvKFI+tJb/8LWfvkIF9HL0mWmXLJ81n55vcB0LN9Kx2LFvPyn/8RAD2fw9D1kZLw5eukqjT0DINP3ApAsH0VRmGAoYfeQan3SYqH7yW7/baJNdDXKScjb7ky5nb/HqOYwiimnHvD67+CURwiu+NnlPo2kN7wVbLbf4xRHJ4oc0eVkpiJkphD4Zk/OruG5FAjkdkvoeG8/yZ51sdpOOe/UKLVrDNfvnz58uXLV7X8hRVfp6SCLeVf/0xTJ7PnHiQkYnOuti7a+4YDzbORA2HUWBtGfhCA5LKX0XbZJ0ksvL5u+pmddwEQn/cvJ6YAz0Elp88CYN9j1vG1sbZ2ZPuI3e71T02YXb58eSXcmADCU69k6PGPuO8rPmT5dJdRSGEUM8ctPUmx3FJMLcPQYx9BiXQAEmrjItBzFA7cTeHgP0hv+DKlvnUUux9j+On/h1HKHjcbjqckSSI04wXow3swMgfd92QVNTkbOdQ4Mcb58uXLly9fp6HG5QokS9KoPp/CJ388Ola2yNH453nPrj8eLJWx2nIqs1W8Gs2Xv1791ZKXFSL+9W64l1SJQEMH0dkXkd39ALGZ5zK89e9EZ5xDdMZqMrvuQk1OQUsdpNi/y6m/6KxLKQ3tJza7Gjgp/J2Fj2mhe7N1Q4lazAAJ9Gw3uqSihJur2sd4VPYbZZQ07PIH3TXgcA+8Pq32EdGm5PXRLv9dyloLTsLHWrWZKpGI5YMenWbxKkzPcyravtl9Q5YvumBRCMRMKWOlt3ud9avtEZurMWdewklDT1psjFIuRzQo0TWgEe2YTPrgPrb93z0se9MZAGz/814AAg22/7xto9MP6vkNe/qN4IYA1Ue7Gp5/66jMIHEzWUR6gi0ieBHi2UgVx3WLsF5mRD15x1Dn12LBUrGr3tDdxnv9kqHaV17YIK6bNuDJKLp3DIn7csgun83iUQU3wC6T+FyrDcfarMWHhM1BGDhi8Q4K/XaeNhdBtCXFZulIdjnVmD39SG5WQ6IzapffKsum3dVfTANhN99FxC3ZzJVSuja/BaCUOkhq3Y+tMix+B6knPwd6zrkfmf0SQtOe74pTOWafzv7gXp6Hl7XitLERBj5nbHSYWLUZIYItIdgTot2LNuq07zHyT8arvgc+jTZ8kNbLPksgOaPCfg09P4QSaRmV2VD5txRuAyC+7D2kN95Kbs8fUBvnWztXJJX8vr/ZMSSkQILEGR8k9cRHGXro7cjhNjB1TNMg0DiPyOwbkSMdrrGgVvnrzfVjravR2qrauBCQ0FK7UOJTXeFHY6qMxlgYr61yBaNEjbpfTWXPOBdIWEwRwRLLd1tjhKFZY5LDhLLHmkhnzPW52G+xVoyS3UYrTBbjjrDa22fKnBLbRmG2eBcS43nAw/vwbtoU6VaUu6p/1plLJMG+EnFFEuKj5z1cfBJ8roZlLQAMbxtwwpSGbT5L4fjuLpXrHLtuaDX6mLC/DitltM9eToz3mYn7tYa3eqwjEVaUY7wMoaNhKDl8E/s5Om2yzjg1XtYKVL4j2GkY7nbvTcv7jEZ7Nz6aeXKkOKfzvDtumfYpPL5OS51Uxkqx50my239MZPZLCXVeeDKz9nUaquWcN5FYcA2pjX8E06Rx1StRIo20XvIh+h76GgBysPzFPrHgBc7fXphppUzTcE4cyh98mOGNP0JL7Suns/wtBNvPPd7FeVaqb+tGnvjKp5h59XXMWLwAgFDCeiaHHnuA9EGrXsNtkybMRl++hIp92+l7+PNIskp07otACWCWLHcNtXk5crCB0NTnjf4Dgq9TXnrOWgTO7r2HhuWvA6yxv+/BT6AN7SW54k1Epl0y5vTUxExAotizhuiCm8hs+iaYOoH2cwh1Xkh+318Iz3ghwfZzkWQFSY0SnX8Teu4IkiRbFEjTpHD4AYqPfgg50kF0zksJtCwju/t36MPPoMSnEZ5yOUps8vGvkFqSQ6CEMUqnrsuSL1++fPnydbropC2smHqBzCbLp700sNFfWPE1quRQjOwzj5Lb/wTRmeejRBrRc0P03vd5xLp6qH2xK04pdYi+B79EZOp5JBe/pGa6he4Nzt+5Z9zwWznUhBJp9UbxVUf5gT4Gdm5lYOdW1tpfRpOTJnFg7Voe/fxH6Vx9IYefeMjleuHL18mWUUgx+OS3KBxZhxSIYhaHye78AwDhGdcTnnm9v5jyLFN4ynnknrkHSXW7dWnDhwBIrf8+SqSVYOsSDC2PpAQZeuJLaNkjxOe/jGD7KmfcKg1sJX/wfsCkcOAugh3n0XjeF9HS+1AbFiIpIcLTnldlQ2jypc7f4hfXyIznUxrYSuHgP0lvtN6JkAMEWlZQ7F5D4eA/ic57NeGpJ/6ob7M4CHoOJTblhOfly5cvX758Pdt18r7tVOwbi8x68UnL1tfprczuBwBQos0AlAb34SyqdCwnNvcaT/h/oqUOMrz1j8RmXY4Sa3bumYaGaUJq3Q9cceKLXkF4yiXIwXjV1nhfI6tz9YU0zlnA4K5tFnBYkujZsYMfveZVtC5ewXkf+i/++MrnMbR9PfDSiTbX13NQpqEz8NhX0YYPEWxbTLFnM6HJ51E4ZLGA1KaF/qLKs1ANK99AfN6/oMQ7wAQ9P4CkxlGircjBJJKsMvjEl5EjLejpQ8jRdoxsNwCpp29FUsIEWpcRaF5KZssPkUPNqE2LkdQYSrQTORAmWOE2OlZJaoRg20oCrWegD+9BS+0h0LQQJTYF0yiR3flrstt/ApJEZNqJPbFO698ASPZuHF++fPnyNdEyAeMEHXfu68RrXAsrkiyN60x2V1w1QmzJ21Hi01Ei7a57o6VVz+ex7OtXO36lD2A9Bki9uN5GLY/Rn9gJP4YX9RPFVjkaLki9NMb6nEW9jqXcVXFttx1dtjINCP/SoIwSThCfdwFtl7wZ0zAJT5lDuHMpDctfSKh9JQCazRUxtDyRKeeT3noHGCX6H7+VyNSzkENJij2byez6pyvf5vPeQ7D9TCRZQbf9iqv9Zt02ettP7fKO7Gtb/iz+tfJWbQaF6uVmeB6BSMfha9TgAeg238Lrqy5U7LN8zDWbnYKHLST4GIrNsgg0WD7twuc3N2ixLHbvMpl206fIf+s/0LNpln7iFzRkN1PKZUmeeQUDfd3ohRxd9/+FbWe+mkCihXCHxdDQbJ9ux3bhviV8eW1/eFPUsaiIGnXuxBU+2gF3HTpjhV6bKeGVKL/DCQm4O18l/0TwVxwOgKcuR3JLs4pT2wbxfL3+4XqFD7woj/C5VyJuboki7JaDrnDiX9E+1GjAladX4rkHwuX7Dc0WWyVrt6Hh/WmgzD0Q9SH4Lo6/uJhDNMEYsNIr9lttasiu82i7xU8plaxwWqlc5zG7PTa2WjYc2WuVM22H0TKDZPc/gRxIkN3/GMW+bSSWvoLhjdbx64VDjxDsOIfw/NcjyYGq8cv7+Xj4d497zjyOPuXVc8LItoyFCyD8/p0w9conFqm93IQ6bJWxnDJZb5rRst0UejYiSQqR6RcRaLBcagrdG+h74LMEWxeRXHQDA098k7YrPk12z32Ypok66xqye/+BATSc+e9IwSTF3nUUu58ms+U2AMLTn0d42tXHjW8iSRJqcjZqcnZFnACROa8E0yS77SdgygQnXeDsnPGm6eVXiHmqzGBw86sq2QymaVI8fB9q8zKUSLMdrr79ozFWvM9EjDHmUb4zWnGsf8XYIcYUwcZSItZnPWeVU89b/2r2v0rQTsfOOmiPWbpgkeWsfytNF1XgZY0I7ofDL/HwQJpXWQye1PZB2ybNZVuVxlAvztzgycvhUtnP35uHGrPHc3t8F2OymM8ET0WqmNcEM0Yv1X6BHO97er34ogxKsDq8l61SxW2qw1CpZ2MtZlI91WcGYdvreS8bY9rjYQ45daS4+5ji7b9iCHWYMbXTDMQDrnRqvYtU9VPPu3A9LtexfB85mZxIX75Otk7q/vxg21knMztfzwIpkSRGoXyygxJO0nndp4HyiwtYL5Bdf7yZQOMsAGJzriaz6y6KPZtrpqsmpxKZdq7zouHr6BVum8K8t3yODZ94NYfu+C5z3vFWIi2t9A+V2Pnr7zvh8od3Eki0TKClvp7NSu96mt5H7wPToNh7kNyBJwGQlACNZ72l6ptfbOFrMAg4n03TQM/1IEf842VPR2mZbnr++QHnxLh815MooQZKg7spDe4FoNi7xd65EkFNTqFx1RsB0AsakRmXoeVzyKq1oBdomElszvVo2SFKA1tQGxaelHJIkkRk7isxtSzZ7beR3/dnwjOvR4l0IIcaLa6YrGJqOcxCDkPLYpbSGKUMEEBtXIAciI+ajzawEX14D/Fl7znhZfLly5cvX76eC/LBB75OaSmRZvJdWzG0IpIcqBvOKKQAKA3uASDYPJfMrruc++EpZ5E//LTz0h1sXXDijH4OKtw+jUlXvoKuf/yS397zG854wzuYdO2rOXjPX5wwweaTBGT09ZxTofcgu7713qrricXXk1h0HX0PfRNDK58uJAUbkANxZ2HVNDTSaz+Dkd5HbNFbUNtXnzTbfR0flfp3gKHR/rxbKfbvZPDxr4EkOcckAwSb51Hs30Fy+auRA1HXqWGSJDuLKpWSgwlCHauPy07QsUqSZGKL3kRo2jXkdv2a7Nbvjx6pQkp8GmpyDnIwgRSIIgfjqA2zkSOTkSQJo5giu+NnKMm5qM3LT1ApfPny5cvXeGWa5ognrPo6teUvrPg6paVl+tBSR+h76IdIskKhZxeNq16BEoojhyfRffcnKfTsANO9FXZ4+58BCE85m/zBJ8gfXOO6H684QcjX8dHUG95Kx5WvZPDOb7DlNz+h/YqXIKkqlIpMvfpGQq3TJtpEX89CHbznDp65/ec172WfeZjozIsodD3lup5c+X7XZz3bhZG2TwYbYQHX16khozgMJphamuFtv8coDlMa2I3aMAMl0kxkymrUK76ArAaQQ0kyO/9qXZ92PmYp62JvncpS49NJrPh3jFIasziEWUphlFJgaEhqFDkURVajSME4ciCOlhtGG9hKaXArWmo3ppbB1LLOKXhSIIHaMBttaBcA8WXv9flCvnz58uXL13HSuBZWdN1AkYWfZD2OxNEbM9Zz4YUMj7+gYdb3eazyTRYvEx5fxtFUzzewmvtSeW985RqvRuKhjDev0fxFj2UVtR6fRBe8Chu5UUzZf0gShSNbAEhtvht063rXoY+hxNuZfP3XKHRvddKLzrqK5PLXMPT0D8g9cy8AWuqwK8/k8puJzrwC07DYLOPxwa20WZTlWNgyQg4XxWZRCDdiJWj7dAufZNu/3GFvCP/oSsaK4B4I33Hho2uzUoRft1EUDJHaPvgivGCLiH+FT6/wTdcqmBtqSCGYbCJbUJCjDQwMKiy55TY2/tcbGTqQIubhloh2q+ettBz/X1G3pbKrV6VtNSVcz0U57DYlOC2O7Ock6nSskGIvw6VWvzKEb7JZ2zfZMWGUMUfYLOpcpKc4vv3leN7nI9t+4LL9/Jx6EHEkN1vF8dkX5RThJXde4pnFO8q/6He0WTsBtCYLZDDcY315y3nK79gm2q/drsv+/m4mi8M1stvycL/FAwrHywse5y+zXB0aw/CNz91B7uAOAELt0ykND2DkrONj9UwPcqDgKqMUTGIUh9CzhzCMMHKokVLf0yApYOpkd/6SxrZV7no7Bh0NW2K8aR6vOaWeP30tVYWpZ4O4P0pfE9PDaPNYaXA3A4/8F6ZpoISS6Lk+lEgr0ZmXEZt7jcWCkyRCTdOc/tq48uV2OgAxZ+zxjn+1xoXqa7XZI/Uk1Rkz6jG3aqUtB+IQiANTXNe97yNKuAWl8wLU9vPc6egFtNQutKFtaKldBNvPJTz9BaixJiuePW7UGg9FXsG4zdmy+6+WsbkdXtaOp3zO1Chs9iCzxPhQGV/MY6bNXTPtcmppN1vFGSuD7ooQrBXxr6in0pD1DiGeu2BQlGwGSaUdsl773UBS3faGO2OWTXYdmg7nRoS3+0lp9HFAtssj4lTNX46NuPIqQzfs+x4mmMNOs98xxPwvV6RvqO4+IN5HynnWHhPqtX/vWCL+1YvVbUx8n3A4XJ40yocKuPNWPM+9nu3VtlZy6cS92uXxslWEjaZAS9XMqVaedvgRxkGnjgVOzslUcn8W72nOO4J12Vvnwl1e8HOo1Zw85oj3S2/d13ufGZ0xM9K948cw8+XrVJG/Y8XXKS010Yk2fNhZVBGSJBlJVgm2zqPYu4PGs15PZNqVGMU0iUUvLS+sDB9w4jSffwuhtiWUUvuRQ61Vx3D6OnZpuTS9j93N1BfeDECwpROjmEFSgxNsma9nq97y09v47DXXk9q3h0L3vqr7h//4EedvJdaBnjnC8Nr/ti7IQeJn/ifB1lWY+R60/vV+Wz3Fldt/P8gq4Y6V5A88CIAcaSK57NX+C3odSWqYQPMSAs1LJtoUX758+fI1igwf/3jaalwLK6bv8+XrJMooZtCGu6wPkuQ6LiLYNr98HUht+A2ZXfdRGtjlhAk0zcM0SmhDewHof/izBNuWUuzZCEi0X/sDCr1b0LNHQFIJJGehxH13lWORnk1jakXnByFJkojOOJP84S303PMDms6+AUltmFgjfT2rpAQC/MsPfsfPr1zluh5snY6kxgi1zCS16W8ARKZeQHrb78uBjCL5Xb8mtuzdRBfcjGQUj23bpa8TrmDbMnLP/INg8wIkSSK3/wG8u0h8+fLly5cvX75Otsa1sJJ++nOE2s4iMuuGE2SOL18VklUkJUBsziVk9jxIuHM5uX2PWfdMA1MvOq4+RmEYozCMEu8kOvNyAsnZBJrnIykmffd/itLATgB7UQXApPtvN7uzC7fSfPF/n6zSPSsVapnEpCtfxv4//C+h9uk0nXEJwdaZZPc8Tn/PbtK7nmDaK76CpPocC1/HUTV+3in2WrtXCj3lxVYl3ER8/g2kd/4VDGsXnKnnMI0SkhxwgU59nZoKTzqT4rRLGN70U9ou/wLxhTeiRE8PZoovX758+fLl69mr8e1YyR6kcHCQ6JwXVf2o5/WzGwuLwxtH8fiTOuyNUST4FiK+ZH9nG2lbcNlvsPb98Z6zLnxEa5/x7jmDvo6vYj3Vs0X4m3o5H2NJ18uCOV4cgLE893o8Eud5Zy2/UKNkLZ6kt99t2ygjBeKYpTTZfY9jFAoYhWEnfnzhi0kueanz2TQNhp7+BUYhhZqcgZZ6pipPKRAnsegVmIaOmpxRvi57n6fH73YMv5B6n5tIQzy3at9bd90VhX+s3a41m0USiNh8DNv3txI+KDm+yrbvrZ2mZvuQKzZbIzrdYlQMbx8EoOWsdgBS9mcto7nCC79yNWZ1LuHbHAiXhxCjmME0DBIrbqTrH7+m5/EnMEPLCXdcQqh9M4XujZT6D1m7WQwTNRFw5SEYJUWbqWFqddrSCJyTam6B29da+GCPtb0Ln3Td5oEIn2bHZ5kKporHd9phD3jMLHMTbN/tqv5ts2jsdAWTRTBI5AqfbyXifj6yx7deshk4hsfnXNS14NvInnJ5OTAB+xmpFennC5admx7pdqUp2Cn1fLEdH3vDUz7Be5HcnJxog+WyF4mW63xfn2X3UNQqX3NTlLc8uJYtOwbQsmkOPL6WZ370n9gZOvGG1n0fKRBDiU9BH95v3R7azvBjHyRx7pdAOn7esUc7po5t/B7fDo3R5rNjYqt40qgnxcPScOZDgYfw9B9TS5Pd83eMYgqQUROT0TNdFLrXYuQHwdTJd28iMu1iTL3cXgBUe1yqaoMebob47JRNoIUq2EPCLi9r5Wg3NnnHoLFwvqo4TV6mVJ243rnWYW4F3TaM1J4cXkNBEwWwrgvWiFGbZyFU75VAmCbGC8F2cMUVvBLPLRFH9oSTg6brvpOO3TYcWzwMCjVaXugXY6Jqj62CJ1a2yU5LjFvB2nOKw8jyPCvBNxHzhgse7Anr9FvxnDV3+cScIPgtYv4X5TJLsrt8olpqtLl6PLV6qtfm6rFVhJRgdZt1GCqe/lnua7Xz8tpYL0/Zw8WpjFevHwYTbpdQ7/zulCfg6c8eU5124BlHauXpxFHq9Edv+QRrxW4HgaTb5oLNPRN9t/LdQXKYbfZnzzutw/LzjtdHOa/Vinei+ZOnq0wTjBPAZjtWnXoWnZoa5/IBhKZcegLM8OWrWlr6oPN3sH0l+QOP0LT63TRf+BHUaBv5rrU0nPFGWi54D+1Xf8a1qAKQP/gY2d1/JtC0ADlU7X4SaJpP21W3Epl+KZHplxNonHPCy/Rs1uYvvI0n3/M8dnz5lSCrNJ5xPQBKtIWWS25BUsOEJy9HUny0k6/jLzUUIhBPEmmfjFzBSVHi1qKhHG4EwCxlUCJtNF34eTAF5DlY/xugr5MqPXuEzI7fMfTU/5Dd9Se01D5KgztIb/kFhe61hCedjZqwIK6BpvkTbK0vX758+fLly6v777+f6667jsmTJyNJErfffrvrvmmafOITn2Dy5MlEIhEuvfRSNm3aNDHGHkeN6xtOw7lfQIm2nyhbfPlySVKtE0gaz/0QSqSdvu615LueonBkHcll/0qofSmSrDq/LOkF9y9nerYP5ABqYhq5A7uR1Ihz7GTjOR8i2LoYabxbk3zVVXGgGzkcxchnic5cjppode5p6S5MLU9u/5oRUvDl6/goOm2h87dp6IQ6V1I4vNa5VhrYihRqJtB2FqWeNYRmvghJ9hf8JkqmaVLsWY+ePUJ29x0YhUHnXtO5H0VSApimWT7FxCihZ3tQ4pMmxmBfvnz58uXLV11lMhlWrFjBzTffzI033lh1/wtf+AJf/vKXue2225g/fz6f+cxnuOqqq9i2bRuJRGICLD4+GtebpBw8fQvq6/STke8DQAk1YeT7AcgfeAijkGLwia/TfvVXkULJuvHDU88lvfNO0tt/jRqfgqkVCDTNo/Gc/0D2TwQ6rkptewotk2Lyta8lMucya4Gl4iAnqWJznFHIIgXDYJhIsnuPt+mDQ30dB6nxRtovfxXd//w5RraPQraP5PJXk1r/MwCaL/wSxe4nAZnokneitpwxofY+15V6+n/JH7RO+FGTs0iuei+ZrT9FUmNl15NKl0clgJqY7G8y8uXLly9fzy6Zxw/PMJG69tprufbaa2veM02Tr371q3zkIx/hxS9+MQA/+tGP6Ojo4Oc//zn/9m//djJNPa4a3090cpkl4pX3+5B8HCj9ijy23QT1/S9H8ll2/1u+fnR2V/ub1793rH6E3nLVY5aMJO/zcvyo63BtRB7evMbCVBm7TTaDwXYEFr7OWsGk2LMdSQ0jBZIogTh6+hClwS1Ep59fFR8sv9ZAoo2Oa7+GUcrSc+f7CXeeSXLl25Fk1fFhFT699fyJK/1hK/M4lkHP24fqrSWIuvbygEq2/3Qt/KtUEn6zbl/c4lDBuiz8Zm1IZ2yWtTAVa7EWmmLnWb8AH1nba4Wzk1PjNg/F4wef6bV2AB2+508o0WaUlivId4UAE0O3+DdyQEaJdxCbfRmZ3fdw6I+fI3/4aZBVWi54C+GOczC0LPmDTzDwxPdou+yjhDuXI8ds/3HhV16o78tfz7faea7in+IofuOe9iyYI4ZecgesaBaSISrJ9k23eSaijdUdn+y+JpnucOJXeUn4ouvu8leWUfjSO5waYZNgKNlVJtqOl8GCXqcdm+42J2wb6M47Qfaty7hsEH7/wl5vXuJ63fHPvh5ustpmu80BmtJufW6OldPbbzNW8jZboCNp3QuFrH+LqSINK69ncN3jFPsscHW483yCHZcgKUGKQz0Mr7/VskvLEGhdWdsmW+PZ2Fb2Scfz78hjxon0L68e7+uFG32uqleO0XgfDnPIdKdjaAbFvq0EJ51HdPYNKJFmJCVI4zkfswNW8ChEHh4uixinnT4nwnveQ8Q4JphToo3qggvhGFsxl3jYKl5GykjvGZXyciO8Y5Yki3TG3w7Kz8lmLlCH+2HPPWKXp5dFMuLzVtzjkTfOaLyWeq8pVWNSDZlV7yV2+SQ3W0SMvQ4jSqRtmyzVYVcYpfLc4jBGBMdEpCXeBcQ4bX8uHLHmQFGnss21Eo1Uzzm5VJrutM3K+pJrcGYqJcop2e/GYrHR2wK9LBFRD0rMslE8K6WCW6UNFxlJY33ncfriKDyzWu3EaSMOC6h2fej2cx6rTdX9oD7nRPY85+RiC4z98h9YXxA7HtsMwFdv3QNAeteQK3y9du60n4p3TdEex/pzkjNWiHYsmpTnPTXQaM2Zoi3nu61G6ObEyK60qrg0HjaMt6aPxxf/0eYMn7ly6qlYLJJKpVzXQqEQodD4wP979uyhq6uLq6++2pXOJZdcwsMPP3xaL6z4fhC+TlkpMevo49LAVrShHcihRhKLXoWePgSAGhvdLU2SZLK7/4FRTBHqWIlZypxQm5+ryh/aQXTGapRw7V1tkiTReOZNqMkp1qIKgKHR98Ct9D3yNQ7f/m8MPPE9AHIHHj9JVvs6HWRoGr980RU89cufjSueGmuk9dKPOZ/1zBHkQARJVtDTB6wwTUuILHzjcbXX1/ilNszCyB5BiXYgKcHRI/jy5cuXL1/PQplY63Sn2n+Y8P3vf5+GhgbXf5/73OfGXcauri4AOjo6XNc7Ojqce6er/IUVX6es5GCCQPMKsttuo9T7NLG5NxBsW0Zy2WsITz2fQPMctEwvQ+t+SWb3vWiZI+i5/qp0ss/cB8DQ09+h74GPn+xinDYyTZO+J++lOFRdhyNJSw9Q6N6LHK7vlgUgB2O0Xf5RItPPQ22wFs2UeBv5g27uSnrXPeMz3NezWpKikO05wj8//18M7HsGQx/5FBIAU9fI7ttEzz2frLzq/BVoPYPGC75CdNn7kIPVYGtfJ1fB9lVoqd3ouZ6JNsWXL1++fPnyVUNveMMbGBoacv334Q9/+KjTkzxbvEzTrLp2usmn9fk6pRVd+HqKh+9FbVxAuHMJALG51xLD6pBDT/+Y3P7HyhEkhYYzXk9sziUMb7md7DMPoqet1c9A0zziC15aIxdfW//nQ/Q/ZS1AtV3wfJJnvnVM8fof+yOH7/gfANRYy6jhlWgLkqygDe0nOuMcms97E4f+8F7XsdkYJXru+Syl1EHi864gseiGKhaLr+eOcn29zt/fv/5aLnzHu5lywxtqhtULeXb97ofs+OV3nWuNq15H7uA6htbdRnLlO1HjnUiShBRqquFi4GsiFGpbRRqJUt9G1NjlE22OL1++fPny5cujYDBIMjnyj6hj0aRJFnagq6uLzs5O53p3d3fVLpbTTf7Ciq9TWnIwSWTW9XXvJ5e/ElMvkT/0lHXB1Mnuux/TyDG8+fdEZ1xKaMkrCDYvQg7GHT9/X24Fkk3O3z0P/RXdaKbp7JePGk8sqgDEZp8/QkhLWuog2b0WpDL7zGPE512GmphMaN5ykoteyODaH5HZ+Q/HXWjo6V+CHCS56LpxlsjXs0GGrvGnf3uF65qWL9QM27dnD/943cvRMuVFOjnWjpbppXDEOhEof+B+4gtHb9e+RpdRHCa9+YeAhJqcSWTGlciB6FGlVexZC5iYRmnUsL58+fLly9ezVqb5rIDXjqRZs2YxadIk7r77blautBh3xWKR++67j89//vMTbN2xaVwLK0pAqYIkCY2lEYwWphoAO76G5QUdjQQcHA2KNF5by9fHn1c9ee0fDZLngGQrFg8EALUuUE5wujQ3wKt++JFhU5UaK1RXhDPqPC9howCnRjpjAASbw0AjyYWfptD7DF1//grFvh2EmmeipfYTaJpF0+o3W5EdgKQN2tSry2saGtrwQUqDu9Czh4nOvh45EHOVu2zT2OvhWOUFCwtYqmbDTNUawDsHUibstv8V0EYBrRNpT3rBO9F1hd4HfgdA/yM/JTJlLuEpZyCrAQfEVxiwvtQW+7MUena68sx3bSI28xyUiGWPbNigXPFcZYlA02QkJYipF0ksvoGBJ39JaWAvxd5tyGqE3IE1qA3Tic28FFMvktr4S4ae+jHxuc8vAymNGnVvj2QOcM0DdfMC6rzPTwAZNRvEWhemJmCIlXBqD/B2tLbipC3+9YTXNdFGrbzUqBtTLGCxAJLiBuaKzw6cW3ED6kw7TQEFFPcFcc8LdwzasE/RlXMDZXitKJfspGX3YwHEdODLwhbb/nzZfqt8qiudQNj63NwQwDRViulhV3g92U7fgAVaPHRIxzQM/n77Dxh46n4kNYwaV9HSA7Rc9HoKPWnSW3+NEp2Enu1CbZiPoRnVMMNRxqra43rtMOU2NmKSFekc/bbXejaMNfxoGml8Kxx+jGL3kwSaF5Pd+Vu04X0kV7y9Rp7l8pmm6cCoRdrF3g0Mb/g2AEb2MKahI8mKK+960PCqviWyEsBFAV23u5CAVzvARvtfXYCxBRyyMg/nr3pAWDvtUebneoDt6jJV3qNOWKkq7Mh51r4vK15byp+9QPd67dSpe2Fanfe4euDYWvJuBfdCdkVxTNlzxf5Hz9sAcTHEinnBTkfyvBeZWnVb89or3j90L0TdzrOU0VxplobdgGQRUFZtiHHRDZZ1JWlfcyDLnjlejNvO3OPUV+33N1FuuQ4MFkCx5xmRtoDxlmyorS7g5J45tN6/9aCwwtRa5x44dnvalIgj3tvE/CXa6LHAT0UYRYCs7XIq9tznrbNJYas+xDtDuN1aTBbwX9E+nHcwzzzvGg8dYL0byj1eOX01655bxTMN2kD4UqoCUCzm5TrjkvPZBvib+ZHfjcaj0d6RnLZyEt+zfR1/pdNpdu4sf0/Ys2cPTz/9NM3NzUyfPp33vOc9fPazn2XevHnMmzePz372s0SjUV71qldNoNXHLn/Hiq/TVqXhPvru/ymNZ95IqHUG7Vd/mmLvdoKt88ns+ifZvfdTGjoAsowaaUeS3c3dNE0KXWsodK+l2LsZI9/ruh/qOBu5cd7JLNKESZIVprzwbc7CCsDB336C8JQlTH35/3OupTb9EzkUY+CxP5I7sNaVRiA5aUz5TH7RreSPbCEyZTW5fY849/LdGzD1Eq0Xfggl0oxpaKQ2/hIA09DxkVDPPUmShKG5dzGYHsbK+s+9jdQ2qy1OefG7iE6dh1ZsQwnF2Pm1FwKg57oJtC4j0Lr85Bj+LJdRGKDYuw45OonEyn+n/963ooSb64Y3tQKDa79KqW8zcqiRYNtyjEIKOdZJ/sD9qA1ziS96DYOP/if5A/fQcsV3fYitL1++fPnydZpqzZo1XHbZZc7n973vfQDcdNNN3HbbbXzwgx8kl8vxtre9jYGBAc455xzuuusuEonah2CcLvIXVnydtkpvf5TBtX9laMP/0X71uwg2rSbUvgiA6KyLGd76F7rv/ABgEmpfSstFH8HUS5QGdlLo307umX9i5Puq0o3MegGhzgtQ41NOcokmVpKssPDdX2Dr1z7oXMsf3ERqw120nPcvAHT9+Ys1406+4csEm2eMKR8l0kRs5vmYuokSbUFLHyHUsZTCobU0rX4rSqTZtkdFDjdh5AfIHXycyORzj7GEvk5HKYEARqm8uCIH3F+48932CT+JJg7+/usAhCYtYNrLv4QcTGAUU2AaxOa99LSHop0K0rPdDD76ETA04sssFpOkRigN7Sa39++YeoFg+0rUxHQnTmlgG6W+TURn/wumXqLYux5JidguQGDke1GTM61tTaZOZtsviC++aSKK58uXL1++fE2YTMB4FuDfLr300qod3ZWSJIlPfOITfOITnzh5Rp0E+Qsrvk5bpbdbux1MrcCRv36R6KxLaDr7DciBCLIaou2Kj5Fa/3syu+6i0L2R7N57SG36LUbefepNsG05wbZVBNtXIgcbJ6Akp46iU+YQbGqjONDDpOe/h9TWhxjeeq+zsBKaNI9C1w4kJYCplwi1L6Tt8n9Hjdb/tXoktV78QXKHnkQOJSgc2cjA499CDjUT7lgGQPO576b33k+Q2XmXv7DyHJV3MSQ5tbyAN7h5DcWBHhILVjK8rbyDKjJZLLA+j8zuvxJsW4GanFF5MJCvo5CpFxhe91UwSiTP/iiBhrkAxBe9jvSGb5Md3geSTHbX7wm2n0l80etQIg2oDbNAUpBDDZimSXzxTRiFFMPrvwmSilFMMfTUV8C0diOVhnaOYIUvX758+fLly9epp+O2sDIW9spoPrr10qiV1ng1Vj/2eoyR8TBVTiUJ7orssdNbPsOzqjjeehiP6qU5GudA+K5abBVQAmV/0jmv/xi7fvBpEguXoIQi9D38d8Kdy1FirQAkFr+CwadvA93yMQ1PPo/QpLMItC5DViNV/sD1eD9H4/M5WruvJ1n1+r66+RlCWoXPt7cPSXYWin3dKFlhtSGrHuSQdb1o+3J3/fUHFAesI0+j0+bQ9devAtBzz+/QMn0Ujuym8czX0LD8+ei5AUyzGZDQsiXHD1yJ1B5WRHn1nO58ltQI8TkXUxx4xgmnJlqRVAnTMAm1L6TpnHchB2JVX7Altfx5tP49mh+xbruXCF9nb7d24qse3/ZaEuwRD49FxBG+13LA9hO32TmCI+DlHhj285Wq2gPoBeHHL3g2blaELBgrti2SnYeXNSH8yNWw/Qztz9Fk0E7XSlYrlmvGKFX4a1P2OReLF+LEHYfjIsIJ/o3wK/d8DtnMla7uAgfv+g3FTAY5GMYoWnyXLfc+QcflswF45o6fEZk637WoEmhoB3kW+35+C8WeDQTbVxFf/CZM3Typ4/XovJPjx1bxXvfmPR4WS2lgC0auFznSiqkXMXLd6PkejFwPpf5NYFjPXYlMcdIJNJ9B06XfQpIsVlWh6xGy239BdvftJJbchBxMEGxdQXrLz6ryC025CDkQJ7fnDueamphe893B4fqI8UyrXRCHSVFn3lMiFnvA6XP2mCTGx1oSw4/kGSOEDWK89rJWyryn2nOHd24ZjdVSGWes7dk7bwmWlOLhe4zUJh07PdfF2CHm53qA+CociLgunmHF3OXwTcQl3W2DYKIYCO6YHVyUR4xzIlOb9yXGJMEBE59NuWyzeJ6iLgKJoOu6yKM8hrqZGmKsFTbqJauuvSyqcgVUtHNPR3VYKt42NcYV4nrvK46tI7xzOxw2296S/Y5geurHeX+zy2c6fCM7L9F3Rf/xcFRc8jKOvDwjT92JcUBc93JgvJI8trjs8eQh2nPR5sq98BevB2DgD9YuvWLv+1zhnLQdG8WzM1z/1pL3dcJ05lDBlfPy2ASvRtSl/Y+YnyX3OCbaUSBe3u2pZT2g8Drv33LQZu7YXxc1D2tltHfnWhotjLcPHstc6cvXyZa/Y8XXaatQU7vztzjVJrXxXnKHtoOuUejZYr15ShJ6YdBZVGm9/L9RotZxXs91KJapa+QOrgem0Hv/z0htuh+AzuveRahjJoHGTkqDh+l7+IdIgTCJRdeSWPR85EAYOdDphqEdg4p9uwFoueAdqLE2173otNFPG/L17NTg1qcBnEUVgIO3f4P4nGXEZixGzwwRap1MqGMeenaIUOtUgs2dHPrjVxErPKFOv/2MVaX+TQw/7XH3k1TkSCtKpJ3Q5IuQ1DihyRcjqRF3MAcIqhKefBHFww9jFIac+/HFr6NweAFqw2xMLYekhFBik8gfeoT8vr874eRIO9HZLzxxhfTly5cvX75OYY34452vU1r+woqv01aJucvoeeROAA786fsA5PZvRok30XjGzUiySu/9XwDTJLvLenFvu+p/UMJNR01ffzbJKOXRBvbR9ZdPOdeUaJKln74dPW9V0Mw3fs8Ka5+yIE4ION6KzjiXzJ4H6HvoViJTH6flwvefkHx8nT7S8zmalpxJ9yN3Vd3b9t9vAUCJxAm2TqHzuvfYd0y2/b8bcU7HUMKEOs5+zi+gjlVisUSOTiI85QoCbauQQ03l++M4VkiJdZI/9CClwV0EGucghxqIzHxeVbjc7ttR4lMIT7ucYMtilPgM6+Qw/5n58uXLly9fvk4j+Qsrvk5bNS8/j932303LLyC9exNKNMmCD/ya4W0DAIQnn0n+0JMABJrno4Sb6qT23FGhZwu5/Yfpf+Q7ruuT/uVdtJ5/NZKsAFrtyCdIciBCx1Ufp+uvH8Yopk9q3r5OLfWtfZDNX/0AoaZWCv3dznU5HMPIZ1xh5VCUyS94o2tjfLB1GsWBQWKzn4facuZJsvrZITU5m+SZHyO785dkd/wMtfsxTNNAzxxCkhQis28kPPXyMaUVW/BKtNQeUuu+RfNFn6feqV5yuBkkmeicFyJJsr+g4suXL1++fPk6LTWuhRVJHr+v23jOka+neryPo9Hxfmmr59N+InQsZ7p7GSpl5ortc277YGpGfR/zkdIbj7x1Nlq5RDjN3jWR3T8MwJG/3wbA3Ld9mcjU+ey//TuEWqchq7Lj59x8/rvpf/ir5A89Ral/O7kDD6MmpqDEp7iOXx6NJVOPzVHL5nK5ahbHkZcTUC+PMldg5PTGYjeSSe89n3Rdis0+n8azXkBs5kqUYARTNygOWX7FpvBZ1t0NfHhvCoD41PKxaIJPUNVfJcHxkF3XNeGzXZF0oHEaxd6dIEsOH6RcONuvvpavspe/4rQxyfVZ+CgbdfyihZ+4YqcntmM6vsx2OpUsm3q+xc5zszk2opwib5G2KKccqN1gHD9rBIOhXP4xj51Of632MbeNsdIuubkoOXuHUjFjLbTpxfL4IFgKkqdOBK+miuMk0pY98QV7xi5WPh8G03Atqsx5z+/R01lSW/5Bbt/T5A9vwdQKzHjtFzDlJqd9Zvelab/i02QOWYtzhma6mBWiPkYbv45mrqnX38fCzBhvukfLbRqL1IY5JFbdQqnnSQqHH0BWwgTbzkLPHia7/ccghwhNKrtXlcdCt72SEiQy8wUMr7/V3rVS++j62MJXknryv9GGdhNonDumctVjqzjhdXe/dfg/Afd9wa5weE26Hb5GH6viUQguk+AuOay4kVkqQvU4MXIFO0q0nXIb8PQpzayKUxne+17i/SyYFLX4dlX9V9ShPQYoIfeEpITcjA29VHteK48bHkZHJRBHcc8VRsH9XiLYKoqquMvnMFXsC/bvA4ZUu704nCsqOGWSO01Rl0rAKq9u82mc+c7OMyTiC5aKGBftevJyUnCeUQXfxa4zSsI+dz044QQbplS7XIL7IZ6JE6/orsdKrp3Tb9XaY4szP9nPxuHUeOY1yc7T4Rd5bHeYJLWyGe39Rdgi2prTj+32IPg3+sh9rxZbRszDXhaaYTNFNsy3mCozllrujeqGXgBKqbQrD2+79r7HHc0Y7fCJqoyuE97hm4kBz+5joXKEgGrxVkR7dsaGOnOjaBdq1N0PBEPH+x47HuZKvef8XGWrmCYY/g8Mp638HSu+TluZhkaofSaJ+dav0tNe9Qkik90v77IaouXCf6fv4VvJH3iYobXfdO61P/82wP3i8WxXsXe767McTpJc+i/EZp4xMQZ5FGiaTWbXPWT33Eds9qUTbY6vCZASsRbrYrPPJLPb2m2mBMMQDdB05o00nXkjpcG99D/6S9REy0Sa+qyVJEkE288i2H6Wc800TTANstt/TLB1ZRVjxTRNtMGtgI42tIvc7j8494o96+ourARblqDEOhnedBtN534cpMAJKZMvX758+fLly9eJlL+w4uu0lRJOYOpll5WGJRfVDCfJCo1nvZ385NVk9/wTPX2YUOfZICk8V49flZQAcjCBnusn+8wTJBaeMdEmARCffw2pDb9GS3ePHtjXs0q5Qzsp9O5DG7bc+Fov+lem3PhxTLP6Z7lQ+2w6X3gLcjBYdc/XiZEkSYQmX0qx6yGMQj+KOsW5Z5oGmS3fo9j1sCuOmpyFNry/7qIKWLDb0OQLyO74Lbl9dxOZ8XwAjJK96yjXhxLrRFL8Z+3Lly9fvnz5OnXlL6z4Om1VHDiEEmsYU1hJkohMWU24w/oF1jnO7jlGsQ21LWTyS35E/uAT9D9yKwCNK2+cYKvKMvUipqEhyf6v1s819T38OwbXlkG1/Y/9nikv/siobh++Tp4kxXJ4MLWs63qp58mqRZX40jcRnnwhpmmMCL3Vhg+Q3fFbAHL77iGz83YkOYhZSlO58t14wRdRY+11UvHly5cvX76eBTJPDl7C14nRuBZWTGN0f7lj8SM8XhpP3mMNO3q5RbgxZz1uef2sx1NOuc4Z9V4/UMFa0fWjK0itfKr5JbXj1ms74rNiMzqyhzPkDz9MestDtF7yb+R6raNYtYoTa5Swx6/Z0Fx5CIsct9JRfHurbXLbXqu+ZC/fQ1xX3T63Y/UjreerO1I7kBU3M0A3TCBAZs8DALRc8G9IatTxVdYLtl+07Seu21wbx1/a4/suh8uuVA6/Qvh3R9zDS2nQ4raIL8rCv72S3zK8+Q7MUo7wlNVVTBUR3km3VrlFXYp2Lepa8tS17RBvehgDpuxJ08MBqiU1ai0COX7vHl96YbeQli3Z1+Wa94UcP2lv3pVNTfaEtZkDDp9GtD1RfrucgkEkOc/TCiaet/i3aD8zb726rtWTnaditxFR3vSu9fQ99Csi01bRuPJfwJTQhvsINM0H7iI8ZQWRyUuJzbmEfHe2mk1A2ce+1G/ZVxiwxoCiPQZUsyVqs1XGOi66ilVnjaCKg3AS2Sre+1INfsOx2mAaoMQmIwUSFLsfR22Y5+RROPwgcrQT9CJGoQ8lNpVA8xI7ooRpmnXZA8ObfuDkYeR6iM17CXquB9M0KRy8z7mX3fErEsvf4bKvFhvElYfi8f/XBffBbvf2+CDaphjnKmutXlsQY6t3DimzVtzsFa/NIj3VbsuCSTLSM6vPJ3PfL9sqxlAvq8VtiyiLKy9JMCesz4KvJLhVAmDiMEXsvqTrte33LpB666lW2xZ932GhlPSa9yUxbttZiE1uUjWVwrrulFeu+L/brjJrw37/sNuIqbrHbWf+koRN1udAU9gySTBF7GHeLAmul7vNQTXHwssCcupMxBXjWqn23GMUxbzgeWewbTYKFXXi6Z963g2wd56Ph1cm5gQ1bs2Dot6UkJudJfJ0bKixYO70NdGv63H3PGwVwVTx9kHvO5Mz3Fek6+Ql2ox4bxP90n5+v3zcqqwXnWkdgBCblnfFzz6Tqpm3V5XXnbCi7QiWiifqaL//1ePz6fa7hmK/o7gTrt23jNLYvuMJxpLhefetxwysVL13/JHeu32oua/TRf6OFV+npQqHrF9Hk8uunWBLTm1l9txNav1t1gdZJTL1fIxihkLXOhrOuInEomsm1L5KmaZJZtc/kCPNKP4v089KGaUiz/zQggCmtz+GlupGiTbQe5/95VpWaV79akLt86uAyb4mXpKsEpx0IYUDdxGaeg1KpBVTL1Aa2Exk9osJT70Ss9iHHGlHVsbGr4pMvwpj0jkUuh5HG9xB/vDD6OmD7jCzX0Ro0nknoki+fPny5cuXL1/HRf7Ciq/TUtHZL2SobwPZfWsJNp4/eoTnqPKHnyx/MDRy++4n2LaEhpWvIzb36okzrJZMAz3bR6B5zkRb4usESQ4EmXzjhzn0u88BMPDE75BDcZBk2i5/O7HZ5yLJsQm20tdIMotDYOrOL/SFww+AUSLYugpJDiBHJ40rvfDk8zANjczWnwEQaJxLdM71IAXI7vgtRmGAYOsKlKi/2OrLly9fvp7tMp9zmIJnk8Z93PJoOprtWsd6pNaoR8yOEPZYw50IjaWexyrZ6wJhq97WO+ez7g5niJP2xFF7iG2/hiufY1E99yORduV2ZiU5FyXayvCmR4l0rrRsrYjvbLOO2U3cHqRKtquAd2uo92gzsT27ehu0O5yuj7B9u8b26sqw3q3Q9e57y1RvS31lWqJcofYzKPZscO4HmufRcuFHnGMYxTZuIeFSoXiu43k0iuPGUnHssO2qpWW8fhi2nXZYxXussCnKIxNqX0KhexN6uhcp0e4qk5Dj1lORjveISLEl2qjjTuMcw+ocx+oOJ7aKO1vsxVZqcYRojbxDTdYpKeIYwrIt7jYSSNaGcDrbuE338686djtSedSzbYN3zHCOvHW7+jjHSotnYbvMebuv90hUp11VtGnh0uRsUxfPWfG4o9hp5Qf66Xvop64jP2NzL6T5nHc74Y08mLrVRzVPPVYeHSr6cSlj2WA4dSzqxbMlfowuQMeienOGyHu8bkdjObb9aF1vx+q6Wuu+2jCP4pGHyWz4OsgK+vBegp2XoEQ7PHE9z6CUp3D4ESQ1TKBlGUoo7twrdD0GgBKfSmLpG6zwmkGwdWUduzxugsLtRmylF2Oo7SIiXEKccQHhXuh2iXP6RUVbE+4U3i3vTt9wrrhdf+o9V69LjHesrfwsye6xQy+K8o7PvVZs+3eOxq1zPK3reF5hp+OKq7jiCtclJ27APfeIp+91DRgLM8n7paJ83L1UM5zTDuxn4IQS7jeeZ2faQ5AztlaM5+J4Xef4XcnKQ4x3wjUkYLu+6HlP2qK8intuccpiPzsjZx/XXWMuccbtgMcFU/R3zT0PyXYeWto+p9nO0nukt9d1rHJil2TxzmOPVyG3i5czx4pxKVA9J9gJ2OV2uzEZtmllF6jyPGB6XHmc645bljsLydBd5XGGVtEnRd174tU6XlwR34I8zVK4+Irnvuu+QwAML7eOhD/7Imu8e/CO/QBEJls/COS6sna5a7fzyqOenf4pyl1nHPeWT6ozl4hn5m0v5aO/y/1btttvach+JxZ1XRDt0u7vnqPOhcpHm7vdmep9pxip33vn7WqXRl++Th/5O1Z8nZaSJInwlNXknrkfU38jkuLDTmtJLwy6Pofal0+MIWNUYvGNFLo3URrYg5rwf6E+1dT/xF85+LsvEWzuJNA0hUBjB5ISItI5DzXZQaChHTnSWBNWOvDEHxh88k/lC5JMw4rrT6L1vo6HQpMvRQomKfWutT5PvZpg+zmjxhve+G1KPVYcJJlgx9nEF7waJdKInutDCsRouuC/TqTpvnz58uXL1ykt06z+sffU0Klo06knf2HF12mr6PSLyez4K7lDG4lOq/3L5nNdiYUvJzr9MgYe+wKmoROddcVEmzSigm2LCHeeydD6nxCetrruLzO+Tr6GNtzHwd99CYBi/2GK/YedewOesGqijWDzZNSGdoKNk1Ab2pGD4XIAWaHtkrcTbp9HKVU6Cdb7Op4KtKwEvYSeO2y5AAnQqaFhGiXn9CBJkjENjULXI5R61hJb+FoCrWdQ7HmK3O4/Mrzh2zSu/hBKuAWzlMHUskgB3xXMly9fvnz58nX6yV9Y8XXaSm2YjpqYzNDTvycy9YyJNueUUaF7HUZhgEDjHPRsD6l130NSIzSd+yGUcONEmzeiJEkiNGkF+cNPWSc5+TuRThnlj+yue0+OJDByw85nbbgHbbjHvqk6p3KF2mcTmbaKhuXXoYQbTqi9vk6MTL1AdtttFLsftS5IKoGWFSjhRobXfgE93wNISEqYyPSrQQ2T3fpjkFUCzUtRws1Epl2JWRyicOghANRGi6ukDe4i2HZq76rz5cuXL1++fPmqpeO2sHIsbJXRjic7Wt5J7aMyjy3PevyL43HM8tGyVUbiB4zlyLdaUm3/Ss17vOFRPIvxMHAqwxuOn7ztJ2qzOBTnjFlILr+J/oc+x+CTf6Nx5fPKeYijMD1HWJaP6rWTEP7Etv+46fF1FZZ6vUzFsxK26BUOul6ujfd4Ze8Rl4Zeu37q1bV4vKpdFr3CB9Y0TDK7/kqpb5NzLdC6lOZz34kSSlaxVZyj80RaNtdC+MM6/rWiyjV3fVX67BbsY6+FY7OwS/iqOz7rniMfvXUvKQpgUujeQGTKmeVyq+PYvSKej+p9ru5gjk+7ffyq8PX2+mo7yUbd7ceKbD/HgsfvW8S1fdHFEcbY4UT9eI+y9sqpL5sXIVdQHSQPE8Lhmzg++p6jTAX/wOvTHHC3yXCzxYGJVvBgmm5+J60X/Au5QzvRsylSm55gaMM9NJ//clov/ldKg13Iaojc4T0cufPr6Ok+ACbf8AnCnQvR0sOo0Sa0rIZpQHGg4LJByGmD9rMQNpUqjiX1Mo/qsVWOViNzukSYkdNwGEqjsFWORaPNU+XP44vvOhLUNCkcuo9Sz1qMQj96vhdMndjit1Ia2Ex+z+/I7/kdIIESItR5AXKoCSPbRXb3H0C2FkcDTUswTcmxRQ41YxQGKPbvQIm0ApDe+jMaG+cgB2Iu1oh43qPN11Vjp7ceZPex5N7j1L3HLlt/12YMeOVwHeowBerVtSibGlKq7tVjZGi2farTv93x6vGZvKwVL3Oici7x5jnaM9DEeO85PnmsTDHXKfKy53nWATlWcXzsVCTDbaPD0Am6uSCyzZiKdETLadjlzu5PWxcEf8vh8NjzW053pVW0579gq33MctE9vzk2Cx6MmIsrGCvCHmcucW64WSJyxB1OHC8tuCDiqGSnDYrKrWJxVfRzz1HODnfGcwawiefdoI6ctifmWAHqw92uoDx/ifbnzMOirdThc3jbucNaEswtz7uVl0HnSiNQu123nNVh52F9/v19gwBcdW4jAK947UwAfv69XQBEJlltqS5rpbLNOkdYe/upJ2wdtpBgRzn9RIxbdgGVkD1+FMT1aq6N0xdE38iLlwTTdb18TLa7P3s5OJLn3cmZxyv6veHhzh1PruSzRcfjO+Xxls/THZv8HSu+TmuF2pcRmX4RQ+t/SnLJxcjB6OiRnuWKzXsRg32bUBPTiC96NYGWxSih02fnR6BxOgCFrvWuhRVfE69QSyehlk4AIlNXEpm+hMSiy5HVIKFW67nJ4RZmv+XHDK27k+67v07fwz9hyo3/hRptmkjTfR2FjFIabXAb2W23oTYtQW2YR6B9NcHWlSixKQRaVyIHIkiBJGYxRbDjHAKNs5z4kTkvIb35B2j9GygNbCb15H+RXPlBpFAjwY7V5J75G5ntvyI87TIA9MxhCkfWEJl6yUQV2ZcvX758+fLl66jkL6z4Ou0VnXExuX0PMLTuD4QmLSQ8aQly4Lm7wKLErF9YYgteQrB1yQRbM34Ve7eBEiCx5MaJNsXXCAokW2k553rnpBKvGpZfw+DTd1Do2sbA47+i6axXn2QLfY1Vzi+gFT/l5g/eS3bbbUiBJFIgSWLFv1fFk+QA0bmvqJuuEm4iecb7y2kpIYYe/xhg2j9/mdYpQU0LUBLT0Yf3kd19B6X+rURnXkWg0T963ZcvX758+fJ1eshfWPF12ivUvoTY3GsZWvc7WAfhzqVMvuEzE23WhKlwyDq6VI13TrAlR6f84fXIgShKODnRpvg6Rk196WfZ/c1XMvDEb5DUGI1n3DDRJvmqUH7/nWjDezAyh9Czhwi0rCC28I2UhneR2/17AMxSCjncdkz5hCadT37f3zCKQ8iRDtTG+ajxToo9T5NY8gaUcAvNF3wGPXuE1NPfoHDoIcxiisbVHzwexfTly5cvX75OC5lmffdHX6e+xrWwIitS9Zn1tsxRuBCusHU5JbWvj1cjMSrqnbE+WjivHAbFCGezH28di8+d8GEcbxqCtaLbfsaC56LYfrgKHt/PGnXuZcCg136+3riy169U3LddljWbxRBuidC0+mYall9Nvmsz/Q9/l557vwGmgRxO0rjqJUiKxYowSlrNvL2MCq+vr9fX3WurWuEn7fX39frveyUJH3Ph8yq4J8J/3vELFtwY2yff9rMOtZRPW0ltfID01p8TmXk1SrSznIan3yo2K0Ry+B/uetHS1kktwmdX+Enn+yy/4UAyZBtfTjdk+5YXenKutAzBUhEcD8cPujbvSA7FkGQVo5hBDsbKeYhwoep6rGIKeHglov07z0/3dAQRT6SnCR9v+7bgwziMmXL6oo4Er8Drx64mrLYXbLbqrOTpi854JXyXTeHLLNJzM4Z0vewnrQi/d8XNEJLrMFcU22416h76C/0W78Rw2mjRiud2t3bJ0E0ye9ay/+cfo/WSm0gsugw11uScyGcUdCQ5RvOF76D/wVvpf+Q25Mgkgk0rqhMDDJvhoJfcz0YX/aNirPWOY/XmjJH4U8eqifCBHo0NVh3eHU9IcJ9K/RvRBjYCEJx0IcWeNWS2fIdS/wbL7aflBeT2/oFA87KqtOvzTqqvSUqQxPJ3kXrqc5iFAYqH7kWedg2JMz6IrEhlvkO4ncZzP0l6608p9W8us7FsTsVo8614vJJn7HVsE33MZq0YTjwx9tj5VLRBkZaX2zLae0o9nlvdtqpXP1tvcxXjmGyM9fmP3F689alUzFGBmOU+WsqUXGmM1va8Y0bVMxhDfYj6rzf+CH6D5OG1OOw0exBy0qnD1vr/7H13mGRFuf57QueeHHZmZ3NkA7BkWHIQQVFEQTFizlmven8GDBgxXMNV9BpRDCgiCJIkSYYlLcvmnCbHzn3S749TX/U51X2mZ3ZndmbZep9nnp4+oeqr9FWd0/W+H2lO0FrCaxfNkWbK9YVajHTJqBzwfaf7SFuF2y6UjfdN8vPe9VCVPsU1zVjiIfadzxnMJnPE9ec0j6u0jmPzPH161wVcA4M04mje5porAX3I8M/v5Me5RgtNV1xDja0DfAUjTRBmZ86v7YYA3Z4yDSVRuyOgq3r7E19/UV8RtGEIkaQ7jxus7l7c4/aLfjZ3rrhgFgBg7S07AADRVnfXdLHf1d6hdZBPv6qa/mDQGlgsj1C3BNLBoX5Tpvfiy5y1AdP5oTWSbYxtoqO6pjWI2JZerSpRt6msHIKvmSjtNAmJQwEpGSTxkoCiKAg3zkVyyfmoWfFKFHq2oDiwByMv3IbBp/441eYdEuT2PoeBJ36E2KxTkVx2+NIukotfBivbj8E1vwRQWjQW+7ej687Pwy5mp9I8CQ8G19wGxyyi997/w/afvAm9D/4GxnA3bzMz3Y+Bh38CAIjOOgGR5kVTaa6EgOTKj0BLzgUAxBa+AbG5r4bR/5wrTrviQ4jOvhD1Z/wU8SVvPei88nvugWOk+Qo8v+cuFLufqHyxYwNKuZirhISEhISEhMR0haQCSbykoOphNJ32Lv7rSde/vg5zpGeKrZpcOI6N4ef/jqFnbkRkxtFoOOmDMPOH5xt+x3GQ2XovACCx8ALYZgH7//Y2NK7+COxiCsXezei9/3/gmHk0n/1R6MnmKbb4yEbH5V9AoXMHuu78X+T2vIDBx2/E4OM3uruO9CisTD8ULYzmcz6N2KzjAZR+RZWYeihaGMljPonhJz6H3JYbEF/6DuS238jOuTvQlAnY5VPofIi/RHHM0otRO1/ZN9uFIahhSQWUkJCQkDjS4MhdOocx5IsViZc09NoZyO58Eo5jQ3mJxnTLbn8UQ2v+iNqjL0Vy8RVQVB3A4fnwmtv7FLK7HgEUBZHWZej650f5uVCdu9U2t2cNACCz8zHUrXzVlNgp4UJRFERa5mHuW69FZteL6Lrj+zAG9sEuZIBCBvUnXAEl3AQtVj/Vph4wHMeBneuFGm2Aoh4+0bXGCjVci/iiNyG76VeIzLoAWu0i2NlOlJMYDgyOYyOz4VdQQknUn/oDGEObYY5sh56cjXDrSZVtijai0Pk4rGwPtHjrmPOyjQysTBf0uo4jWsBcQkJCQkJC4tBj3C9Wgjhv9KNWkI5EJYjxzwlBOhYH8wYviO9cdp2CUc+XrmOaBay8VAayPShSxmgQObtleQbopEykbkC5TX5NFdJasQSNioo86XG2l6ipEoRiweW4hln3zfe7mh56pLR1nHjMeu3xMFO3of/hH6JmxeXQ466gK+fUh4k/7Ncx0ZiECGmthOIh9t3N27aCubFlHHM6RX1P4IWrEaZ3QhxUQZOFONjE0SUOq23asAtpDDzxW0RnHouGE97GudOkvyL+2qwyrQJuA9lE/GiDNEj85aN64PdTETyDlzjpetKtK1scAwL/nRMRqd9rChwjBQBou/i7yO16CFa2100zUQ8zleJJ6TUzkZj3Ms7f5fx3XeB5Ez9cq8yb52OO2+TXcyFNBsu0fOW2CsF92ymIfcPwpcltpv6qUp369X2IH002EEfZ2/eonKZwbylt94N0XhzLPU7tSFobVC+cs876jVn086yNdJHnbWaZLgG7JdK8BHPe8jNktq/BwKO/g1XIILX+Hli5IWjxJrS94n99Nos+lsoVrL2FMoxVWyUI1fy8YzsodD6M7KZfQQnXIdxyIqJzXwEt2jTqPeOxifx30NzkLXdpDjiwubA0D/qPR2aejsLeO5DbeSuL/mNB1cMBafi/i/MWfTeGtqDY/Rj0Wjf8cmzepVAjDYjMOAWRGaeUaVN4yxSb+0oUup5EdscdSC57W5kNqqh7AsAY2obhNdfCMbNQtAiSSy9DzYpLXR9IvkdoA1FLCaxLkw8DKmgEsLTIH4u6BdzljlFbRNTUCjeUNLOKw65+gyrolSiqoEPExqkq6EIEa8pVtsVbPVQussskf1RlDUUaSVyvhbRHTL/GxGjpcHvYd03QiOD3CteTv1MglMv2azmQXhW1pVcXLFzvTv40Z6jC3FjSqxD0IFjdB+nCiHMuWV9Ju4TmePFe0sYS8+DlJ60Vtl5RmV4GL0uWaQj15Xxl8oLmflo7WKrfJtLgUMOs3zp+jRKVieBxHTNq3zLtkpIjoXUYn78Sbh5Wzq8FU6ZHpgpzRqAPrfysAXi0jSgNVte0szKz2113FFm/iDa4n1vXDQAAZsyrAQDs3DDo2s7qyWTaRGGmgWewsWzlKuj8Ud0I6zXRX5WNHf7gxW9gF/r9PK0lxH7lM4H1a+rvFpvf+Vzh+OucjyHRh1j+dQ4fF45Hh5CNR1E7q0xvz+vnHWHikZCYppA7ViRe0gg3LkHNsiuR2XEXCr3XoPG0TyHcsGCqzTpoWPkR5PY8gaFnfg1FC6HhxPKHj8MR0ZmrAABd//qU73i+60U4VmlibTjlw1A0z8NPdgiKHoYarjkkdkpUhl3MIt+1EcWBXb7jaiQxRRYdPLSku1PKKQ6jsO9eqLEWxOZcNMVWTRxsIwsFBmwzByezFo5VnJCIXNktf4SV2oHCPkCvX4bIzLPGfK8aqUeofhHye+4FFA16TQdis88d9Z7Mlr9Cizej9ph3otD1JFLr/wxjZDsaTv4QVDVysMWRkJCQkJCYfDhTI44vMTGQL1YkXvJILLoEiUVnof/h76Lvvi9AS7QgPvcs1Cx7LYL0m81UN/JdL0CvW4RQ3exDa3AVOLaFrn9+GI5VQLhlGVrO/RT0eMNUmzUhUGj3hh6DYxUBx/1lI7PtAVhZ9xeihlM/inDjAhT6tyK782E4Rg6Zbfe5YbYv+/qU2S4BWJkBDK25sey4MbgbfQ9/C02nf3YKrDo4aMm50BtWwBx8EVAj0GvmTrVJE4rU01+GnXd3hkGNAHZx9BvGAMfMwc71QI23ITr75Yi0rYaije/lhl6/GMWep5HffTcAIL/3QYQalyM6+3yograS4zgwBjajZvmVCDcsQqRlCcJNSzG05n8x8sKfUX/sVQddJgkJCQkJCQmJ0SBfrEgcEdBijWg576vI7nwIxYGtSK3/GzLb7kHDye9GfPYpvmuN4X3Y/w9X20MJxTDzst9MhcmBSG+5E45VgF7TjoaT3v+SeakCAFqsAa0XfAV63WyoehSdt30MVqaXv1RR9Cjic1YjveVuDD93PeCUttWGGqbXC7AjEeHG2Wi75Ivouu1rZeccy5gQIdRDDUVRkDzmk7BSO6ElOqCGotVvOkxgpneXXqpAQe2JV0MdheY0pjRTu5DZdD0cx0LtsZ+EFhu7RooXsdnnQ4s2ItSwFMX+tTD6X0R+z73I77kXDaddDb2mw5cnHBNavIUfi848CfEF5yO/7ylAvliRkJCQkJCQmGSM/8WKEF+cEMRpFOPMV7pH5MmqggZFiSdbmT9Z9r3C2j3Ivmpx4zkEG3i6zFaFcx7Ld0AQf9A2K9dFNZ5/+fX++8QtY14by+PCo+I91cDbhlUu6QXQcZvXz/jS9cIep1gi13vJuZ9FD3eV7NQYd5d4tLFZZyE26ywkFl2A1Pq/o/+h7yG/8GzUHHUBQo3zoIYSsI1MKZ1wElBM5PY+inDTIqhRptEi6kB4ePYi75n4wQR6uCTuKee2GqpwH2uskLtLJd+5HlpiBoaf+wMSiy5A0+nvD6wbkZPM8yB+OOkFaP48ua4Hq1s16l5f7Hb5wRrn4ZJGR3l/L3GK3V++iWtMvHfe36kemByIY7jfo+3LmQ0OEgvOxcgLpR0QDSd/ECMv3IjUhr+zvJaiOLwbiXnnIbn0zSj0uNxxzutl5SMNFq61IOh5OH4KPoci6ANUQqU68MLMmL7PIB0q0qShNuA2sLKEYq7mBdc2QUmvhPyWyTRQjBF//1QH3fYj7QhqG+qsVE+h2rD3ME+fNBy8/HCRn099LjGvsiBpzfI3wLbsEs9d4L2PR1vlYDEWbRXf9YoKvbYyhbCa3slY9V7Gll6ANlgVXa4g3ZZi1yM83bpTvz2qUKyo3+GfZ0wUe56BY5vIbv4jlHAtao7+qO+lSpAtpfOC1ooSQrj1ZABAdOZZiM48C1YhjZE138TgE99A/Umfg5nphpXtQrHrKWiJdoSajoFtOdBUB1ZhBMW+Ta7oMPkDQXuDz4dcLkjQDwB4By1bl5CW0ig6JaOVL0hjqDiYL7tXZWOLhgLZIuqWiCjrx0HrNAarWPI99B/lRXoIdE1QP+W2kTaYYKNYlrHoBZmCLoUqamlR3bLzZdoT3O/zGmSHaSCU0jaYtgbXJQmTZkjlNSD4moq0JVxbtQTTOQkxTbQKeiaurZ7/qY+xY1TnpLVB2mllNgg6J3w9QvVC+ieCjk+lCG2O6tfVcgok1AFfWqS1QvpsfF4Lj74+53OW5+mD6lpndWbn2TWkJxcwJ3J9NtIUETVXGEabo+lermFG7cTSyPe4UcwMpstWZJp+VId7UkxLpca1PdzoHrdYGai+QnXujj2qNwAosLR4/w1wHkFjhF9Pw4MlzecD4WHI8tSjRjqDpOUnjtOoX6eN2kClsWOz/iE+x5FeCmXEupioLeiFqKlSemay+fGgunkpwkFwX5CY/pA7ViSOSIQb5qNx9SeR23M/Rp7/GzLbHgQARGYsR2zWKgBgO0LehX1/eQs7dzSazvh/h9xWxzIw/MJfkXrxZn4s1nHCIbdjKqBoTCgvUge7MIzUxltgDGyDO407KPZvglYzE/nOp1Gz/PUl1WGJKUViwWnIbH8MWrIZeqIFZqoberJtqs2SEBBqOhaFvXcjOvcVsPN9gKJAi7WMeo9tZGAObYExuAVQQ4CjwC4OobDvPgCAmuhAzarPQYtMvN6RGkqg9oTPYuTpb2Lw0S/yN6KKHkftcZ9gEdFcG/sf/CIcK4/G1Z+ZcDskJCQkJCQkJETIFysSRywURUHN0guRXHwerEwniv3bMfz8PzD09B8BAGaqE733XQMAiLQuQ9PpH5s0W8xMH7I7nkRiwdlQtBLVwLFN9D7wLRS61gIAYnPPhBarQ7T92EmzZTohsfACRFpWwDbz6Lv/a76XKvUnfgD5zmeQ378GcCwU+zYgxsRvJaYWrRd+CiPr70P/f34KNZzErCt+huJIwLYgiSmDXr8M0bmvRn737cjvuh1QdNQc/1mE6haXXWum9yO/+27k997vP6Fo/AVHuP1MxJe8fVJD26vhGtSsfAeGnvg61FgLGlZ/A1AUXyjsQs8LsHJ9aL3w+9Br2ifNFgkJCQkJCQkJgnyxInHEQ1F1hBvnItw4F4n5Z8IY2gszm0bP3V8CANQefQXqjr4CgH8r5UQiveVejDz/V9iFYdSufD0AILfvGfQ98E0AQOOpH0SocSn05Iyq1JOXErRIEmrTIliFFPSamTBT+xGbcwb05AxE249HbPbp6LzZ3VE08Oi3MPO1N3ABXIlDj9y+F5HbuwH1qy5F7bILke98EdmdTwKqjhK5QGK6QFEUxOZfhtjci2EXhpB64cfI77oDoWNKL1Ycx0Fuxz+Q33krAAdachasbDdC9UsRm38JjMEtyG3/O7TkbMTmv2ZSX6oQQg1L0XjW9wA1AkUrDwttF0YARYWWGH33jYSEhISExLSCMzaKpMT0xLherITqIlAUttWWeHQUA17zcx45t9XDr6ymu1LSARE+Bb5sGRdb1BipwE0L4hqXpSUiSFtF1JoReIbEywVKnNIC42KOV1NFRLnGDAQby+ucOPUlnjt8xydqEHvX1OPXcQlOq9J5i/iXFerTAmmGuJ+aKfDauZaIezxUE2bndVj5FHruvpqnldvzBKxcHxpXfwB6yP1V1DGJ08zS8djAed9aQB9h/GDi4kZnxKFFzsbI83/FyLqb0HDKm6AoCnJ71wAA6k94G5KLz+Xl55xY4lV7ePFlfUMT+M8MvC4VxgvP+jnsxHXm+ijExw0LLy08+YUSrm8gPnyozv/Aw3nT3FbBFsFnUMpWfgR9938NdjGN5rO/hEgL02Ah7YNoPez8EEIN8+BYgGNZgEV179ctUUbRiQCCefTcTwjcde89pD9Tfi/75Jx99wBprhDvn2vqULrUZwW9GOqr3ntJdyVI54H6iDHkrw/SXLGF9uf8aqGM9AmUdHqIk66GNaS3PIHhZ/+O4bW3oeOyn6DQtRGOkYOVz4EamNfPQfrBg4GocxGouTXKvUEYr6YKXa+OQdg3OO+DrEs1CjXWhvDM85DfegOyO/4JvW4J9LrFKOz7N/I7b0Fs/mWIzrkYasg/rkMNRyE27xXjfqFZTe/DC5v7b/puQwk3wbHdc6T/QmkYQzuh18zm1CAaS2IQuDINMhqDHltEjSxxzePYStk9o+YRUG6+prLL27K0FmIHBE0CRfWnEXS/aIuo++ZtA29dj2Y/ga6zBN0TMW9T+HGCyqB66plLR+TNUdMizTCqe1UjfRdms+NfQ5bWQ0wvwiGtFU8djLhaGlrcvzwutbffL5fOU1uwdAxBayJAz8+rPSHquvBL2bUGm49Ja4W3o8Hm8bx/XSOuPfhcFSWttFLevH1ozif9NcuvuULzO9e/CFEkP79mhziflQrJ1Tj4IUqb1yHNebZ/XJY0ciCUjxLyZyXqM9L8bVvlY7VsjFEall87h/pYccivW1Zg10XqXf9oNbq05GJ/3mc7zf8AoMX8+jsHuw4nP0daM6WxWmGMsTz58iskzM+C/poWY32tKFQy0yey7YAfTio8Y4nalKLXIp/g9Y2j6dxJSEwnyB0rEhIC+v7zQ993Y2g3jKHd0OKNqFt1JcxUF9RQHdRQbMLytHIp/n9+/1pY+RSyux9FqG4Oao56xYTlc7jBsQz0PvBNWPkhNJ/1xYqhrx3bBBQNM17+bZ+4qsShR8MJV2D42b/DSveh76Efw0x1AwDbVSDbZroj3HYGzKENyO/6J2AXodcvg2MXEWo8FrH5lwbedyh2iTmOg9y2f8AYWI/o3IsQaQ3WmdJrOpDb9whsIzehflpCQkJCQmKyIbVrD1/IFysSEh6kttwHKzuA5rM/g8z2B5Db8yQ/N7L2JoysvQkAEJt1EprPnhhRxPTWp7D79yVR3OyuJ5FafwcAoPaUDx3R1JZC72YYA9vQfM5/Q6+dhdy+p2AbGcTnnAkoKgq96+EUM1Dkw9O0gBqOIzbrGOT2rkV2pxtxpuHkdx2WYZaPRChaGIkVH4ICB+nnvgNzaCOUcC20xplTbRrMka3I7bgFAJDfo4/6YkWLtwC2CccqANI3SEhISEhISBwCyBcrEhIe9D/0EwBAdObxSG/5d+B1Vm7A/QV131MwR/YjsfhVB/Tw6NgWdt/wRYTqWgFFgzHUxV+qRNqORWTGigMryEsEoboOKFoIfQ98E3rdHJjDuwEAQ2uuQ7hlOYq96wEo0BMzptZQCY7mcz6MvTd+HHq8CfF5q5FcfMFUmyQxXtgGzNQORGZdiGLPE1Aj9VNtEVQ9wf/XYs2jXmvl+gE1BDVSN9lmSUhISEhISEgAGOeLFVVTOQFRVdiv6CHhIieYsxuYLvE8uY6Bn+NXzpMkHYHKeghBuigVzCvjU/LjATxikbM6FhCfUGe8VkvkKE4QSjY7ZcdIx0LkVFuM96kF8WEFBOkHEAfYrsDRJhys5kqgTcSvrqS1Ygrc1azfNj1KHHyXB1t7zFsxsvb3GFxzAyLtpyK//5mKeRojXei85SOwMi7VIbH4Iigs1C/pk3AbiJNsDMCxirDzQyh0b4Rj96PYvx+wLUQ7lqLx5HcjteVB5PdtRMPJ74AWa/ClwznvBgnjlPdz4pzbOdLcIB0MxilnfGjiBRN/mO4j3Qyy2RhyCbTEeSaecKjB/RWYuN5u2kwDhIlJEh88XO/WC3GzRT0XEZwnDxtaogG1Ky/D8PM3whzejZplr4ESrkGhZx3s/DCiHaciv+9xJBacBUVVynScxN6qGMQDFzRExLoUfYjA+fX2NIu4ykxbQIv43SrxnclnEkdZZ5o09N2rlQOU2kxxSCfHvS7SGi/lnXXrWIu77VkcdPsxaQgRl5wPW9vPF6fykD6MMezyxtUsqx9B18qvB8D+p/Izfr8WbUZ0xlHI7XkG8flnwjYUAFZZnY5Va6pMi8d3rrJGFumViP5K1DOZSIG48WqrTOT9aoCvHGsde/PO7/onCjtvBgBoyTlw9t4FLTmPn+daT4KuiajbEaxLVtm20dpCUQG9Ziai8y6Fne1CbMHlvv5QSTNHUVTAcce2qJNSphdCCwFeD+X1xrUkBK0B8okkbM7HFsm6CL4jyIbRyq8K9nM9lwBdOlHnJChtakNxXVDJzqDvQeM5SJOF68KwwyXNlZJvsQRfyP0U0x4hf8W1U0hjhvnMMl0H6nOkXyPox/iWKmweI3/M16e09uVaFFROVATXA6GCcm0WUe+sgp4P+WmhHUO1YZa2X/OKbLAEfbcyTTTHf59P3YLlQesX0iOhfk3+nuvKkfaIZfrydEzSXGF1K+im8LJW8E1cb0zoO9TetsGuC1wb+u8v0zeK+TUiveWg9qZxW9Jd8usZcf0e0z1upmkOdm8sDLn3h6mtaO1NekGe9m9Y2QQASO12qeCZHSPuNdSvqb0qaLt5y8f7N+9r/vO0DvQ+APG+Eai1wnPxpcX1b2hdAj/4GOQHyjXVePtQnpST33zh+iMnaIPjOFK89jCG3LEiIeFBcvErYBtZpDf8Hd7H8siMo2EM74WdHwQAOEYGlpHh5wef+AmMoV1oPvdLCCX9kSjsYhrZnfciteFGfkyL1SMyYzairXNQu+Ic1B93EYxhoP7YS2EtfqWbhyRZAgDi889EZsfD0KINsK0iNMdCqGYm0p3PsoWCgsTC86baTAmG4uBe5Pa4LyT1RBPs4hQbJDFm2EYahT3/gpqYBb1hBexsJ6BFEWpcOdWmAQDiCy6reo3j2Cj2roUabTwEFklISEhISEhIuJAvViQkBNQuvxzJxa+CbeahKiMoDu5CtP1UWNk+dN/xiYr35Pc9BQDoueu/EG1fhUjLcii6u1Nj6OnfwjHdrTJ63Ry0nPMBRFqXomZhPYDSTg4gN6nlOlwRqmlD/XFvQt+D30VxYBugavydlzG0AwBQHNiO6BFOm5oOMIb3Y//fP86/p7fci/hcSQU6XJDffiMAFYljPgVAQerJzyEyY3XFkMbTFdltt6LYtw51J35yqk2RkJCQkJCQOIIgX6xISFSAooWhaWGEkk0IN86HVbCg17Sj4/I/I7vnUQw+8SMAQGz2aag56hJACQGKityex5Dveg653Y9DJKIkFl+M+uOu4tQYibFDjSQBuJSt5vO+gtyuR5DZdjc/L9KmJA4thtf+A3qiFaHa9vFz/qY57MIgHCMNJdIANZScanMmDXZhCEbXI4gufAPUcB3MoU2AlUd45jlTbdqY4TgOcrv/jdjcCxBpXTXV5khISEhISIwbkgp0+GJcL1aUkAo1LIiqBOmcVLqfuJZaZe4tT1KIo875pAJ3m/iY/LygweI3s4r2i8D/rxTn3psXhPOiVou3bDbnwTK+KItjP/laKyVU4qADJW0VUXuAUI33X8afrnCNzfMWbRo16aoQOc5efRfSWxF1V4oFv76Hafg1ZkJxd0hQNRSHCr7rtYgOLdYENVyDcMsyJI96HfTaDs5tDS2/Asmlr4NjW9AipI2hAooKLeqOnWi7K8KY73V3qBAn30wxzoTYftQnDb9eTCXuvl0Q+a3uB+fqMjEGykthfFrS6qA8uI4Lg85sD9W5v1xHm2OlsjFQHdi2e2+4xr0n3+/qfpTxw0n3hfjTedJFYeVjvclRHESaF/J8QjUt6N/9kHtNtAFqJAk1MgN20eb8ZbGfE0eZa47Ybp0Tz7j8vKAbYPq5216IY5842FQ3XFOAcZO1mOa7USF/xXU/hLpnejio4GNJW4X6ENezYbxvk+nclGzza8hQ/7BypE3gfnDuPpWB8+TLTICZHcTgk9cDAFrO/S+E6mbDGN4DAIjPPau8LQK0VoJ48RW1ssa56CjTAQnwd950zZEdyGz8JezsfveAGoKWnIfwzHMRnnHquPI/EFsrIWjOFP30WDVk6D7bSCP1uLvDI9RyEhzHQrHzPwBUqHrcd0+QRspYcTALxqA5hD7N9F44xRGEmo+BYzt8XDvUxwSNDZ4O6SaMojVGWhOqLfgYh8a1Ozh0NiYL/TnfdWDrHtHHlMoW3Gak48THiiANw++lJiG/FlDX4nggrRX/mqTyeBTt1QSNPD6HCPpmfG0l+FKd+X/LM+eQz6S0SYeFa4hQuQW9Ej53CroOohYFmLsTtXe89/L51hS0JURdHsGHlGmoUHmF46Np3VM5SVOGvov6amJiNOfw4rLvtOak2yym9+Ftbcfwz1sICeXQ/HpcBJrvHL52YG1ksQKGWP3Z/nnQO9a4Ho2gDSJqfKkqzdesT1GBeD+nCSzAx/B68pQhRKdofPrnX6pzNUAbh5qRNJcU1S2/STp+bE1pa34NGwDIdGZ85YuxtWFxsMDy9usPkY2KoG/F11RCucuetTydjq5VaJxTO1IxKS++JqCCMovo2SFAe8URxr+3u1ebAcaiOyUhMV1x5KgBSUhMECLNS9H+6v9D02mfRKi2o+I1iqpBUfXSX5DCncSYoIbjCNXPgRqpQc+/r4Zj5FC78g2w84OoO+ZNMpzvFEKL1iLUMAcA0Hv/tWg45d3QEm7Ulnzn2qk07aCQ33kL4JiILbjCPWAbsEa2IL/1hpec/pGihgCFRCcTyL74vzB6n0T8qHdBjTZNsXVjR2Hfg1BCNQg3LZ9qUyQkJCQkJCSOMMinPQkJicMCdauuhKLqsDK9qFn+Gigh99cdu5CaYsuObDhmAcklJfHgnruvhh53H8b7H/puKSLBNEOx50mk118HY3A97Hw/8nvuQnbrn2CmdqLQ9SiMgbWItJ8Do999OaQl50KNtSG27L0vuRd5ihZBZI4rmp1+7hswB9cjvuIjiLStnmLLxg7HKqLQ+QgiM093XxRJSEhISEgcbnDcTVfT7U9ibJAaKxISEocF4rNPQrRtJax8FlqsHn0PfhcAUBzcjvics6bYuiMT2d3PovPWq8uOF3o38f9tIwstUnMozaoKo/cp5DZcByVUC7N/LbS6xTAH3Bcohb1Mu0eLQdHjMIc3IbrgCoRnXfSSe6HiRbj9LBS7HoJTGELimE9Dr1s01SaNC1ZmHxwzg3DryVNtioSEhISEhMQRiHG9WInMiEGL+PnWZTHgBc6fl8NKfFHO8+cB4xX/d0pb4NdxHqGgE1CmtWKSToqHK8l5vpSYn+9bpkVRRYOFTOXfA2z2HrOJq8t5o2WXjglBnOdKKHGoRfsqcxiDuPrVtFbE/CqlPVmopNVik06HqAEjfLdY+1M5jaxfg0XUEyCuty7wjMON0dL/7JzGuLR8DLDqKDLNEYvlZWb9Ohhiu4ocdQjlFbm/XlhMU4b3GVZOy3CPl/HBbf/YIt0AAmms0Dgh7jbg4dozxJjeB3GUKfpRuME9XujJ+q6nvEgvhO+n41o6GtRQEmokjty+55DfvwahxgWoW/nakn1Mj4TypLS49oqgoVTGAyYJBpFfLuoheOstqJ+LfHGukcNT9ZWTOMoqkZzZdcTRJj2YMl0Bj70WK5fG7qG8SWuFl5P0HogPT2lalDXTHhLrwaMt5VgOBp+6ESLUSA3fRaTXzoSqJeGYTpm2RJB/COJXj0V7pFqaAOA4NvLb/4ZQ03GIznslUk9fAzvXVbo2lIRjpAErB8dyue5KuGHSX6pMpL8M8uNBUBUFarQJNadcC0CBppb3saD5qlx7Q5hrBTjiuBgHxDQ5/98GjMENgKJBT7aX6fbwtuPX++dQrv9GY7Gi1oo/86A1gsH8uRqgcyLOQeLaokxjy4OgZizLg7QVBI2SamsH0loBgEid66cNQadJzJNqRRFtEPwUX2sJ91vsU48FL0dVWmeSv6as2PcyDRquqeMvL1/90HfySarHr3EfSbokzG7Dr29BGhNc2IY3jmAL1QOlO4pPtSzLdy3XPYlWrhta69I8T/onNJfyMUt6OKRdw+btUkRCwCowjRRayzO7eN6C9gxpf9FcQrpeNKeSJlH5Op3nyPMmnbXyMUVJCANf7GsherYgXRw6I845bL7z9H9qZ7IBrLvbQp8iDRWuX6WwNJn2DOmPlWmysOu0qJu+V/cslHTXU6ShQz6D6/sYTGOHNHGYDRGmccfrnqVJa0o7QL/R68MVUYeLPwr5tXaofjRWxxZrZ1GLpuRLKV32nZ33ti2vfXHuENZp5LBF3yEhMZ0hd6xISEgcVnAcB/3/+R8AQNPqj0KL1QcuJCQmFw0nvxWdt3yOf2+/7MfQ421wLAPprfcj3DR9dj04jgNraAOMwRdh53sRP+rdUEPuTho714PovEsRnXMJoKjIbPwNjO6Hkdv2Jyh6AqGmY6bY+kODw1ULynFs5HfficjMM6CG4tVvkJCQkJCQmK6YjsK909Ck6YjDcxUlISFx5MIu/cpmG9lRLpSYbETbjkLL+Z/h3ztv/gjsYgaKFkJy0QUIN8ybOuM8cBwb2Rd/gsza76K45w4o4QbotQugxWcAqvurYWzuK6GoOpziCGC4O27U2AzEl74dii4f1icCjlXEyLPfRnb7zaWdABORbnEYjjGCcMtxE5amhISEhISEhMR4IF+sSEhIHFZQtBA63vArhOpmo+eeqzG89kZYhZGpNuuIRWL+qei44if8+/5bPgTHqkwfmCoU9twBs/85xJd/ADUnfwu1J30VCuNH1q++FsmjPwpFC8OxTaSevxZmahsis1+B+NJ3Itxy4hRb/9KBne+FObgB+Z23oNg7cRGjFI1RMa38hKUpISEhISEhITEejIsKpEc0n2YKAB7rnviDxMskTqCPl855nkznQeB02sQjZPxCm/OC2f0BGiwiR3C0UJjVePI8TrxYTm30tLktAucXKHEtRZ2TsWikVMqjzOZxpuPe437Sj/9qGYXV8X0ebnA4X3R0fjt9t4gvymi/OnF2BV0cQtF0K4446XZvjp8LxV3uscq4qMSp5joYOdbfiYMs6LhU45OKfdB7PeeOm5U1gYiLzUH3itx04tfSmI0RB9q9PMz41QmmlwIAOvH5Wd+PxnU4lgW7yX3oSXW6u0vMLGmtuMeLQ0zHgnGc9RrGOxa0ZxzSzYEKaCoaV78P3Xd8ASPr/ga9rg3JRedwjjlUy1cPpCUiokw7hTSJWDpifVaCEmJ9qpr/IX0b5uc0xl2nTzXs9yElG9ntzI+QvwQAnen4OBZrL/I7jPdPaZP9qmBbmZ8jUDJUf8S79l7j+RKqm4nG1R/GwKM/gVPMoPe+a9B8zufdlxcBr++D6l5E6Xh5vY7F99mFIRR23YbIrJchIgibKiqgReugho8HABT23wc7ux9KuA7xhVdUTXsiMB6tkbHWmYggPy5qr9D3SumKx8xcCubgRoRbV0LVYx49L6ZNYfv1iwBAjbVBb1gGc2gT1EhtRZuq6eVULEfYFRq2CwNQVKVkq+jvRX2iA9DNIa0IrsMi2MnHM/lD0p4Q9NsOpJyiLB0hqB9Q2qU28WuV2IJf82pm0bVhpgNRTBdHzYPPISQ5QvOZ5beB8ib9Jq5X553H2LVcp4OBtM1IM0bsc2VzJ9UL1TnZLJTB9qzXStoTXHCKpcXOWyyVEE2qfh0f0mDh2h1cq4LVB/P/Kvf7pTq386Rv4tcj4XVk+fUvaG6gNGxBM4z0ufi63PJr7WiR0iOAojEtNLKlKGikiPp0ND+zcpNNVF2aoJ3I59DRdIwq+AyvDQSu4Uh1yz7DNX6NNa4tZgSk67GPl0P0EUL787bRFf93Xh1Mi4TVn851i9icHC/VOV0j2q3HXIpqdi/bORl111n8+YKtodQIK3eTq7ni1LnnjUF3TSWOH98mQaYrRFpBpWcYv+4QrW9IG8+pZf5gwH2JzTVjLH/dirpG3jYUtThJEwqCL1H59cpLWji+DM7oz7ES0xtSY0VCQmLCMbJ1HZ77/XeQ3rkZaiSGY7/2ZwATS6dQtDCUUByh+tmIzz11QtOWGD8SC85EdtcjyO97FoWe9RhZdxPqjnnDVJuF/M6boaghROe+uuJ5xyogv+8hhBqPQbHnSQBAYtn7D6WJhw0cx0ax6wnkdt0Fc2QnAAexuS9Hctmbx3S/omqoPe6zcGwDejRS/YZxQAnXwi4MTWiaEhISEhISEhJjxYS8WDFG+lAc6IQaCkOLNyJU2zwRyUpISByG6HrgFmy7/jtwLNqZk0Ohbz+QmDghU9vIo/vOL8IxC6g56iIoegSOVYRtAGooNmH5SIwddjGD5OKXIb/vWfe7kZliiwArvRtG18OILXoT1FCi4jXFvueR3fwH/l1vWIlQw1GHysTDBsWBDchu/jPMkZ0INR+D+OIrkd3yJ+g1c8adlqKGJtw+PTkbxd7n4Sy9EkB4wtOXkJCQkJCQkBgN43qxYuXTKPbvQP/jf0e+azsaT7oEiq6j647r4JilbfttF38IyaPOgRZNTrjBEhIS0xdd/7kNW3/zTdQsXInU9hfRfPwZmPPm/0YoWcepQBMBu5iGY7rbXfsf+iH6H/ohACA2axXaXnH1hOUjMXbk9z+P/od/yL9nttyFhhPeOWX2OI6D3LY/Q423ITLznOALGR8ytugNUPRahBqPPjQGHiYw0/uQ23YjjP7nodcuQN2J/41Q41EwU/uQ3fInqPGWqTYRABCb/2oMP/El5HbdjeTiS6baHAkJCQkJiXHDgUDbkjisMK4XK5u+/Sb+f2LecnTdeR3gOGg+/dVoPv11MNOD2PqzT6Lrjv9Fcvtz6HjtFzj3EQDnMnJtFcY19cZ1B7xcTIEfS3xKgWvHuWhcc6WC8QH6LEHfq+kllHRdKvMKtVCAsAAAUJx34s2OUXNlrHz6SjxSRdDQIC4uaYRQnXHOLmmUjJHnd6C6MZMNsS+ImitBMJkmh1aJB4xSea0ifZYyMhlPmuqWeOEiiEcOUf5jjJx7s1IfFLVShDEkwhG453Q/5zBHWH8ROMuzTmkFAJy8OMrTeuCvt2PTL67Bwosvw8DWjWheuAhv+emPsa2H1RFLY2R32k2TuPbEORZMJK0VM+Xn9jtwoNc0o/HU98LKDcJMdSOz/T8AgNjsU9zQy1xbprLWTBC4BgHjJqtMa0fRlYrXAV4uMeMLqwJnmY8N4jC79xFHnZqf6pyuDzEus1OmOVXK21L9/Od80a9bRXaTRg5xrnWmAyTqAVAF5UkziLlm1WH8eW+5hbERaVnh+1533DvhmE5ZG4ioph1VybdU9d8Aip0PwhraiOQxn4AW9u+QsLkGEWAMboYam4HYnIvHpXdxsDiQvGzhHtE7VfO/oqZK0H2KCtiFQWS33YzC/oegxpqRPPqDCLeeBDgKbNOBbTChWCUC27S5NkHJ9/DUAIxdW2S0eqE0K83xes1sRDtWI7/vISQWvtK9jjQ3aD5Wysvpy5vrBHgyIL5/yO/HDaY5QsdpfNKY4rpdlAcNdFGThPRPiuU6UIF1IeiZBM2/vC2EUpXayj82LV/YetN3rag9IUholGzmVSjoJ1Demr8eHau8jKLOFJXDq13nt9uvuSKuv0jnBcKcqYbL52a+5mPNwTVXLH8dky/l+jVUIaS1QTpfbP4nDRLSVnF4WUq2qqRVaPjnXaoPXnqSBRHahM8hdD27X6EbxXnRqy3D7CNdFrBP0kSjOYVrqfD+yuZMlqY4l9AgUzT/+rxSZHfqCWQf6X8oKhtjpG9E1zE/Trplov4Raa5Zo8wXtA4R10wlnSa/jWU6dgr7JB1G6msq2cbqiS2VvH1Oj7G+YAvfWRKJOUxrhf0opTNtO75OYeM11uImHmF6SFRPA+v6AZTacFStOMEvU9pQXPuNEdffhZgeDK3PuH6P7XZ8FbRWYH2Xtaq3r4rjm8Yn12cSbFM1xeeSJSSmM8b1YqVu5emoPepERNvnoe6oE1Do74RVKCDWPt+dZGbMxaKP/Q7Dz9+D3vuvR/+jf0bLOWPjXktISByesG0bD//yV7jvhz/EogsvQWL2PGy/6xa86Xd/hB4OAyhMSr41R70cAJDZ+Sgy2/+D5nM+jfick6vcJTEZsI0c8l2lKC+zrvzLqIu4yUaxdw2ym69HpOM8hJqOCbzOsU0Ue55CpOOcQ2fcNIdj5pDb8y/kdt0FRQsjvuSNiM46j0dR4g/OjM7jmNMnEo9eMxeFrjVwHOfIEjuUkJCQkJCQmHKM68XK/Ku+CC3m8tQVVUG0paP0SwBDuKENLee8FY7poO/B3yHSOhu1y8+aOIslJCSmDLaRh6LqcBwH+YFePLf+WTzy29+he+NGHPvWd+PE93wIv3/VeVh0yRVoXxn8QDuRoJcpfQ98FzVHXYTGU99zSPKVKGHwqeuR3ny3+0ULsYgwU/Ngawy8iMz6nyPUejLiS94y6gO2ld4Nx8zAzg/AcabO5ukAxyqg0PkQcjtugWPlEZ1zIWJzXxGoTaPF26GE65Hb9S/o9UsOsbWVoUYb4FgFOGYOSmhixbIlJCQkJCQmHY5zSHfPSkwsxvViRdUU6CysWyHFtrGzrYS0LZLC9bVe+DZk9zyPoWfvRs3SMwGUtulZOX/I18At37STNkZbCf3h60SM2hEd/zZEsoVTfoQtknzLpLA9n9tI20PVylsMlQrHRPBtb8JWWVvYcjpWjGcgBqftz1uxhe2Bwr5f2lpuj8J8EkMcl074v4rb3KvhQDiI4j2VtqP6bfGHYS7dN0rb8D7DtgwX/ZlW2nZf6fxYqWGVaGdif60SAbh0H1HEQv7w6WqkgH1/+xIK3VsAAHt+HkKx4PqAE849FZ/+9s9Qt+pM7F63AYWhAZz/+ldgRo2beGfSdTNDbOtomkJF8pCS/u3LBLaztJwSREbbtIU3hORRr0R64+2wiibMtMG344vlL6MjCPUibq2nLbVqUMxglLa6iigL20h5iIeJaiBQa7ifpH6Qpe/ezBl1h2hCgl8TQ1uqut/P0fhWGFPGNgR/xtqmFG7ZG46V6h+w8sP8eNPpnwagVKUAiTgQOqGYtjmgAQ6XAADFcUlEQVSyDel1P0aoaQVqj3kvVF2veL1KhxOzAEVDsfsxxJe8HYrmFz2dDuHmR/OLdC7IxwZRf6zMPuT33Am7MADHyMAx07CLw4BtIdJ+OmILL4MWbapimYb4krcis+7HyO+5H7E557l5BvR7QqnNgul1BwrbzANQOHWAwMPy8hC/Ql6j5M3HpVCsEIUhHvbvyHMMokSIdEx2nl0nhkLl94+hHoJCHFe7nmg5jt8kDsWznhFD92qMwsCpPXyNUHmuESlBpTxEapA/LLO3PIpQviDfIIZupnUppR1IW6pU1yJtRKDTirQSsRL53EOhkml+Y/VH9BytjBIEHrJXSzCqZsg/R0Koa1AbifMWlZ+vb/0UUT4OPNXpsPmc+m202RWBDzP6icFowCabl2yD0WxEKr9Ax+G28rDMwZ1Vi7O1PrOTdj3aBs1v/rR4nnSdTeVjJ4T5jwT1K/WjMfufACkCVQj9rAr0Q04d0kr5EI2I7ImytU6R1bG747e0hozUud+NjOnLm77PXFQHAKivcfvWDkaFGto+AgDI95R07ji1WLBBfB6j/kkhnnk1sH6iMfoarWuIdqSRn2Du0Uv5U9hYCKzzMhq1Mu1kBiQkgjBp4ZYVRUF05iKk1j8mt+VKSBzGcBwHnf/8FozhTlz57W8AcDA7txEdc1rRtOostM5qAwDszgPbn30eADBn1aHZrUJoOOHtKHSvgxL0pkxiUpHf/zz/vziwDZEZh7b9AcCxisisvw5achZqj/0Qp66MBkULIzzjFFiZrrKXKi9VmCPbkHru21DD9dBr50OJz4CiJ6CG6xBuOQZafMaY0wo3Hw9z1vnIbr4ejplGbP6rJtHy6rAyXVBjzVC0iQ3lLCEhISEhccgwDX7UkTgwTNqLFQBIzD8WA4/+HYXu7Yi2LZzMrCQkJCYJ+X1rkNv9PNov+xJOvvwyAMB5kWcBAN3hNt+1c1YuBwDsevZ5LDrtlENrqKLDLqYPbZ4SAIDWC76IkRdvhaKFkVp3I6JtxyJUt+CQ2lDsfgx2fgC1x3xqXA/WdrYHatXdGS8NOI6N7ObroSVmoWbVf0MN+V8mHch7yfjit0AN1SK3/e+w832oWfn2Mb3Umgw4lvvzqOPY8iWrhISEhISExCHFpK48Ii1zAQCZbWsmMxsJCYlJgjG0B/2P/RTxeScgsaC6MOz8VUejac4c3HfdzwMjak0GHMeBMbANuT2PHrI8JUqItCxB81mfRuNpH4Iaa0B2x/2H3AZzeDO0mjnQ4m3VL2awMvthjmxFqHHlJFo2fWD0PQMrvRuxhVdC0ULVbxgDFEVBbP6lSC5/Dwqdj2D4mR/ANnMTkvZ4EW4+GnauF1ame0ryl5CQkJCQkDhyMa6flcyiBbDQYRTGLMRCshl0nPEKi2kDsbY5AIC+R/6ExlOv4OG7iJNHHL8SZ9H/IEZhWMWQchwi31R4kPOHAyUtAeLLCvxPgqDFAkEngPMkx6jF4l7DPkhTgnixQboXB8glrBbGshLEa8vz9vPhNSF05mgaBOO1R9QJqKa5UhYqcxyaK2P9MTPQhjGUiRj0YrkUR+DoGiUeqRekj1BNk8U2ywseGDqwCqitom1xWIUMBh/6Lupmd+APd1+DZG0SjUN3MZtdQctEOMPvbWZ84Ku+8Xl8/y3vw4Zbb8bqK16DeS3uOC4abkjAzJDL3c4Psl+XbdOXNw91LIappvqgw5569Oou2cYQVNT7yk3nrQohi73XlXHwif8uaBp425+HYeWhYEljgUJF0nF/2qK2Cg/pzMN7VuY8e2EX/PHRKZSjGB6adKp4aGsG0bcqpKlTJcw4+0apu7YwHny4fiEy2/6NmuVXQg0nAu4NRlBYXl+ITKGhNE2FY2WhRuqg6kpZXkG6Hw7rQ7ZtjerLvFolB6u7MtZ6GK/m1GhQVAWOYyO/8xboDSsQaV7Kj4/HJveeUpruve73cNvpqAk3IP3CjzH0+DWoPf6zUMPJwHQo5LU4Psbim4Ou0WItblpWxuXl6/55noefFcZHaVy7H179E5rbuSYGD0daWSNFpD2XrRlIG0v3h61VhHDVQEnPgpup+f0U/14tLLNoI/ke9l0MwwyUa6xQSGOHXUNrPW43Ly/T86A1kSCLEeR7vWGZS1p2QnHYNSqFpRVsDNKtEzW2+PEKc6dolyOE4xXnfss0/ecp3DLVi9BGFOq+YpuRZsaQOzeG6iMsDaEgAvhamvpWQP2I13uTo7qzcu49GbamDzGNFZo79AQJcrF+wcYFaaDxENFBIcAFjR6/YWz+4foz/jFm2SRcU7keSNfGBmmtCFpL1BYVQnzzNMao9cX9IOkMsnLrFF6b2j9UPq55XvR8wZ4NMv1uhLUkC59Mz1W1He48Slop8TZXmDvHric9tp3P9AIA2pY1ujaw8iZmuveH60s7OXPdrt6KMezva7TmIb9kCyHObRbamrTvFFZe6h/UdgZb39HmUW+di/0x3Bj1pWGy0M4FVr7RxulLEs74nmckphcmdceKY7EJR27JlZA47DDw6G9RTI3g7K//GMna4AckEUefczqOf/l5uPO6Xx/SXStqtBaR9lWwixl03/MZZHY+cMjylnDhOA7yne4ORSs/dEjzVqPNsDJd47sn7Ir95bdcD3N4C6zM/skwbVqg2PMUrMxexBZcNml5hBqXo+aEz8MuDCG97mdw7MovHyYLtAuHKEESEhISEhISEocKk/rGo/ue3wCqhpmv/cJkZiMhITHBKPTvwsj6e3DsOz6MZNvMcd9/3tvfiM4t27Dz+RcmwbpyOI4NO59CrONEDK75P5jDuzHywp/gWEb1myUmDMbgdgBAbPbpCNV2HNK8Qw3LYOe6Yab3jvkeRY8h1HIiACDz3DeRXvMFWJmx33+4wDFzyG2/CaHGoxGqWzSpeenJWUiu+ACMgfXIbL6BhbE+NKAXZXZh5JDlKSEhISEhISEBTOKLFWO4F73/uRHNZ7wZiXmrJisbCQmJScDAY7+HXtOCxZe+4YDuH+ntBwAkGxsn0qxAKIoKLdEEY2gXigPbEGpYCLswjELvi4ckfwna1uxuPTazvYc8f9JJMYe2juu+xPIPInHMp6A3HgsAMHqemnDbphKO4yCz6XewiyOIL3nzIckz1LgciWVXobD3fqTX/fSQ7SBR9CgUPQY7P3BI8pOQkJCQkJhIOHDn7en2JzE2jEtjJdefh551+XQ643BqxOlnXL5iqgjbLGLPX78HQEFy2YWwGE9Q5DcSB1WLB3AZA3jDvH3L+MMCr9Yq/6XMIf5rlVdKpfP+NC2B8ylqsJCughrx3Ee8UVvz2cW5qAIPVuQDj1dzxXt9Gac4SFui6nV03H/fWDRXDlQzRguwjbQHyjRZUJ73dOAplmkljFG3xaHysS6ncd0L0t5gt5mV0vPrFxBEzRXiyZuMc9188gxkd69DdueTWPr+r2LhTFcPZdB2qUC5+tVunuydbAylByZVKdmx9v6H0LZiJYZq5qCeUbLrkq7PqGuJ+WwwYi5lsMh45ZbAbSfyN/FwiX+uhD38aRWwMn3IbL3HvWZwm5tm3wbE2o/jr5BJG0rUAeDJVNMsYPBqk5B2EmnncA45Hwt+nRcRlJcWZj6V8YzJPxCnmdvk6dM8b7ukFeJmBv+1gj4NcfCtrOE7TxotpG/Dufu231Y/bDiWgd57vgRjyN2xUnPUFR57q+k4jQ4aw17fQponWrikoaGoEei1C5DbcSuis8/2UVBH82/m4Hrkd/wDVsrtM4oeLS/hIVxUTIS2CvmKcEJHvutpFLsfR9MZH0dkhisob2Tcdh+r/690rNSOgi4ZQ6T9HCh6LdIvXoehxz+HSNvpiM17FaCEfemJc8p4tFYqQY3UwzGGoUU0Pha53kFQmoJOW6U51GLjkMYIaZBwjQXSUKN5SFgqqHxtQJpEpPfC+jBLzxpF/4H8Fa2/RJ2XsjXDGLVXRHcBlNZ2lpCHqOlF8zT5N4WcjOpf3wRhLPo+fN4SNaGo7op+zZCgNEXfM+qwDlp/CnXM0xTqPEjnibSoqL9oopYYwP0x+X5Rp4PW1FS34txSVn6ymdlg8TnFe5OwziKNDbKB1uu09o/454oIm9eNlOG7v0yHkLLx9HNRS4dr5bA+yH0CrZ0LlfsU9yEsbdJk4ZpKFTSHxPYM1YZ95TWZr3SMKv2Y2VaaU92P8vHh8S2sMmhcK7abRrrX1RapY1oqRtGvO5ftccXBI/WurUWWjsXqJcdsDrH609k8aZulflI7v9a9lumY0PqLP58xfRpV8dcptYWZdvPgWpjM15IGj5Vlfczy61cBpTFAaRYHXBvUlGufznR96NMYKVbW5JGQmIaY8B0rdjGHXb/7ArI7nkXHa78APV4/0VlISEhMEhzHQc+/f4XE3CVoPuWCA07HMkxEa2on0LLRoSgKGk55i+eAuyiIdVSPZCRx8Cj2b4UxtB163TzULHs9Is3LK17nWAWMrP0p+u6+CpmtN0+4HXrdAjhWHuVynZVR7HkC6bXfA2AjMvfViK/8KMKzLpxwu6YSud0PINy0CIn5px/yvMMtx6PulK8j1LAC+V23odD50KTnqUYbYOXkjhUJCQkJCQmJQ4tx7VgZC/bf9jNkd7+IWW/4GuJzj+Vv1iUkJKY/0psfR27veqz49A+hqAf+3lXVNB4tYTTYpoG+R/8BKzOCzO4tyO56Hq3nfxA1R5097jzrjr4Exb69MFOdcCwHxf7NGHrud2g552pPWAWJyUC4aSEAQFFDSC65NPC6zNa/o9j1BAAgt/0fiM0+F2qkfsLscGwLaqS+LDJLJZgjO5HZ9FuEW09B9Kh3vyRF1gu9L6DQ/RwaTn7XlNmgxVqQXP5uDGf2wOhfi8jM8yc1PzVcB7swNKl5SEhISEhITAocZ0yRRyWmJyb0xUpxqBeDa+5A+yvfj/jcYycyaQkJiUmG49joue/XiM9fhfqVB7fTo35GCzY/tz7wvJlNY9svvoSRzU/Dzmd954bX3nlAL1bUUBTNZ37ETT+TR27fkxh49IcodL+ASNuqcacnMTbYhTQGnvgpACDcvCLwOmNgI/K77kR0zoXI774barQJihabMDuKfc+h0PkIorPOrW6zkcHIM9dCi89EfMnb4LwEX6rYRgbDa36EcPMyJBaeM9XmIDrrQmQ2/B+sbBe0eNuk5aNoEdj54qSlLyEhISEhISFRCeN6sWKlDMD2/wpNPFwzZ6LvsTugaCEkl57PeXhe7qcYD51QxrnnxF/GJ80RV8/Pg3YEbQnirELgbnvv4fzgatobFKOeOJmMH801B4Q8g8pWMWlWJ8S5pjjwJQ4jlc/2ml5d9yGALz+We8eT1mjpqhV+Ka6mT0D3VLuO64IE2ObVXLE5b3bUJKc1RK0F0s/QiOs8BiYf6a+I7amojKtPPGldRW7PQyj27kbr+R/neRC6CxH2n/uZZ7zZhF56MK4PueM0baiIt7Yh3dONxqiDAtP/iIdZO+94Es/97Frk+vsw71Vvhlbfji3/91UAQLR9PuqOPg2xGXHk+1weMXG8VRZKlTjQXn0Ui3GK6TndscJQFNJ2ypZ2MLBi6bVuOYwRptcicveraBR4d0QoIX+fp3u5BgMrvyL4RM77JtdBXGzSjiFuM/kW9kn8eDdvpjFAPpGupbQEv+W911dOBr2G8cvJ/+n+894xR/4qve1fKPSuR8MpH0O04xRugyLcYwxtgaLH4FhFKKEkak/6KhyE+XVl+geCVkFJY6gciqogu+UvCNUvRnzh6wLLx/UycgNwzAwcx4KthksaBJPI467mS8ejrSLqS5HdOusPWlhDfuBFOGYODSd/CGrY1Y1RBa0GUV+ANIYIlmde49foqu9auob6e2XNJyDUfAKg/Brm4IaKL1YORFNMvFZRFcAxoKiuvgrXVhHKVXGNMEq6PjtJG4NpTVCdkqYAaTKI4Dv4mCxViPkgcW2ieWwyspXTMtmaiK9PSJOC/Bj1JUEHhK8pyDfp/v6gehZG5F9VwTdyPbUA7RS+vqEdj+SDhPXZaAjS/FEFnT4CLwe1qyhzRddRPZGPFtZc3jzGahNPW7yBbGFfqc241g7TvbC8eTNdC4WtzEmnhOTLyI+LOl5cryfA33GQFg01naeCKml4AaV2dmjtK1QqzT00J4bZ/EzaPMaI+5KTNFm4tqDh7Wt+PTUCtSv1KcdgnxrptlTug6W5g2nQODSh+fXpgNLanttSdO/R2TysRZmekUI6Pv7yis8IpE3CG972t5EeLe2e1UL+nbSUBpVraH8GANA8t8Y9P8vVusun3DrNdrs/SpGuCWFw2zAAoJ7pqFCf0z16PuS3azsSAIBhqjN2nPqrXfA/d2ksL1FjiPdB1iRRpg+T78yweim1LelM0VqHNFYojQLTmCFNGT0egm34yyghMV0xYTtWHMfB4NN3oeao06FFEmWikBISEtMXjplHetNNSC4+A9EZiw86vYb2Nhi5HHLDw1Br6n3n9j5yP1J7dmL+Ze/AvEvfhnzOxs4bf4LaZasx+w3/Na6XlEFwLAP9j/wEAKDXtR90ehKjw7FMRFpXQlGUChLS7BrbcCO2FIahRpughhITaoNdTEEJjU3XR0vMghpvh53eBcdIQ9FrJtSW6QAr2wM1XAMtdmgic1WDokWgRptg5bonNR8ztR+hejnmJSQkJCQOT0zHIDzT0KRpiQn7PT+3dxOKfXtRd/TLJipJCQmJQwDHtjD0zP/CMTJoXP3Wg0/PcbB77ToAgJEvD7O66j0fx4zjT8GOm3+DZ675MPbe/nuY2TSaTrvkoPPmUEvvjPsfvg6OXV3vReLAYAzthaJqsM184DWOY8PO9UBRwwi3HAsrtWvCQ/AmV7wL5sgOZLb8eVQ7sjv/hdQz34Cd7QTUMBQtPKF2TBs4NqBOL20hLdYOc2gjnEkK11bofgbmyA7EZp06KelLSEhISEhISARhwl6spLc+DTWSQHzuMROVpISExCTDNrIYeuanKPauRd0JH0O4fuZBpec4Dv7y+S/j3z//Fc7/0AdR1zaj7JpwTS3O/c4vcMwnvoGhjc9j9z9+ibazX434nGUHlbcXiqJgxkXfAAAYg7tR7N88YWlL+GEM7kJyyQXQ482B12S3/QuFzscQ6TgTxuBmqNFmQJ3YFxqR1uMRaT8N5tDWiucdx0H6hV8gu/kvsAtDiC9+M2pP/R4UrTy88ksCigbY00s8PtJxPqz0LpiDL0542sbwNow891OEZ5yAaMeJE56+hISEhISEhMRoGB8VSFfLiKQG4+GltjyH2OwVTILFKnEibQ+vjrQDgvY4Mc6iyfiDxC8lLRXiNnLuapkmCcWEr87lraodUoWbS1xYzcMB9MJMjyKeRzx/xrmuUh2lT+IXB2iujFamapopQdzcci5+2Z1jtqEaKumzAAC0yhosVfnEL1FQPY2mSWDlemEObYYWb4YWb4MSqoOieDQHlCLy+5/A0KabYBezaDn3E0gsOJVrdox0u/om9zzs9tGGVvfh87yVLm82GWZ92CnlPWLq2PDI43jkT3/F5V//Kua94nL0ZkptQs1jsnHbfubLAUVBprsTHRdc7mpdoKQ1oTEOenpv2s2Lcbz1hOu2FE9/iLW7tJLUliH33piO+JxlCDcvRbFvE8z0HsQ6Vpb0AQw3LfJJZZoDxJ+OkDaB4IO84Bop7kdQu1CeBEbZLvGq2XnSlCItmViLW/fp3Wl/fp68OO+b0goYK0HaEcSjN9N+TQeuZ8N45+STAfDZQw3XwEz3l+pQ8Bm25aDQvxGhphWIzDgF2S2fRqTjnDFF7gmyuTTW/ee0xEwUOh+F49hQFNWj77IVmU1/hDm8DWq0CTXH/TfUSAP3KZOprVIN1N9F3ZTRwOchgefv1cNw7CKgKHBMG1aG6X/k/docYnpl814Fm0Q9D63smmCtFb1xJaBFYaX3Itw8cT/COLmdGH7y6wg1LkDT6R9FKBHxnddZP+YaI8wHkWYFaRp41ys8bUHHget9MF9J1EUaIxyizpFh+e4X0+MaYvHSsoxrJ5HdfLz7s9IiTAfCquzHuH+g/lFFawUo6XoE2SkeJ/9M9RLrcPUgaN1iMq0N8m9ca0NYz7knBf000sHgUhz+chHMgr+ORT2gsrIIen6VyhdEaxfdV+DaSjxP/YHVver5fdNiL0IVpmFG2hniGpB3AGH88zyo34hdkmsekjagt879dpatt9l5PkdQG5ikLSJ8MptirTHf/Vw7zUP51ZjuCI8iKvR73j8pbernKmmSVNGvEucmzzTG25u0/phdBnsO4WsBpjfGtYNEvRb6rvk/qf8oLFPDU27SEKHnCMX2jwmqhxTTIIkxDbQQ032h/kH1xrXRWB8b3pkCADQvrWfJeecHNm6ZPU0LXBpt//YR1zZL85eD5UF6dqLP0ASdF2oT8gNeP1ocKnqLx7XdaH1h5dxPvk7T1enJjZksONP0eWYamjQdMWEaK8bAPiSXnDZRyUlISBwgrMx+jDz9dThmhh9TtCi0RBvUaCPswhCs9D44VgHR9uNQf+K7EJ1xcDtVCP/631+hY8VynPz6y9GTrn59+xkXolio8NA+QWi94Grsv/l9MIb3THjaEi6iM49Hav3NsI4aCNTzsLK9CDUcBWNoEwAgvvC1k2KLlugAbAOFff9BdNY5AIDcrjuR2fQnaIl21B7/WYQalwUKrL6UYA7vRKhu3lSb4YOiKNDiM2Fl909YmmZqN4ae/DoUPYKm0/8Lqh6pfpOEhISEhISExARjwl6shOpmYGT9g2g++z0TlaSEhEQArFwfMut+BLswiFDT0Qg1rwJsE+bwFhS7n4AabUTNKV+HY2VgZ7tg5bphZbvgFIeg18xCrONkRDtORaQpWOSxONwLYyCNxOwlY7JppK8fGx5+DJd/42vsV56pf3hVVB3JJRdh5MW/o3bl5dCiDVNt0ksOycUXIb35X+h/5Bo0nvZZ6Ak//ctxbFi5XkTaT0dux+0INa6AGq4NjMhyMAg1LAUUFen1v0Fk5plQVA2ZTX8CAGg1cxBqnDi62XSHFm9FsX/dVJtRBi0xE1Zm34SkZab3I7X2Z9CiDWg+66vQomMTL5aQkJCQkJCQmGhMyIsVx7Zhm0WEalsmIjkJCYlR4Dg2Mut/BsfMItx+Foz+Z1HsfgwAoMbbEek4B9G5r4QaSkJR64FkRxlVQPOEQfelbZko9GxHODkPW370IRhDPWg66WU49qOfx9Y//gx33fEXvOvXv8Tx560uu3f3ug1wHAcLTzl5cgp+gNDizYBtwc4PyRcrkwA1HEfTGZ9G771XI73lVtSv8r9cL/a+AFhFwLFhZfYjseydk2aLooYQnXMR8rv+haEnvgwt1srPxRdcOmn5Tkeo0QbYhZGpNqMMeu0iFLseRn7PPYjOPjCxe8c2kd99J7Lbb4EWbUL9iR+GGk5OsKUSEhISEhJTgGlJfZqONk0/jOvFiqIpZTHLHdPB0LP/Qn7/Rsx6w7dLsdyJbxjyclfpHz85lTibZqpylIgSL9IfD57gmJX5uI7qeK7x31NNn0MRqKz8k+u6sCgjzGSFc3nZg2usVLWq8BArasMQN7lMEyaIB0/8aHZ6PKGtq2mtBF0XdN9omiuc5xygpUD6BqJ2igi6X0xntPuC9Ars6chbrIIQ0/Oh8po9D8BKbUf9qV9EuHEJ1PCb4RTTgKJCj7lhY4m7qydDKPRsgV1MIz7nuBIXmdVlfHYSVj6N4tAA7Hwa+2/+FbI7n+d5R2bMQf9T9+C+t97Dj/3qne9G37tfj/d97ePQtFLUkYe2bkUoEsb8+W1QNRuhOrdz7Bpy89zV5Q6WAuvvZd1d4MFHiXfb5uq6ZLuyAErj3TuuDKZpFJ/rlr/Y73KStbiDaPsCN9+eTQjVz3eLL2iOiJsnuLaB4c9LYf2bj1kPFKdynxP53zbj0VMbcb57gbjZ/rQjSbceivXuZ96bN/lC4sdzbjrxp5mmhsD75rYYfu45cZp5/Wj+eiorm+Og0LsNxpBL7TD6N5bpQOT3PAC9Zg7gmIAWhl63kKVZMclAeK+n3S5E6VH1kp3GgCuMaqV2w0rtRnTWuUgsuwqKopRRgMinVPNBB4Nqvraatkqluuc+kXj/At9d1RTAMaCoOmzLgcro7zrj5lsFoV9Q+5MegKjpUMEe7t9J/4IxcGgc2zrzV3l/n4rMPANWeieyW26AYxURnX0BFK1E3xmtXyiqguLABqSe+xEcM4fkkktQu+IK6ElXx4G4+qKtXJ+MTduk6UCw+dLD7VgVx7fgM/iOK65rwuoezF9bpGMhaCuRzomg70MaLcVhzzpI1GMJ0H7j7an7K49rrpDtpItB3yldQYMC8LSjP8vScUtcCwhrQ3aedKxU1vd4v2H+j+vcVNrBxrVC/J9lWivwa6qQpgbXMWHzlNh3BakSfx4B4OfF9RmNGWEslel/jMXvsTxMpmfBNThoPAraKiXj/HnytTHL08gHR8fj1wp1zs8LujUcXHdQrXi9LazbIw3uWDfCpTFIuop60nVU1CcsZq+Tr0ITLltjVm7DSm3L1xNhv3YK15ahYrGqUyJsrU9rAvKhgraMaBN/fvFojViM/mwX2BgR2pnGWiHl9gPSWLFYv44w7ahcMecrizg2e9YPAgCaltTzY+S3Ka3MoOt3Gua5a6hBps/iWO51CaZjR/6c/BS1HW9D8sGCjpHiaW8IY4g/P7HTVIeWWyxYBYuPZQmJ6Y6D3rFipgfRc/+vUbvyZYjNXjkRNklISATAzvchs/lGRGefi3CjS9FRFAVKpMZ3neM4yO19ElpUR8893wEcGw0nvRF1q66AoihwLAPZXU9h301/QrGvpD+iJf0aGYXu3e6TDlv1Xn3DD/GVN38Mt/zyRmRTGXzqR1/ki9t1Dz2GpScfzxex0wWR5oWItK5EasOtCDctQrhp0VSb9JKBObIPvff+v9L3dBcXjgUAM7UPhe6noUZqkd32D0Rmnj5m0doDRbhpJXKpXfy7Xjt30vOcjrDS+6El2qbajDIoqo740qsARUdu+9+Q330b9PqjoNfOR3TWhVDCwVGabDOHzPrfQU+2oW7V+xBpnnsILZeQkJCQkJhcOE7Ai2aJwwIH/WKl9z+/g6KoaD7rHRNhj4SERADs4jAyz38XSrgGiSWvLzvv2CYyux8GHBvZPQ+h2OsKhWrxBmjRWgw+9ScUenfAyg+j0LWh7P76Ey9BYsHx2HfjV9F81hvRfMYboMdshJL1eOurXS2Wxcksrr3tN/ivS96Be/5yO9bc9xi+fP21KBaKWP/oU7jiMx+Z3Eo4QDSc+kH0/+c76Lnn82g++78RbV811Sa9NKCUXqI1nvZRKHqUv1QBgPTmm6DGmqCGErALw4jPf8Wkm2QMbwOgILH0TchsugHp9b+F3rAUemJiBJoPBzhmAYWeFxCff2BUm8mGoiiIL34zIrMuRLH7EZjDW5HbeSus9D7UHPOBsusdx4HR9zyyW/8KuzCI+pM/Br2mYwosl5CQkJCQkJCojHFSgfzbAM30AIbX/hvNZ78NerLePUj0DrYlzbuV2C76twRS2K5S+sIWOto6Z/qpMmVbkcUtfBW2MjritjzhmqDfM8s2GAZsE+UhF2lrvedGkSbE7WXQiTY0xl9VS6EhWfmpnig8tcfEsYZXLstjlFC+o10/njzUcb6RPZDt+qIN4i7cqaAGiW+ig7a+hyP+4VnYdgMcu4Dms74MPVELnVFEaPts/yP/h5F1t/Prm854DxQ9jMSC1QjV1SG9+WF03f4tfj42ZwWaz3oTHNPAwGM3YWjNbRhacxvic1dixoXvcnfCqICZd/Dbm7oAANHaMIAlWP2DG/HoJ16Pwd4BfOzid/E0jRNejX88524R1Vl/H+h3v1us3+plW4bhO89pHrSNXdj2TNtnVW/oQNp2znxIuNHdblwccM9Hm9sw8zXXYt9NH0NuzxOIdRwHlrh7H0tHDAFastE/Hjj9AZ6t/sJ2+7I99ARiAvAtwf5wrErRvT/fnfXdFq710xwAoNDnUp4oFKIj0CS5TyWfKZ4PGKM8lCxFbLLK68Wl3WwHALS87PsI17kvLiikr5nuQaHzKSSOegtyO++AEq6FGmkJpBUG+ZzRqCGWUIeqrsAx0oh0nIno7POR2XQDAKDYuw5arCTUPFZK5KFAVT/pmRe8lKdKn4CrwZRa91s4toGapRdAT4agx10fURh0+4sYKpP6ica3YAdTBiDkKfZ/W6C6Utj0SrRSLTwDoZrLAABG/5MYefanKO6fjWjHqbAKgDG0BcbARhiDG2FluhFpW4bmV3wGiy9zIxDSWKNwpMM7XE0ZWltYWeYrGPWHxgnNlaqwfd9x/NQqH4T5mag/nJZCdCOiILMqFKkgOgunzKkBwhZ3L6VCpD3TmcB+G0BTEcHLS99HuZZTNIXw0lyni/ISqGEWo3hTeTiFmULXs7Grsb5JVALXIIHywilrlWkqmq758xLWRKWQt/7kCd6lBXffVSjWZf6L7hfysIW5CX6X5V+n2n5KVqnu/OXmx4U5hr6XKCH+kM6i/69Unqo+kYdZZu1JfYn6gxDq2cgTnYn6i/sZSpTWN97/AcBgfYfoNTabU2g+KjOpbLj6w0qPViZxPe4L8YvS2FCE8tF3orqJoY7pO28Lolp5+x4x26iv0diiXb+srmmspZmf45Gw2fW0NiiwMMYwK5e7f/MQ/79xcR3LG77yZgfc9Vq8xaVX5ofc75Ead5yGWVjlKKMmZ9g6xcy6bURzh8La1GIUR28bxzsSvnIXel3OD9Up9anS+FdhF/3hnCUkpisOasdKdtfzgG2i7pjp+auYhMRLBcX+tSj2rEHNMR+EnigJchZ6NqDvwb/DNosodK2HGq2FnR+BooVQd/QrfStIvXYGlFAMajiGhR+8DnqygZ9LzF+JTd9+A2Bb6HjNx6pSJ5KzF+C8PzyEnn//Bet++xMAwJlXX4tofQOyw8ao904VFFWDYxXHL+4hEQitxo0AZAzt4C9WCLk9D0DRo1Aj9bDzfag78b+hTHIoXGNgI6z0XsTnX4JC5yMAgJpjP4JwywmTmu90gWMVMfzs/6LY8yzqVr0XerK1+k3TBNGZp8Ec2o7UhpuRWv83flxLdiDScjSiq96N2hUnHpG0LgkJCQmJIwSOUy5CKHHY4KBerBipfiiaDjUUzImWkJA4ODhWEdlNv0eocQXCM/wRd/of/THUUAR6bRtqVrwSqRfdHSux2ccJaZjovvN7CDfOQscV34SerPOd1xP1WPLJ30NRLIQbZ46J36lHY1j2pvdgcOtGFIYGMO+8iw6uoIcAjm1BDSem2oyXDMKNC6FGG1DoehaJuafz447jIL/vEURnroaenMWOVREgPEg4jo30phugRhthZbuQ23kn9IajEJlx4rTYmXIokNl8E4p9L6D+pE8g2nb8VJszLiiKgpoVb0HtytfBGN4DI5NBqG4+1HAtdBJ1lC9VJCQkJCQkJKYpDurFSqimGY5lwhjuQbhh9kTZJCEh4UFu1+2wC4OoO+HTvgeL9LYHYGV6EV14BqzcsPtSRdURqmsr2yOc3vIwjMG9mP3mHwW+CA3Vt5ZF5hkLst37Ubdg8bjvmwrEZp2I1KbbYBdGkDzqlQg3SPHLg0GhZwPs/CCis07jxxzHgTmyC3a+H+HWVTAzbsSgyd4p5JhZWOn9gGMiu+N2RGedi/iCV09qntMFjm0iu+NOZHfcgcTSKw67lypeqOEkIi3LoMan5843CQkJCQkJCYlKGNeLFS2i+0KKDT59C2JzViA2cx7ox0iu/1EpNDJFcyO+K4UUC/tDjVlZIicH6IMwGzTSOSBuIw9HTHmXfiF1RG4uhU4TedECysILV7zKE7aw0i+jFFbZZDxRwx9ijPPbeag1xjPkREoxrGHl8M089KCn3iqFjRwPysMrKxXPEz/Tzxce/VfisrCVVfKuZtNY9GDK9HlIF2ACf9Eer5o3XV/pudPKdiG/+3YkFr0S8Q73JQDpJfTc8ycAQHbXk4h2rEBi0WnIbH0MxuBe1Bx1OvTaCE+z2LfZvTdWQLw9wY8TXzbENAg0oe/ZnHftXh9l+gBUXSNpEwjHkBtJo2/QfRAaZLofBtMzoD5IHF2LNJYC9D4ipEHgCJoqQihNNVwefag44nKMKTQgocD8UuOp70CophkjL/4Tme0PoPnsz/mEbDmXn15gCW0ihq90//ffQ3VH38UwlDS+S2FG/eFoyTmpLMw28Y/NrFt/3lCxEcaDpvDSqi1oSZAGie33ubzPcZ2IyuIDPGQst9XvW8z0MAAgVDffFRgd3oP+R74DO9cHNVKPUONRSK39BfTa+Qg1LEUlVAvpXgm8rpjvsywbUOOoPemrMEd2INy0HGqkgWuSjBeTGYY5UNdG1PAgnQVPGSppq9jFDIaf/gGK/ZuQWPQK1Cx7dSm8LPU10log/r9QL6qgl8E1HSqUXxW0Nri2SsB49oWARqlf8/SYxkG42e3LDpu3Y6Ekv4aOJee7O+1efYobBa2fheN8brubZmpv2rWF5RFvc/1AkbQJBJ0P0mzgoZLZ3CpqsgEeXTYhZLeiCU6CrSU0obyUhzFSRCWIYZlHQ1WNNNPfNmX3C/6Nl2gMY08VdJu4LVynho1J5jNUprlAoYPF+jOZnsZoWiMiqq4t+JrKnUsUHvqatb/g7ny6dHRugnSYRC0aPqaoub3DRpxvyH2LfYP8t6hXRuUU/D6LAM7nTK4J6Fkfkl1loZ3LwkoLcwTVKWnkKC7dk89ThnAdM82rGUY6THWtrg9IMZ0P0usqsO987JDmiuEv51jXXl4fFJvl+hnq19RP6bNMK43meVp3i9oqQqhkh7IStIiA0hgpMkcWbY37ykV1bTOfEmXrtTyrB2pvI+PXjBKfwyo9uAwwvZW6+bUAgPZZrq/s3udqplB/0Fk7pntyPpuSM9y2SgprrfywaxuFY6a2Ja0V7zGN9ccYSyPfx/Ig2UmurQQo0yza5GSj0twrcXjggH9C7H/0b8jt3YCGE15R9qAvISFx8HAcB5nNf4AWbUBi0aW+c7aRg5UbBAB0XPEtdLz2a0guWs3PJ5ec7ru+5dy3IVQ/A/2P3jzhdsbbZyPX0znh6U4GVD2CumMvR/ul1yHctBh9//k2Cn2bptqswxZ88mefqRf/AkVRUXvsB9B4xjVQ9SjM1F6EGhf7ogVNFrR4OyJtq6FGGqpf/BJAsX8j+h/8HIzhXWg8/XOoPfrNh6SeJSQkJCQkJCQk/DigFVh62xp03/VzNJ3+etQdc8FE2yQhIQHAHN4Cc2AdksvfAkUr/bpj5YbR9+APSjvATPcXgujM5QCA9td8HtE2l5pTHNgPMzMEx7Zg5bMINbRNuJ3RphkoDPRMeLqTCUULoemsz0CLt6DvgW8it/+ZqTbpsESx5wVo8VaokTpYuQHku55FbP7FiHashhqpQ6H7WViZTui1knI1GRh54TdQo/VoueA7iLQePdXmSEhISEhISEgcsRi3xoqVS6H7jp8iPn8VWl/2bikmJyExSSj2PAE12oTIjJIQrTG0C30Pfwd2tp8fc2x3W6xe0wwA6L7rxxh65p8oDuyDle4HVB2JhcfDzqcw4/y3TLidoWQNjEwKjuMcVv5Ai9RgxkXfQs89X0R6422IzTx8dSmmCoXu52Hl+pDvXAMr2wlF1RGd6e6cKva+gOGnv49Qw1JEZpw0xZa+NOEYWUTbT4QWa5pqUyQkJCQkJCQmAOOVFJCYPhjXi5VC14vY+7fvwTaKWPjebyDWGIVJXH6dOLHutZwbapZ6R4HpABDHMNzgimgSz5D4nsSrs4t+7r0a1tmnwAFl4LouCuOTe87ZEDiqOtnJ8hBJiGS26r+ujLNcRYPEd04X+LCc782SMvw8eOKeV9KS8KVLIe+JX+nhMFfSXfHZIOobMJuo+NV4xmPhIVfjSYt9Jghcg4D6x0FwEA9Wa2UsTu9gd+QX9t4LADAG1iHatgp6PIShNbfDMV0easNJVyA+7wQkFx0LALDy7nE7n0axfzdqlpyEUF0Dsrs3ILPlSdfuzF7E57Qhxri64YhrZJTxqonVxyjuKLI+mWE8eKNI48i9PhHXUds+E3axgHxfN2ItbQix/lpkWknkIwzGtSfusRZ1B6HGecFu3edSbl6kwcK5y+w6aivdozVC/N1ok+tTDMaPjjAfQ1z77L40y4saMA69pg12MQfHdKAlmL6L6ae48L5aQbOD+hLXFCDeu135Op439XtW7pL2lL/jiBx2u+jxB9R/I+QE/HkpdK+gf8E5+7Y/TzXibxvSP+Bt4NGiKvZtgJXrAwCkNtwI2AaiM0+BGnJ54oWeZ6HFZ6D+1M9DURReh9W0k4L9Rfm1ohYKfap8/qmYVBmCNFVG01qpbu/oc0M1TRXSFKqUPo0hvXYmrGwX73O83ak9Q/65JEgfoUzXqwLoXp4H+24FaIPwNiLNAfIxTN+gdmk9AI8fYDYaGbfR6meVuPtZxttvbHf71p3PZgAAaeYr0r15X3movCbzQXx8CDoHVq5yB/HWeakcTFsGfv2DksYIu5cGoaCP4RTYeapra3QdEaC0ZnDMca6yq+mNkeyH6tfL8bV+0JyvV+5L4v5nWs+RZl5J18byXV9pDSH6xDIbAtY1ok3l5+m4+ynqfAGV9eIAj2aGYFKgRpTQ18TzFdudmePwlqAD5NhJz4itlYW06Lg4rnkfDNJsQXndidpAwWtAoQi0RhCEbHibsX5f9GgNkZ8aYreEY2ytTxpw7HuefS8wzSSTz4k0pzq+9OwCldc9H6pj+i/x0qMP2WPmme9gvkKn9uLaMJX7EqWtCz6YaxCx6zWFfGwpjRDTmYk0uusUel6ivEhfjvpxbjDvz5x9klYJ9ylc78U/jkrrntI1qX0ZX7mS9W4dZVndxtkaymC6Nvkh93iGab9ROqShRxo9tPaitViItZ23XLBYP2bloHvoPPlnRVcBrXS/hMR0xrge/Xb9/quIts3HUZ/9DWLt8ybJJAkJCS8GH/8u7KL7QgB6BI7hTq6xOcciNmtl6bqn/wkACNW1YsF7/gezLv8cZr3mQ6hbvhqKHoIaiWPD9z6K1PYXJ9S+ppUnQFE19Kx5aELTHQ0k+DoRiLQuR7F/U6mOJcaE/oe/DwBQow2IzlgFK9uL+Nxz+XkrPwAt3npY7WI63KCoIWCSw1hLSEhISEhISEhUx/h+U9c0zH/X1xGub50kcyQkJADAsQ3vFxhDOwAAxtBe/rNT5z++gnznRgDA8Np70P/QH9xrhnvg/e2x+czXQA1HYRdctffiQPdBKY7bxQI2//a7uP+NJ+E/n3obNv7hp3BsC1v+9DM41uQ95A08fjP2/f2b2HjNy7HpG6+AlZ+YFyHxuWdAUUMYePyHUol9HAg3L0a4eSlmvPwnsPID0JMzEWpcAsB98WUMbIJeN3+KrXxpw7HyULTIVJshISEhISEhMRFw4G5tmm5/EmPCuKhA0dbZ0CKxybJFQkKCobj7Fv6/GqnF8PO/w8Bj1/q4DVqiEZ23XoPk0tUYfvZfUPSwK2Tr2Bh85i60vfw9AABjuB9WNsXv23LdF1Ds3o4Fr//AuGxyLBM9j/0bm6+7mh8b3LgWgxvXuvmMDMEq5gGEA1I4cBjDvei+62f8u17TDDUcn5C0tWgd6k94Dwaf+BHMkf0I1XVMSLovdYTq5yK782HYhRTynWtQs+wNbHeKA2NwMxwjjciME6bazJc0HLMARY9OtRkSEhISEhISEkc8xvVipW7pKtQwDQMzgHdIfEPiT3q5wTrpFzC+H2kSiGlwaibFMNeJ/8842oLmCNcqEX4t9+ohqKrmsw+i/URlDXgrJ/Jhx6q5UukakYNZsoHVi0naFEJewv2cZjkKF78aRG0V4tWqAXRGqh+bcz+F8x5bq+mviDolo+m0eNMjcB2FUd6kijoG1XRZqmmtHApBKV1zkN53JwAgseiVSC4+A913/HfZdbZRhJ0bQmbr0wg3LUBxcA/aXnU1Is3zEZ3ZBjNnwrHy2Hjtu/g94YYWJOYsxt47/oz5r30H1FiiLF3XBuIXF5HevweZHVvw9LX/z3fNrPNfhZ6nH0G4pg6KqiG1aysG1z6B+IozfddxvjMbc6SHYhVdH1HGFBE0HABAizchPu8YZHeuRaxjGea+43vQ46UXOEaK6cuQzknEzznWmJZMpNn1XzRmDMZZjnWswpAewdDTf0bj6o/CyuyHomr8JQvpQBDIdwElP6XH/Xx20nkIAnH5bSZoYzNbLcZlpsGlWKrPBq9eCtejKlTeKUTn1ZB7L41b0R+K2hykZ8O56EwnwTZsFAd3IrfrMZiZfVA0FYXuRwEA8flnQdFVKJaDYs/TUKMN0OvmVx3XIsrmA1ZcP5df0EgK0EKxLP+AFf3BRGC85QvSViGNEd4Wgp/3HoOqwHEcWLkBRGcez7n61eYAmhNL7S7YEPHPrVbGo0FC17K+oQvzMPV7i9WHTloFxK1nBek41x1TpPOUYxx8+t7W6u7Aaakrjbl9fe412zcOAfBoBrD2Jh4/10Pg8g7+9ufdg2sLCfVFehDh0nGuGUGX2JW1Vfh5mvcg9GOLNNX8to+GQG2VMc71oh5OWfpB9QBBbwUo02Pi15Gfgl8biN9W9GvnjQXUD03WrhDGhF1Fn8YWxn2QXoxoKxA8nu0AvRdRO4rS1IU5g+qpTGvKY0KZbo8ArkfHbaE5Q+jntv+8orN1HbUBX8eV9y/S+VCFtbGoO8jHCvUHQVOmbE5i9VHSgyqdIi0kmvvyLM0Qe2aIMe2NWGPEl0aB+UzS8SFNDo18Tg0ziaUr9l3XDtKKIp0WmjPZtSF/HirTduNtpAg+leYrO9iPE7iuGsuK+j3XphSeDbj2IWVNz0j8k9bvTGOKr+NojVGhD7O0052u1oqoKWXZfu3HOHsGzA25AjY0b5lCe1Nfiza4bUZae0BJM4fA6571S9KMoTSsvIUDDGIrIXHIMa4XK+0XvnGy7JCQkGAwR7bx/2NzzkCkeRHaL/0RUpvuQnrj7YjPPxNarB7pLfdixkXXIN+7DsPP/g11x74WibnuDgFaoA0+czcco8DTq5m/DMXhAdhGEYo6uihyz/NP4qHPvqfs+AmfuxbNq06FHk/wh0SrWMC/XncqiqlhTMw+knLMees3ke/cikjL/Kq2jxdqOIGGUz6EgUd+gP1/XwvHcBcZDSe/GzVLXz6heR3OMIb3oPvOzwFM46ZmxSVIb7sXsVknQ4vUAnAfIPJdzyDSerwrWiu3kE4KzNQ+2IVhhJsWTbUpEhISEhISEhMAB864f7CRmD4YX7hluUCWkJh0mANr+f/Dz/0GoeQHEKqbhYYT3g5zZD8K3S8i3LwEjpHFyLqbkdv7NKLtK1F37GW+dBzHQfddv/YdG1q/BlY+CzUcgaqPrrKemDETtfMWIbV7Bxa8+o2Y+/LXIjHL1czw7gxwLAvP//hrAICGo44p/6VzgqDqYcRnL/cp208k4rNPgXr251Do3YRo+zKk1t+GzLYH5IsVD1IbbocWqcOMV3wHjj0MNVKL1Iu3oe6YN/Br7MIQ7Fwvws0rR0lJ4mCR3/sYlFAckVZZzxISEhISEhISU41xvVhp7GiEzbaDFdnWOr6tn32n5y3aimZ4whnyrXK0jY1CQfLQaP4to4rm3zpYtsVUCE3Gt4vS9jffzjT/lrqykHeUtLjtUUDVX1+F7ZBl/3vsJpSFZxPCtInbgckE+rQDKFWjQdxuztMW4pPyvKqEDq2U3ljtGS8FiK4fDwVIPE73BtGVVCFP2/Zv2RwLJUi8Zqzhl42BFxBpPx3JBceg/5GfofPWTyC59AyooThqV56Fnrt/iNzuxxGbfTQaTr4Uub1PI7FwGWoWNiPR4u4X0SMqHNuGlStpqxz/5evQ/cg92HfPTWg8+mTYZhF63L2+pcF9yVITdctdE1GA2Qtw2h1upKGhnL9+aEex5lj4/dvfjv1rnwcAzK0toO1od+fCvgG3L6Wzbv/MMV9gse2oBbY1tMC22BbZtm+rQNv5/VurQxEKy1q+W4UoK8VBtjuHtR9tP6VQf0QjJJpOmIU5pC3nsY7jEOs4DlbBQmTGfgw/fz0KgyPQ4y5liofE9VAmaIusGJJZEbYIE8q2xBPFwhH6XNEfNt5igsa2ZzuzXhsW7mE+VAztLo4x2q5MNtLW+rJxzkykULhD2xGbewLCDY1Q1CYMrvkTFC2MxIJj4JhunRjDu917os1wbKd86zu3yZ9HteOjlodhtPDIXlgBVILJoAoFb+tnFDJhaznfrl/Bp2oeOmyx9zkkF5+KxLxGfp6HzTWFT6KZsrEmxp21bArTKmzn9lKDaDyKIVzFENVCeOVQndtHa5c0+K6jNkiy80Qv3r7N9VlbPdvWsyy0J41fPvcHhOWl4pUogew6qp+Al7OV+lyJLjs6TVglqh6zzaYwwyLlVagvPr8LtFxv2hXXFZ7zok8JClNclu4YIK6vRJoNT0us0oCxpMX8YbfNrFF2jRkQBltct5WHDx899LdoWtD6ZjwQ1xDUN4tpl+qqM9pDmIX6NVJEgWX3jRLKvWzNK1A3qW9xH8vaXQy/Tv2e+miltuFzgEPrZz+NSLSptBYS1tIEypvGHo1Zmu+0km/R2fxNa1max4gmSOUhelWUzXuxevcz3eUK81tsvjeYFAE9l9D9lcY90VDIV/DxzHwNUV2I0hjYVzjVi30VQ5ir/noFAJHppwrPRDz0d8B8RvUkhqyny2n9Q2sS77o2yAdm+1x6dKI1xspD1EX/dRRemUDPetRGYhfTPXOJxWnhrn0xFuKZUzuJ2sUicltFe8z0R4npgS9/+cv4yle+4js2Y8YMdHV1TZFFhw6StCYhMY3gmFlY6T0INSxHzdKXIVQ/CwCQ79yE3N516Ln7R9Di9QCAcNMcxOcdh4aTLkH/w3/F8LoHfGkpqopQTR0A4KRv/BaNK05Eeo9LM+p7+iE88NazYBvli9rx4MYPf4C/VAGATffee1DpTSdE2o4DHAv5zqem2pRpAys7CD3uPsg7joP05vuRXHoetFi9ez4/gpFnfwK9dj60mtlTaOlLG45twRjeh0jL/Kk2RUJCQkJCQmKi4EzTv3FixYoV6Ozs5H8vvPDC+BM5DDE+KpCEhMSkwikOAwDUWDMAoOGkt2Nk/U3ouOxLUPQ4+h+9AYNP3ggAyOxYgxYoaDj+Qgw+dRtCtc1l6Z38pR/CyuWQXOzSBRa98cN4+up3u3nZBxca2bYs7Hj0YQDA+/55B5698U944ne/Qf+uXTjpqncgF29DfrAfPVu2IbVnO4Z3bke2ey8iTTOw8PXvR7h9emtD6IkWhBqXoND5DJILz5lqc6Ycg8/8FVZuCFrc3XlgZQdhpnsRm30cv8YY3AHHzKHm6HdCGesWLYlxw0z3wLGKMNMDcBwnUJxUQkJCQkJCQuJQQ9d1tLW1TbUZhxzyxYqExHQCfxh1Xw/HZx+P+uNWu0csB81nXoX6E1+F9KaH0Xvvz2EXczBG+gEAkdZ5Zck1HnUsACDHtoTWH3Usjvviz7D71uux9D2fhRoaXWdlNGQHBkr5zJ2HCz7zOXQccyzu/f538ad3vNV3bbSpFfGOeahfegwG1z+LZ772QZzwrb8gVNsgJjutoEZq4FB4riMYjuMgtfEehJsWILHAjfpkF12BXy1ax6+jY4p24P1Kojr0ZCsAYOjpmxFpXYDa5edNsUUSEhISEhISEi62bNmCmTNnIhKJ4JRTTsE3vvENLFiwYKrNmnSM68WKadjIMd5oUeA+1rW5ugo9G9yHLZHr6QXx/ymUmkEhHQVuo8g3JARpipRCjwoiJL5rWJrsO+c/k+YG6RcEhMbjIdS0ynzjSgjiKJYK5Nd/4fdV2XolhlzDKOEMg3RKysIli98F3nC1dMdyrppeS7XrCaPpIVRLUxWKYwf8uM55xUIY5iBdiNEQdA0PtaerUHSmK6SXwvpRQzss7F1y9kzo4ZPR/9D16Lz5/wFmAWoojPp5zUgyrirpFfT15P15aCqSi4/Hsk8e5yvXzn2uhkEd482GQ35Orsrun9XAxqzlIDc4wNJWYbDxvvCCizHrzPMxuHMHhrq6EKtvRNP8BQgnEkizkJBDPf3459suwf6bfohTPvdN9A0wzQaWhh71FZtzdxVBy8TyhoqkdmIc4+KAW27Sd0g0x/xpppheCemYhFTYZgHGyE6EGuZB0RTYZh7Fvg1ILLyojNvu9UmOIvL3mY9gvGaNRTDi2iukAUURFQv+cNQ8XeK4kx8kbQuPz7GYPkHZ+Ba0NUgfQgxXKoKHhLWonG57Z7c9Divdi5ZzPgY17Nalncuy8kbgGDbsoo3i0H4o4RpoiZklbn2Atko1lIdjL/0fpI1UTVtFPF/mWwJ8qNfXVMujWph5AmmraNSXRI0tzf/d/VKedmrDA/zFCplJY4mH2w779QMsPqb8YbdFHrvXz9EOpFKIXhaSm0KEKpQXWxOsaAJQCs9psT5pCvN3Ps1CrDJdBOqD3vCcpKtkpP3URdKvIC0CKpcjaLCQYFlJi4TZTCFChfm+UlhWroUkhPoGyYEIWhNiuHUx9HcZRusvZRpJzF72le9YUoXvAeB6MUK47SBtOS8CQziztGitIPpKjbUVX1OQpl4FDZsybZkxgnRbbB7aevQCVdIHEcdtWQjyoND2AWssur447Op/qTw8MbsP5WUUfUDJ91F/Jv0uNpZovCuVfYioj0M6N751TK5iscrCh1N5qF4Uqh6qN0HfRRFC/jq0dvaEMa843rym9bjGxWcwDTkK8cvm7whb9xTZvK4x31rod9cBlqDZQ2spwKNHw+wK1YR93xVBkEfs9kFhuHmds3JrvF5KZbXy/r7ErxV8hyr0AzG8MrUj6ZiQTaVwxRXCLVN5wtxp+PLMsDqvm5Vkl/t9JK979hwXYtoqGVbnXJuGdME8c6uq+ec+g2nhRJLu+lNhejZMYgVW0YZjHVk7YKdlVCAHKBaLGBkZ8R2ORCKIRCK+Y6eccgquv/56LFmyBN3d3bjmmmuwevVqvPjii2hqajqUVh9yyB0rEhLTCRRG2BmdphOdMQ/z3/U1dP7r14jNnIu5b/gwVP3QDufda54EAJz+gQ/7juvhMFqWLEX9wqUAytfGkboGnPTxL+LRaz6DcG0dZl/5qUNi72jI7noaPf/+PuxiBlqsAbE5p8MY3gPHLCA+75ypNm9K4TgOhp7+C6IdxyDatpwft033QUHRSwK6hZ510Gtmu2GWJy0+lIT3oTa78+kptERCQkJCQkLiSMCvfvUrXHfddb5jV199Nb785S/7jl188cX8/6OPPhqnnXYaFi5ciN/97nf45Cc/eShMnTLIFysSEtMJytherABA7dKTULv0JMTqwlWvnQyc8Ka3YtUVV0I7ADrR3HMvwjM//Q661jw65S9WHMtA30O/QLh5PmpXvBbZPU8hu/1BKOEEGk76EPREy/T89eAQodi3HcX+HZhx8Rd8x/WE+6uDMbwfodp2mOluFHvXo3bVB6fCzCMKjnVwotMSEhISEhIS0xAORt/BOIV417vehW9/+9u+Y+JulUpIJBI4+uijsWXLlskybdpAvliRkJhOUCi04cEJyx4qHMhLFQBId+5FfqAPp37h2gm2aPywjQLMdC8SC1cj0n40ojOPQd0xVwFA1bClRwKye56DEooi1rHKd1yvbYcWq0ehewPis09Avus5QNEQaT2uYjoSE4fMjoen2gQJCQkJCQmJIwjhcBi1tbXjvq9QKGDDhg0488wzJ8Gq6YVxvVjJpE20z6sHUNJe2LczBQAYZnHkQ0n313PO1fdS+tgxukaMMU/QIkxTIOzn5pmMJ0k8Qf7QI+iFcE6nh7NL3GGygWLW8+OUBtcYCKwGlldlzjOHh/+gCNdU007h9xEvXOAbE8fVEnQU+H0HEe89iCccdF25fkJw4caqrTDWvEbDeHcYiHotpKMg1ofI8gzSXHFtGFvejrcPOkxHwzRgMh0j0gkh3jCNgxDjoZqFUkYpo+Cz22ZjIMw41QbjNROVoJfxaGk8tzS6eUXYmNRJJ4RVQ4rpFzEqO/JGqZ5tobzZov+AyWwxLQcj+/a66bcvRiHnH2zUv2kcWwXSQfGnb3p40+RLiKNc0hhxz0eTrqtbvNSdEJ5jeg5mqghVj6P+uMsx9MyNMEf60HT6+6FF3HoQNR0oXTNbyluL+t1oib/u56aL4Lo3caYTYQnaAwK3n/q0j/MvEr5FDRHT79fsgI0OXM9F4IWrIRuFnm0IN8yDXXD8L/wcB7aRg6NEYWYNGMN7oNd2wEEYjmnzvkfldARfO1Y/Jd7vP+f3DUG6S9V0UYKuUwXNAgCA5be/mo8U0yLuuSrouQRpV3jTp/rP718LvbYDsE2o0VqYKbc/l3RZWJqaXz+gpK1Rud84bDyHKu2CG2PkIZ3x5MNMr4nmSjPv10qyWB8rDPu1VUh3QPHUD/lCXh4aO2ytQD6C9NtKmip+zTQaikHaKny8mB79Bz1AK4zSZP3SZL6CXy/0V26LoKVENns1J3ge1eZ2slv1a8A5XA9ibG3G8/Fq6kDQ6SAZnnAVrQPF3wdJ94RA6zpeBPI13mPF8S0WuJ4V88WUJtfjE9pZ1Mzy1nNpHJIx/jEzVr8laidROjarSMUR6teTNq2JSxpB/uNcE4k0NwSNHQ5KL0DDhMYqAGhx93/S7QqCIug8KaIuFdWXoBFFNcx9tV7BJkFnUdTpyjP9DmrPMGlxMN9CPsdg/iLa6mqykL4N9QfvWOP9j62vqCq1cOX5t+QzmMkg/RJ+pS/d0jhQy9INJf02pHcMu9/zbjmS89z1iiY8I/FnAMO/zilpsfifNSpqJCr+fsnbS2jO4b1pAEBtR8KXJ+ncUN4aG4PRWnfuKDA9TouPl1IZRL9EfaGQ9mvGhdjayLYcKIrcB3A44dOf/jRe9apXYc6cOejp6cE111yDkZERXHXVVVNt2qRD9lQJiekETgU6wLdQhwkKKXcBEYonMQb950lHw0lvQqhhNvoe/Am0WD3qj3/bVJs0bVDs3Y5I27GVTypqSdTUykMR335JTAocx4YWrUPbK7869jf1EhISEhISEtMeh/u0vnfvXrzxjW9EX18fWlpacOqpp+Lxxx/H3Llzp9q0SYd8sSIhMZ1AP28cJlSgA4Fj29j2z78g0TEX4boG5AeL1W+aYFiFLNtiU/oVJbnoTBS6tyK95V7UHXslFG1qtGumE+xiDsZwJ2qWvybgCgVw3J0s+f1PI7HggkNp3hELLd6MYv8W96XWgW9QlJCQkJCQkJCYUPz5z3+eahOmDEdW/CoJiekO0lhxzCoXTj9YRhE3vvlS/PLs47H5X7f4Qhp6sfmm36N37dNY9t7/PsQWltB1x8+w8ZuXoetf16DYv5MfrznqQtjFLAaf+g2PenMko9i/A4CDcOP8snN2MQ3HyEKNNaDQ8yIcM4dox8mH3sgjEHqyFVa2r5ySKiEhISEhISEhMSUY146VhQuTKDJuXHeXq81A3L8wi2UurvOKqdKv0YrGrmF7/0kjgbjHYcbNo8Ui10uwBH44O0+aE6LApJVl/EIPj8+23B0AxPct6ZawJIt+3ZZqHN8yrq6oh+LlRhM3l30Vf2AM4ujzuqTzxE1lXEgtpFe836drYzsVP8XzIte4mg5CUHqTiWrc5om0hfQQRM2FMk2HCjaJuitjZfXQfVA0OJYFh/oWGx8G0wUhjnt+0H3wp3EDABE2DqOMmxpjn8m42++zTL8gm2Hjgdmos3GczbOxycaBzvpafdK9n+jyWdJa8egP3PvNqzG4fSsA4P6v/T+crWhYeOErUWC6DUMpEwPrn8ULv/kxZr/iTVBnHI3BnjyKzA9wHRAa53xMusdJH4Y6OGkxuNewY4wfXtJKcO8tsmt7+90663jZpRh65k5kdz6F7M6nEJ25Eg0nvBGRGcvQeMo7MPD4r6AlmpBcdJlrk8G4+tTvPRxt4gsTz99m72NCda5SuiLw5UVNKa4HI3hj8m8q0w2wuL/09DmR/0/nyFWSvaQ5wOzm9UPnme10HXHy853bAFWHGmmHJWjh2HYESjiJYv8+mCOPQUvOgqPPLtObGi+rrXwc+zUbRks7SPckaDwfCEQdF2uMYaXJNuLYc9kP6heMq8/dvlVBU4fyzA5D0WOltBlHnT65RoPQ/tRHSYujlEBlDYdQfUntn+y2+Dj0268I+ghh5nsyfa4uAvU9KhfXKmB9kesAUFt55uBSe1L/dPMoDPm1ZcQFSKnPCLoQpCUkaqs4NMd6OpugDcRTJK0JLmRA/sr9KmqLlHRhNF95SfdBi5A+iMevkb2kRxE075IPEXRAArVWSIpmFJ0galfSLSn5Z/+gq6iVAY8ejqBRw/uooFFje2ygOY7nRVkG/BRI9ptZv0YD7+/CqkvUMHE8ZRLbrWS3Unat7zzXRxHuVytfx3UkvGMsxnw9zWOUFa2J2ZhQuAmCzl6QrxXam2sxefp5uMFdR5hRwT+x/hikHUQ2chYzNaOwLlejwY8bXIeE9Iao78X8cx/15yJbCxkZ0ptzrzOy/mcKKO71kQa3jkmjBV6NFdJbSvpprFyPMUSaWKrPBkfomopDzyv+9Z/C/RnTx2K6dq6dtGag5xPKA6x8rD8z2+h5i2uPpAz/fcwYS9QYqiDCTzpSTkgYj/Sd+XEaOan9GQBAzUxXayVGGn/0nEa+k/UTsS0V1TO+xSHC9V2Yth/zkSazP1ITgqUfQTRjx5m2UYEkqkPuWJGQmG5Q1MMmKhChb8smbL7jVpz47g/i+Hd+AAAw86TT0LdxHR75+ufQ+dSj6HzkHjzxhfegduEKLHjD1IbkrV2yCovefTUAoOmMt8IuZNB159cw8uLtUMNxKHq0fPY/wuDYJobX3YJI6xIoavmiWFFUqKEkjKFtKHQ/g9icC8YslilxcDDTnQjVzpL1LSEhISEhISExTSA1ViQkphkURQMOIypQqms/7v78pwEA6//xV2T7egEAjmXi3//9MWR7u7Hz37cDioLm407Dik9+D6qmAzj02ipeNJ14Lnb88X9gF3Noe+WX0XXb1Rh47FcA3FDCycXnA4fX+60xw8qnMPzCPxCbdQLCTQsq6smktz4AK9OHlnM+EZiOFm9EsXcttJpZiLSvnkyTJTzQ4y0odD0Px7agHOEvACUkJCQkJCQkpgPG9WLFMh2oYfcXsoYmd2udwbYmjrAtubR1y2THvaHFaHsaUYDELaa0xZjfU2HLP1C+9ZRFrSttFxTCogGe7fe0fa9I2/ZY3rnKT1BimD4RPGIZbXejnfmjbNfn9woUobK8A+g4Yng72u5Hde8Pzzm27WRBYR0DaUpl20EnbttaWXkDt/+Ofp97zdjsmgiKQBDGQwlyHAeO44qq0nZX7BgB4NlCTqElaWt+vvQSpsDKG2NbRykkd1eXu2U0M+TyVKh/xoWwqmkKgUohT1kHz7LxHo+6hSFq0EhPD/729iuhhd106KUKANz3ja8gPzyExMy5yOzfBTgOoq1zYBgADJOPLdreagkUKpONSb5V11NHgH97qyXQCrW4+5lg21bbO9ywi2GWV11tCEAcG+YfDWNgG7RYHdpf822Yw73Q4g1woENRNZ4uhWfnYTw9IVPNvP8lGPkEau9wU9R3XgxXylNibUUUoFJebj+w8zTOc7BzQ1Bj9fyFiNG3FY5tYGT9bXCMPJrO+gTUcAyOaaLvP99HzdKXAY6DQt+LCDfOwdAzN8FM9WDkhZuhRpKoWf4q1B59GRyrCEULI731EfQ//DPEZp8NR5nD6Qm2sKW4btWHkO9+AeHW4wCE4dhOYD8PDs0eTPXxXldpfItUj9Lx0f1XeTpjpxmKaVe7VwyzHGQT9X8xDHOl66OzTkRq483I7nkWsVnHQ2PbpPmWcKIriBQxovxExH377DRRJ3iY4nI7ye8QTYPChTtCGOHsgOtrxG3onI5m+cdxKSR0eQdShNCtInj4VEUobxAC5mIxvKt7TLAnKOSxSNugt7KcduynUojrGE599uZN7FCykyhfdD6IlhIUfpdnBn9eqv+43y6//xWpLNXCcBPNivcTgfJVoqf5Ai6zYwJl2wwYz3TeKp8b3KyIphZUIaXjtlXu4wEgxObUIN9C360CW98yalcgjYkoIp71LbWvXuOfl3k49Wqhnvlag40p0XeMEsq9yNYGIl1IZZQPhdbMAX2OZyGOVU4Z9FObR7OL7uVrf2FOFcOiF1naeozodCLt1k0g2uzSJ/MV7KY61hmtSKTXENWpNLZEyrefEkigOdMiKne09ExEeZTVOfOx5CPMvN9n6iwN+qT7DbYWKbKwxRSWmdpM8dCQddau9Gny5ydmN6cF+/0XPcdReOUCo4/nht3yRQTaUjFT/iMhUX6i7NoiW+tZrB3zjOLkfXayCi/RX7kqwHEm9plK4tBC7liRkJhGcIqDgF2EGm2ealPGhGd+83PYto0rfvVHbH78aTz21U/xcz1PPogFr3snMvt2ui9WAEQaW6fK1IpILj4B+2/5EepP7ESorh2hupkASovr6Ybi0F503f4F2IURd0UX8BZj31/egVD9HDiWATPVify+Z+AuLt3JOtQwh1/rWCaGn/0TRtb9A46RQ8u5X8DgU79GbPZJqD32XaPSTdRIHaIz3Z0qovaCxOQh1LAAofq5SG/+N2Kzjp9qcyQkJCQkJCQkjnjIFysSEtMIdmo7AECvXTDFlowNA9u3omnhYsSbWjDrjAtw3v9cj5GuLqz51mcAAOk923H0h78IAMgPDmDG6S8/5DYWBjrx3E/+F0Y6hWh9A5Zc9iYkZrovFhpPuhjdd/8GI+tuR9Pp7z7kto0X6U33AIqKlvP/G4Nrroc5vA+JReciPucUOLaJ1Pp/IlQ/C1DDMIf3QY3UwEx1AgAUPYL2V38VA4//Hk2r3wUz0we7aMMc6UShdxPMTB+KvZuR3nIXrNwg6lddCUfKcE1LKIqC+LyzMfz8DbCNPIBI1XskJCQkJCQkJCQmD/LFioTENIKV3QcAGHrss4jNOh3xha9EuG7uFFsVjCUXvxoPfP2L6Nu8EZixCE3Lj0ViwXKEa+tRHBlCtnMPwrUNOP5z30Webfcs5A+NfozjOOi+74/ouus3CNfUoXbuQvSvewbbb/8rZp39coSTNXA6VqNp9WvQc98fkVxyLsL18w+JbQcMRYGdH4YWb0L7q78Hx8hDjST5rpLkArZ7hHbc2A6sk98FY2A7QvUdiLS0Y+alX4NjA+Gmeei97ydIb/k3ACA6cxUAoNC7EdGZxyFUP5tvD5eYfoi0rgAcC8X+7Yg0HzfV5khISEhISEhMBCZRnkBicjGuFyt9g0WEEy73U9P93MAQ511TeD+mXeLluorhFQ33AYuHWWbPAiYLMUaaKyL/UAxTyHnkfkqnn6PGeYMsTcbzJK45D+tGnESB70w2iX29PARj5eO+cogh70TOrsDJLePyClvueehfzsc0PedEG8rMqgg7iMs8BaimTTIeLmK1cKwigrRXxqPhMNZws6qqQKFYvbaBfOfTyO19GMaxH0Rkxgl8nPCQ4ZrLFDYYnxYAwiysYC/rr8Tvpf4cZqEdqR/0UShUCsdKIQJJq4Rx0lMsTKGo/4AZZ0ANR/HY3+/DjPNbWXkddLz24+h77HY0n/ladO9O++4lvjDnHlMYVuK0l4VbFzQYBA6w9xriLGtRoPNfP8LIC/9GxyvejOPf/SHosTiOanXw2G9/gw333ouhoUGkb/sbTnj7ezDUPBc9934HMy/7HrRIEmAvJsgvlHH7Pe1O5SC/xPvEiNuWFAJU52m5bUCaA1QOk3Gw6Xryb5Zhw3FsOLaDUNsroWy6H4NP34zaY94Hx1YAZPjYr8zBD0OrWQ7bAgq9eVbFpAtR4nvH512AQs8m2MUMEosugzFSLOs/leCIGhMB5wk0pmjMiVorBwNR90SsD5X6zgRsxOFpVwhlWek64pzbgo5HuQ9hfbhCmGUe0lVXEW6YBSgKjKF9UDSXDkQaEpbA9yduvUL6JoJWAYF0z/j1FULpkgYQioIuCTsvaqZxDRJxCBmV5zFeVo+vEfU8qA4rhbsHysNGcx0EUXuD/DhIk4J9r+D3ef+2yrVQKqZJeVUbF6ThQGXx1LkitCP5mFI44YCOLISvLVtDoLJtvtDIAXZX01bhc4ig18P7u6CxEqibgvKwyDaFtKV6oPIL8guiH3DEcMV6Zf/gmkVaOI4vD1EDJ+i5h8atGOo6UB/ISzulMMusfLQ+pVDFjs3WdhX09Lx5lPlk+hRdircQoj6R0I9L41HQcaLbNeF+ngd86XBjQqXHD1XQFin1c0qDjXvyKew6LcLW8UJoX1Xz1wP5XoX5x3hbnOddYFpQXD+sTO+FjPT3C66BJvoUHpaa6oMVIULrtnKdE0tzy0VrBALpnnC9SQphzspHIe1F/UrSpuHaczRvREt5k3/mWisxv7aMJfwARu1HIa1DtNbS/GsPg+WtCb7Jq5HC14LiupPqWKxbyymbLyQkpivkjhUJiekE1Z3kQjNWI7b4rchuuA6pdb9GuPloAOWRW6YaCgBF1crCQzccfx7qjj13Smyy8insu/mbyO/biCXv+zJaV18EPeYKyIaiUZz1/g/g5Hd/ALZp4t/f/x7W/PYXCLcshJVLof/h/0Pr+Z+YErsrwcoPI73tLmS33gIAaDr3R0gsfT3S634FY+7LoNcc3A6bmpVvBBQFWqwJsZknIvTyH8CxCtAih4fGz5EMRQtBjdbDyg5MtSkSEhISEhISEkc85IsVCYlpBEV1X54oWhyKFkZkziuRefbrMNP7EWlYMsXWlaN/zb9h5TPI7d8+1aYAADLbn0TvA9fBMQuY/aZvonX1GYHXqrqOMz7+GQzv3Y0dD96HhpMux9Czt8I2P4jyn/YOPRyriIFHvw4r28ePDa25FlqkAQBQ7F170C9WVD2CumOv4r+qatE6N28pRHtYQA0nYRczU22GhISEhISExETAGftOd4nph3FtiB5Y9xQcW7a2hMRkgaIB2YV+4fvglNk0GhSVwv35XUmhdx+2/vSTGH7x0XGn6TgO9t74VfQ+8BvYheyY7rHNAnru/T46//k1hBtnY+47foT47JVV7+vbsgm7Hv4P6k98LWqWnQs4Dnru+ta4bZ4MpNb/BWa6Cw2rr0bLRb8BFA1Wag+KfWuhRhoQm33eVJsoMcVwX4hNH9qmhISEhISEhMSRinHtWFl77X9h3uoz8IpvfR/xGpejSJTH7iGXdzc45OoEDPEfWUs8PXoIIy5fftDlNlqM9yoKJZIeBIFzt9nLHeKdEj+P82cFvQWg9PZPCwnvkgTdF5HLTHRQ4n6W8apF7nIF3jWnsVKaqp+ryrmDAuc+SM+ljC8tahh4OMsir/dA34IeypjqQXkF6Z1UgqiZEsRvHi/K6noM9TJmXRvbgVq3HABg9j/j5qVEAC2K3N5HEW0/HoqiIJRkfOMCGweeNAw2hogXThohpItAY8hmsizhpEs9KjB9D1H/h8aQzrjJITbmDMa/TcxZDABoOuXlvG5sy0HXv/+E9JanEW5oQ3Lhyf5ykiYD8eZJS4TrP9hIbXwEADDw2I2Izz8OkeY5CDfNQaRpNsKti6CoOjLbHsfQs/9AzZKzkN39DLK7n0PtygsQaV2AeFsD9EQUiRq3fA01rB5YZS1tdOvhlut/iZr2dsx67fuh6iFkz3g/+h78MazcELRYfVkbkb6N7xgbU1ahsigvjW/DdOuY/JSWYO6X1Vu2232JZOVzyG77Kwr77kV8yVuA0ExYRaDhrJ/CyvXBKQxCq5kDR0lyv0VUrKB+TnUrai6Img0igjj8lc5VOy6OX1FrpRq8vkvVxXtG13kZL8gmslHTxvUbhA98fhK0eKrfF1wv1IccZ3TfTDo+jqAfoIaYBgFpEQhzE/mLULJEPyQ9A1F/y0xV1hwRNZO0iGtLqMml5WlsTs10ZvxlErWKAI/uCJWDfRM0ofgPP1xjA760CdTlFEGLoWR86bsjaOKowhpCHEOivgfPs6wLuQfCDa6PMplWllczC6JGUJCmigBRB0XUvVDUyuscZ5SXdOX6HWz+EXwibwtBS4/AtYNI98Tyt5kPLE+L6Trwdqoyn5eve0gHiLWNI8xzFeqV9Iq4dpYltOsovhHwaLUIWnk8L+4Py3VtbEFfkLRWRP0aFf66LOt74nHKUxFt8NhNel1ct4vsZ7aR9gbNJYZfI01VK/c5Aul1WfD2CzYXCnVLdSj2S4frHPnbjde5oGtDejch5oPUeOnRJ8H8kcnWUzlaQ5EvZH4q2eg+jxSZhkiyzvWNmRF3vKa63Pmb+gv5y5JuneIrP1DSGtHr/TRvrlUp6NyQ5l1pLLL6YNVDGlnko8xU0Xc/16jx2FMYcHXXSJ+PQJp+pIlHoLossnVbPKmzenHbs8jGKmmsUP2me0o/khXEZz3WHhG2JmLyXTCZ37YK1iF9BpGQOBiM68XKOV+5Fo9d+1X84Y2vxXGvfyPalq9E/eKjEEnWTJZ9EhJHFJRQaSw5jgVFiyCx5G3IbPgFij1nIDLjuCm0rhxcHC4S8x03s8MAgMFn7kb7Kz8ANRwruzcIiqJi9pu+h85bvwkz3YfsjmeR3fFs6XwoCkXVYBfcBzLHLKLQsxUAMLLOjXCT27MGi97//VHzSfUPYOt99+C0D3wUI7r7cBNtOwoAkN50N+pWvX7MNk8ksttuRKHzIcQWXYlIx/n8uKJFoCc7gGTHlNglMf3gWEVMhOivhISEhISExHSAE6yOLTHtMa6f4Wadeibe+Ie/oGXJUjzysx/jL++5Cj8/5xT86c2vQ2F4aJJMlJA4wqC6vxzYuW4AQKj1VGi1C5Hdde9UWlURxgijLIX8v3bMOP/NAADHNLDlh+8dd7rR9qMw/32/w9x3/Bwdr/8SEgtPhBqOY/aVX0f9sRfzlyoA0HzO+9B0+ls9dytIb3kGZmZ41DyeueteWMUi5p15Dj8WqpuJmuUXY3jt32Cbhz7UsJXrRbH7CURnX4jYnItKv8BJSAiwi2lY6S6EGw5OZ0dCQkJCQkJCQuLgMa4dK1t3ZBCra8Gc934Lyz+hIL13J4Y3PItnfvx1PPfz7+LET36Fb/8iyo2RL91PW8r4ln8KX0fGMNpCrDXmT4OFDDMybItZlG2DpJBdFJKMdgFSaDXPVsTAUK60lZ5TJPzbPsVtyXwn5QE873hDh7kFErYnl221rfxJGMu2d77lf4xvP6ttyw/avj/ebf1jQZDNo9ETguwJ2p59oHmOhQJ0oAg1nwCj51E4qa3QamZBjzhu+HIrDzWk8q3WYjhLoNRvvWH1AM92Zuq/bGwYLCyzzrb+07ZX+h5lVCFVU5Dv68LuO2+FlUtDURU0nXgOtvz0M4jPXox4xwLYtL3adpCYsxTtr/44Om/9HxQH9qPr3zeg8eQrXBsC+i3l7Q11Gm2bAzU0D6HaFuz85UeghONofdl7kdmxBsX+PVD0MGId81G77FgU+rchvfFRkEex+jfBstzdHams63NmznFtrA8ZOOui03HjN+qw9k+/Q9PlnwEApHcMI7n4DKTW34Fi3xbEZx8DADALLAxmxe3q7EOkC9K4FcIx0tZ3m9GvVNZ+xvA+DD/1ZSh6HJGZ54xr6yvVaSlsIX36+78lhNv1pDCmfLw0kGr2iWNQpNeUXXcANJ6x+IJKCLJlIv2XKm5Hr1JfYljmUV+qqYBju/0nVNtQCqPOKS4UppZtpc6KYTf99A0zZfi+0zxoebaO09Z2Ti8QikPUAT5nCiEzNfbulcrlTds979pER70CymViyqwcNvx0SFoTiKHPxTHJkxHC2Dpm0PjwzKXjDPvJaQusYKL/Jr+h15S3t5Wzyo557xVt4+dFWop4PVsy8TC1AiWoEuyAMNM81DuFRnb8da1oIn1BuJ/Cu1Yoq8XCDwfRSoLGSKVw2V6bbCFcc8Wwy57Q5gDgMPqUQ2sKTiOvHDZcCfnH/3joyOK1Zto/PmnOsBHQbtz3QLCV2qR8ISu2j8opLLSeZhc6bJyy9bzCqGDiuKdRGUgz9YwjW2VpBbRz6ULivPgpQ6Xw60R5Ynnw8Mv+uTnukRlIMipLMu5ec8r8RgAAY9HgmR3uDyzdXTkAQB2jBIWpv5NNLIQz0aRjNS6VJscS0qLkBzzlpvYQ+pTY93iNhirXKe9z7HC2133w4s9ClZ70hCFisDnAjhK1ke3iZZQnCqNM9ufYnJJkdOsaRiUaoS5p+TtlsrUU4ppoU7l+107bcPMIMUqQyte0pecxcR31kkYViq/E9MYBE8dVTUft3EVY+KrXY/lb3o+d9/wT2//1t4m0TULiiISWnAcAMPqeg5XZh6GnvgMztRfJZZcfclscx0HnvX/Dpp9/FWu/8SF03nUDhl58At0P/APrvvF+OKaBBVd9Hormn7nz3bvQc8+v+Pfee399wDbYZhHpzY8DALR4HQCg6fQ3AgA6rvgKtGgCANB40qv9NnTtHjXdhhktOP7KN2PT3XcJL3OOQrh5Mfoe+D7SWx88YLvHi8zm30ONNKD+1G9Ci7UcsnwlDlMotLCv/PAtISEhISEhISFx6DAh4ZZXvO0DSHfuwYY//h+az7gEWjhS/SYJCYmKUNhDtTHwPIzBF6FGalF/8mcRaVl+6I2xLWy7/rv864zzLkf7y9+MgSfvwu6broOi6Qg3tpXdtv/2X0IJRdFy2mvRe9/vMO9dPxx31qmND2H/zd9AqHEmjIH9iM87DqF6N6/k0tMRbpqN4efuQGLeKnaHsIvKqiwm60XbipUopEaQ696LeNtsNxVVQ+v5n8PAE79C3wM/hKJHEGk+Ydz2jwdmuhvm4AYklr8Pij52PRqJIxdqpAZQVFi5wak2RUJCQkJCQkLiiMeEvFgBgOVvfi/uvP8O7Ln7Zsy75MqJSlZC4oiDGm3l/4fbz0Td0W+FooWmxBZF07Hqa79H9wM3Y2TLC+i+728YXvcEVl3zB1i5DCKt86DHy8WrrcwI4nNXQFE1aPE6xGYt8ynSjwV6rVsPxsB+tL/qk0gsPBWKoiC7ay323fQV2IUsioOdAIDe+3+Hvv/cgHBjOxpOvBjdd/8aqW0vVs1jzkknIxSLo+vB27DgDR/gx7VYPZrP/iQ6R/Yht/vpSX+xku9+HlA0hFuOn9R8JF46UFQNWqweVrZ/qk2RkJCQkJCQmChMUITDCYVkJ40J43qxkqwN8TCNxL+k0GpN8xdgwYWvwpY//xwNq86AVuM+FHnDG4u011DCfVikMGYhxjW2GDfPYOHPSGOFQo2VQoy5CeosHXpwI+4nhXH1gvjR/LNAnGq/HgKlxenCAo9W5M1ybvsY+PTl/O/ASw8IXt2AsfL6K9071jyCjh+oXsF4wioHISjvapozYn3xMKtl3F/WfyaQB0ljyYk2AQCic16G5FFvKQ9nSdx8pg8Qqi2F6iNONfH2iYPMw+8JofNCLLwdhcSLsDRra0svcpqaj8bsVSsBAA987E3Q40k40DHrNe+HbTl8HFo03lQF4ZYOpDatgWPmoYYj0KMazIA65xxuoYpj7a4oZ8fr/gsNx18ERQXM9BD2/PGzpYtsE1Z6FwYevwktZ74W8678MPK9+9F9968x8OxDvD3rGI+6K6uyT6ZJEQlj5rHHYXDj88hnTYQb3HooKi6vWo81wkz1evJjnx4SpRiOlYN8Q0AoV7reKFgoDnVCjTVDi0Q96YxNm8ML0aeogocvjffKek3jyWus+iTVxhrZNB6dpmBNidF9apDuy3jyo1DP1fx2ebjdAJ0IYS7hegGjbPyka/VkC8xMD9cno3Fus3CWjjAF8pCfAl+dh2XmWmTwf0dJD4CHjQ7QGhHDEZOPId0m0nUqzYMsL/YP11nwxCcWQ7PzPKgeWPlpTVGk0MVMx6hknL/8CtcBYW1AulVOqa1Ij2Ss7cnvE3W9SEeB67m55wsmadCwkLoezSzqA7YhhDwlrSNBS6ncCDYeDH85qf7IFsUeh6+hcgkhiqmviDoZvLxFv9/jNpAmg1G+XhP7UtDDhqipEqSpRn2XD3vyl2Z5uXloZt0/PklrRQFpnGnMfgo/TXUboOtGmVfwiyUtIP9xHm6Z3WrRvUG/VfAwy36tFX6abPMtLUTdDrrWzYR0XjTyNRSOulg53DjXEBT7Q4UuRmt2KqDO/JFCoblFTREhdD0Pxk7XacKYY5nS+sf0+K4o0466cKn7eRyeBQBkn/sLAOCStjkAgMET3B+M/7jVXSOQblstW1vEZrv3d/a5vjfJypDNueuzdNp1JIV8aSetxeyIMS27HKvjAtOT5OOTJGVYP6X7+Cfzi5bgH6mUYshsL3hob/a9tJ5xv5sszRhbZxaY/6bw1BB+VxPHIteU82iuhJkuS37QPVYYLrBr3HtJayXM+pqiuPITEhKHAw5YY6USjv/Af0GPxbHuB5+DbRSr3yAhIVEGRQ1B0ZNQw3VTbUoZUts3YHDdU8h17hr1utZz3gArPYzUhsfRfLpfG8Y2ixh48haMbHgIhd7dsM0icvs2YdO1V2L7zz8CK5dGZuda7P3LlwEA0fbF/F4tXou2i9+FmqUnIT7PfdnTc98NsIt5NJ5yMdRQBLG2ufz64kh1moTj2Agly+vazPQjt+9Z5DvXwsoPVU3nYGAXRqZle0tMb0RaFqLQu3WqzZCQkJCQkJCQOOIxoa8AI7V1OPqT38bTX3o3tt/wAyx6+2er3yQhIVEGxzEBVat+4QShONiLofVPoWbWXCiKgviKZdBjcd81gxvX8v9D9c2jphedMRfLPv8nGKkBRJrn+fMa2I/uO39a8T4z1Y+N37wMABBpW4T2V30SsfaF/Lyiqmg96wq8cPfv4DANFS3mitcaQ70YXPso9t9xPb8+tX0DmlatHtXWVFcnIgtPLDuuxRuRXHoh0pvuRuc/3oeWC76GcP3iCilMAGwDiri9REKiCvS6mTBf/Bd67rsBree9earNkZCQkJCQkDgIODIq0GGNCV/J1y5YhiXv+C9s/MXXUbfseNSsOGeis5CQeEnDLo4AVv6QRobZd+cf0Xn3n/n3+IwOHPeJryDZMRfb/vEHdD56HzKdewAAKz/2dejsZcZo0JP10JP1ZZSBaOs8zL3quxhZ/yAGn/onoGpov+SjSG99Cqn1DwMA2i/5KOpWXQSlwsslNRxF20XvRGbXBoysewiDa+6EGokhMf9obPzO22EMlzQnFD1cdr8Xjm0j1dWFVN9dmPfGT/jOKYqC5tPfj1j7SvT+54cYeOR/0Pry70HVo1XLPl7odfOR2XwTir3PI9R0zISnL/HSRLTtKABA152/RNPq10ANlesdSUhISEhISEhITD7G9WJFVYEQ41X297ucOFN4aFJVBU2rL0HDY/di7+2/x/KVZ/OHo3DMvbd2lkscjjBuY2Md01qJMv2DAZfD19vjxjjXwv6HKx77nWjGjE9YFGzxcoDpWoW45aStwtIiXqBjEh/Qzweu+vZQ4G57rxfTIPuDeMAHC69ugIXJyWO0PCcLQW1QqR4PVKelmg6CaIM6jnodqx6Lldruph2fA9t0oLF3A8TB15gOip4gXYHSMCaNgRDTMwixe8Rxqih+7vXiV18Oc2Avcp27kd63G9nufXjkc+9200jWYM45F6H12A8jkzXQfsbLODnb8mg1UFUUi5X1Z6iu8lkTNe0nYvi5W1nFWOi89QdY8onr0HTieQjXN6FmSUnEVdQvisR1JF//Tqiagh03/gx7bv0tWle/HAMP3eB7qQIAC049CWooxG3pTbuf6bxr49N/vxlmIQ8U8uhf+xQcfZGbF/MdasRBzbKzEG6ehX1/+ySszE6E2lb4XhaJehXkQ4K6oCPw/BVVQWLBy2EMbsLIsz9A/WlfhV4zByUdFJH7Xkq4mi6JLWgHiFz7Smn67j8IvSOyqVoaB6O1MhZNq0rng/IQ0+P3eXQCynRqxhntWNRU4ceDpRc8hrNrme5DuLm0c2zkxYfQdOorXHNpzmSJKWVaFZX1gEQtA+93R9BWsZhWANnL+zMbO3xOFbKyiiSqwdqA1S0/TumV6VqVEuNpsjRMpsNG/o80V4xU0Wc7B5Wf1QtvE6ZvonrcpcMWD2XyBI6/35ad5vM9lZeVizSyBI0S0kfwjtEyjRFH6JfVIHQqajuFbBH9QSX/IOovcV05qrMAzSEaz4LWHaVjiRp43vvFYgvrNN43qBzsO/fLYt0L4H2Wfy+vz1K5/O1M7Sb6CJqfy/ISruPtPgb/xvUvKE92nHROqF5sVhFc56bMt9D4hu8+nw20SBZ0Bnm5WfmoHDTGSrayvNl3sdxl46TCuLFIf4n5FtKRUwXNFNKG4T5J8WsmcY2xkH9cR9haKRIrtVVYGGMWEzYa2b0PALDj7ucAACvf4/6Y9JGOJQCA+63TAAC7htw8U3n3k7RV8kyDpKWB+SQ27k2zVG/9fewZh5UvXuMu9kg7JZJwf8QppAxWHr+/KtN+JA0l0HXw10fYs0YW2pf0XDSmf8L1Xdjzm8HaJMJ8LGmt9OzJsARZ+ZtdmzODBb+tHh9MadNYIF1N8uM0jjX2jKiFtVIflpCY5phQjRWCoijouPhNyOzajKc+eBZ23PCdihOXhIREOcyBtVCiLdBirdUvniDUzFmAk7/0I7z8V//EcR/5PABg/steiUWXXIHzrv0/nPjxL2LOuRej4+xXTIiImF3MY+j5//iOFQc60XD8+b6XKtUQbZmJUG0DFrzxI8j3dQEAErNd6tDsl78Oaig4mlLv+hew7n+/zr/3PXpb4LXG8H4AbrSgyYCihVF/4scBODCHd0xKHhIvPTh2SQgxvf35KbREQkJCQkJC4uDhBoWYbn8SY8OkkfrrV5yMOa99L3b//RfofegWjGxcgwXv+BJqFqycrCwlJA57OLYBo+8phNvOmTIb5l98Ofbc+0/suOd2AMCOu2/F625/suIvBsNb1mH/vbdg3703Y+a5r8LSqz4BhJP8/L47/4z0rs1YdNWnocZL9CE9UYvjf3g/Mrs2YmjtQ+h58Cb0P/4v1B97Nsbzvrf93EvRfu6lAIAVH/82FMV9sRtSClD08pcqPRvX46EffAeDu3fByGZgFfJY8pYPIpMG9t/2f6g/6R3QYn4R2dTG+9D30C8Qm3MCQnUdY7ZtvFBUHWq0AYWepxGZeQYm6b23xEsIql4KHTT07L2Yc+Vnoaiy30hISEhISEhIHGqM68VK794s9IR/0ca38QpbEBVFQduFV6F26XF48dqPQtV1bPzuB7Hyo1/BWVe9FgAQZ9vSZte4924ZdNMeYNvdKPxymG2tM1leZtG//Y1COtN2P4ttUSyyEF5AaXv+6PusURbaVqQEidsZy7b7Cse9/4tbZattIQ5CNVqP97w3bCQw8SGQVU4pKU+3WjkmIqxyUN4ixltuso1TBgLabiIFpmzbgdn3HGBmobecBiOXRmHPbYDRj8SSyxFpWMDyZjaw/u6lpRhZ9xdsCiuY57uO/du2dbatN0Zh73IsDCHbInzud36BW99yMQpDg1j8zs9h//4cACAS1eA4DjI7N2Lf/bdi711/43nv///tvXeYG9XZ/n9PUZe2V9tre90LbhjbYFMNmA4JJYEECAGSEEg1JG+AvCGkvl/SCCGQkAQSkvCjhxJKMCZUgw3GgHuv67J9tauumfn9cYo0I8lbvN5dw/O5Ll/ySjPnnDlzzpnR6Lnv57/PovWj5Vhw+50omzAVu3Z0Yes/fgMASMZSGH35rba6LUuFf+QU+IZPRnDsbGy97ztoWfYMKk9k64PO57+Y3yJ8V8h6suVNQX4cHl6238fCUXV+vJ1RA7teeR7L/9+t8A8fDVfNRCR3rgPQhVRgOqKbXoKVTiEdaYSruEyGyXZtfAlN/70HoamnoWrhdTBihb+0ynB1p5ykgDRIrpXib11FydHXonXZLxHfvQTeujP4ds6aMmNZlSH9PVtLejsnD7a9s04RzqtpjmvEAEiCLIe04WDpJbPrMkU2dUebRRu0PA+3uuvD7trbnQRIdcgcbE1wNMeIZy7hVjqFzo2rEBw3K7M5n0OeUrZjiqfxFONbps7V7Ou4kB5kjz0Rvu2UwOSV7CCz5uSmxuZtF9IBRwpgsZ7lyHdYobY/pRSAlxVv4aH1Il2r6OsCkl4hHZDb87rNrJSoMo2uo/Mz8mFLvGH/3Jk61zmUCowT5z0IOw5epshK61hjeprSN3P8+RuVdx3hm9SfUw8AaF7fBgCI7eliJYnzVTAFuqNuOYwc2x9k3ohthQxWIFI05x0r+dpSQAKX3fbepkkvdA7E9Vmcu0LpybPbZIn1y5H+WtHs95BC+iNTQZsOuY6Qy8txU2AQGtltEu21zxUpSNUca4Mu1kjHPXPcIV8S8nr5HUFsmEde6XgV89CSdXKpnijb2S9Ju7xMXg/c9uOO8rTGABDmsukXN3DZ9ATmWzXvrMsAABXT1wIA2te9CwAonekDAEyungoAKHazH4zaEmz/HW3i+sXKT/FzURpiY7fYn2nLsAou/eHbtnSwdnn5vU4blwo5JUAaP37xKr5/iABGTaTCNoTMJ3f9k7JHLjWX10qxJjqkXqpml3iK+7M073Mp5+Hn2cXnalLIu/JIgcT5cfNUzmINMB0pn42kASNPOnaCGIoc9jQURRNm4rg/vQ4zncaKG07D/jdfAviDFYIg7KSa34UaGAnVX4v4tn8gte9VAIDq8iM0+msD0obI3l145earkI50ou68K1E171SYYBfUPS89jp3P/h3xxr1wFZVg8tWLUVQ/Hi1r3sfYsy/E8p/ciLd/dCOO+fZtMIsnyzLb3nsJFcedi+DYGXnrDE2YjdD4WehYs0w+WOlPGt5cihV3fB/Vx5+FCdfego4DSRjxKNbd/ils/+N1ABSUzrsI3tqJch/LstDy1sMonnEGqk77BgDAiCUK1NA/eGuPhrfuVES3/AvumuOhuro3CSY+uRjRNtvfsb1bbA9WCIIgCII4grCQ+xB4SDAU2zT0GLD8nqquw11chqb3XoeRSkJzHTxbB0F8ElE0D4zILkTe/z6s2H75vhFrhmVZh83AK9HeggPLXoJiprHj3w8h1dkBANj97IMwol2oXXQptj74S7SvXYGaE87C8Ou+j9KpR8PjY/O4YsY8uF0q5nzv/7DkmvPx+s3XQfMxSZCrtAaqy43mt58t+GBlx4O3o3PTSpQfe07/H1tHO1b84vsYvmAh6r90KzdjS0Lz+lF58pVoX/Uiqs/8OvyjZtgjHIw00l2t8A6bWKjow4K37hTEd78Mo3MX1LLJ3e9AfGIxE52ZP1QdqY6mwWsMQRAEQRDEJ5gBFWOPveRLAICtr706kNUSxBGDZ8zn4Rl/NVRfjXxP0bxItaxFZOt/D0udsQN7sPymS7H5b7/Gpr/fBZgs5HLujT9E3Tmfx96lT2Ll/3wG0b3bMfOW32Hq136E8ulz85rYBoeNxPDjTwUAaN4Ab7+G4uknoO39VxDdvSlnH8uy0P4hO7bIznUwU/0bFbLxyX/CMk0c/fVbctI3ly/4DMZ+7X74R+U+8FF0Fzw14xBe++qAGnfFG94AFA2qf+DMi4kjEzPB5BiKy4OyuReg5e2nYKZT3exFEARBEARB9De9S7ecpUNXHSn2hA+CeHULDwd/poqZF5+BbQ/dhdSG5Zh3+SlIcf8Pn8q+yDV5mS9Cq5/t285TbaWSQkco0jPa9YJJoZfkX36Ev0T2r/tS3+r8xd+haRVILacqdMH2OnudjrkPFPIY6E1dh5oG2emLUCg9aV/K6g6ndrkvKaP7Kw10b/we5D59GBOK5oGraj70yuOQ3vMsEruegWXEAb0Ire/8GWbaD2/tTCiKikQT9xPISh0oNNbCW0GOY665FVpd8Rpr1bHnyT8h1dkuy0iGWbTK5jc+QNXpX0FdyXQgHUFw/BwkVDf2rm3N6MezukP360g0N6BhGXtIYvHFwVs1HC6fFzANJFt2IzViAu8goR9XMerK25DubEPDU79Dy4qXUT73LJhijXGMG+G1UlyaMe4UXirO1Ilpw8K2Jf9G7fGLYHiLkQyzPpO+CUKj7ExHzcurPPkq7Hn4+4huW4bQ5BOg81SDhm0sch04Xyty0og6MLgm2XR6EMTTiG37N+I7X0Rg4ueh+1kq3dx0n0pWWYW9nYDezznn+BYeJPnWnELrkCH1032be31JQy99DMQ1Qu/ZvnL9Vpxrjfg83z75yxI+LX29Fjh19AdD1BFv3AkA0INV8NbMhZV+ApHtG+EbwXwC5OkUY8eZvtfZBj7uNe47kL29GGvCv0GuMWKeijTi0ovB7vMhrpmah90TGAnhzWFvQyb9Z65PmVjfnGHS8jyKuvgck+k8HX5Gcj9hj+Lw6FCyfE6kJQTs41reC4hUt8KWpYdeQnCUJ1Ji21Jji7K4VwKc7RRjRSkwbh1eKzmpgg3Hupc99hz7dvHrjb82YCsr3hhlTeP+Xt2mPnekjHZ6NwBZHiM89Fzcy6Wj9rSzPfZWKfC38P+wvS/9WGBvg6OvC/WpQPi/OFMdZ9rCi7F5jYj3ullDnPdlDg8ReBzlCA8SsTYLL4us654oQfi8wOGfJ/uaX+fS/HwL3xt5T6DZPZLkfmJuJvIcm8M3zukjJw5AjluHv5MzdblIO525Tqcdx5Dpc13ONxZ9++EB/p2l+kwAwKzJ4wEApZWr2PuBagBAuXGA/cnN+tNudm8wOcQ6f1uUvd+RYOW3s+mDxo7M/UGKt6eI+65UlbAywlG+fqk83TJfK7s6WPp4cZ0z0vbzKV7FWi1TgIuvYVnjRmwjlwqxtBr271Eukcpcpkjm3pc+4ZXHtg+WseMWa0+SG77I60H2/FZV27ZyvVLt3kDZ3oCWfvBr18eNQvcZxNBnwKRAAOAvLUVZ/RhEw10DWS1BHHEoigLPqAugBkchvv0xKQtqf/dXgKJB0X3wVh+FkqOvzcli01tqzvgS/KOmw1Neh5Z3nkJ49VIAQNuKpxDbsx6jvvhbaTjrNGl20vzmE4DJtkm1M1lCeN0KhNetQOmsk1E662TxsY3SWQthGSbaP3gVHavfQPncsw7pmLIpqR+P6L7dvd4v0bwT3upxAICWZQ8jNPmEQ25LumsfjGQaWqAWiuNrXrJxJSKbH4NvzAXwjVp0yHURH3+i214DAATHnwRX2ShAURE/sF0+WCEIgiAIgiAGhgF9sAIAutuDZOLwGkASxMcFV/lMuEvGo2PZN+R7gXHnQtF0RLY8j/CaR1C+4MuHVIceKEHJjNOx4/7FiO5cjcCEYxHZ9A4AIL53I9KdzdA91T0qq3jaSejc+B6C445GrGEjors2wFM5AomWfUh1trFfKg7ybMY/agqaXnu0X6U3w+afgnd/dRu2Pvk3uMfMhbey+5TJ4XWv4MDzv4IeLAMAeIf37otqunMvOlY/BCPaDDMRhpVOQPNVIN25CwCgF9UjNO0a6KGRAADLTCOy8RG4KqYjMI7MvYnuMVNxpNpZxAosC4rmhuoNIB1uHtyGEQRBEARBfAIZ8AcrqXgcuqtsoKsliCMW1R2CFqqH0bkdAOAbcSxcRSNhpSOI71vVb/VoviKobh9GXHIbFBjY8NNzAQAHXrgbo674cY/KCI6dgYnfeRAAoHsAMxmHO1SE8KZV2PCbr+PAK4+h4sTP5N3XTMaROLATsEyku9rg8lX2y3HVLzofzZs3YsNffwsAcJdWou7S2+EbUdiUtu3dJwEA6a5WAEDXxrfQXj0Wmr8a3qrxEGHD2VhGCp0bn0OicRNS7TsAC/DUzITiCkFRdaS79sM/5kxADSKy6RG0LbsNnpp50PwVSId3wog1o2jWN3LKJYh8xPYsl/93l41CdPsymLFOeIdPGMRWEQRBEATRZyx0Kyklhi6981hxqfByjwFNt2v63NwPpSjIiqwtY9uNKcuEu08NduChjiYMr56AGq0NYQR5I5iWr9jDNHplAe7XUsv0hauFrtCw6yzTsTRsHMT/QnhNKMIHQbyv2rW8Ulfr1Ljm0X3nrcehvz74tqKuAnVyuvNJ6IuPSHfeKX0tO/sYCrW7px4EvfVo6A8/ld56Usj9+tFjR4wHk49J0zSgVx0vH6zEwgaS6TgstQpGtAnx1hgUPph0oXfm81P3s3lo8flpSh001+J6uN9HyoTqKYGZTiHZ0gVV98BVWodU224orhDizWGoLq80KRAaZul5gMx1QPexNsRakgBUJLoiUEITUD7/IjQ8cx/cNTPgqRqd2c+w0Pz6P9C6/EmYiQiKZ52NdMKHaDMTJUuJOtdCR/lrly+zfHmD7Dg93BvC4PNU/H3UtTdhzPmfQ+e+vdj44G+x/YHvYOKNfwL0Cl6H0BGz/tB8RVB0N/RgGfyjj0a6swkHXrwbgAVF98A/+liEJp4C77Bp0Hw6Ek1b0Lj0LqQ798JVNgmqtxLF06+CHhoux7HB+ywdN1A0ZzJiO19CsmkFkq0boGg+BCZ/BXANk8eU8VQp7N2huYX/lFRK27btrd+H4fQTcLSlN+X1xSslH3JOZq29GhxafIc3isC5xoo1wnCkDZQeSjKayuEvkHXchY6rp33j3E7MRfl3D9exyJYlAABP1RQExs7DrgevBQDEGnagdMYCAIA7IOZi3Lav7rdf+oXXhvBPEePJzL7eWfnbLfTyilf4Xjj8i3gZwltIHJ8rxNcmh1+Z8Edx9ks2ZjJ/2FshXbosy26PkbHLSNt9IbLrtqTOX7XtLOcnf9/kpt8Wv7k42LzN977mWJtZu3o436RvieL42/5aaC7me9/pAdK+tgUA4Kn0AQB8VX7b9oW8VnLqFnZ3Bzm/ImJReK2I65mqOrw0Cs055/EU2C7fccsyeVWabjc8txz3oc6y5PEKbwq+7iuWw7tFtXu0ABmfHtVnP05ZhhhrKaffER87umOMOrwQFYcXke240sK/REwOcbx23wt5fGJ8Gynb8TvbLO4VnOMgu/+kLFZ1jGPF4Yki1iPTvl2OR5K4v+F+Z2mHF4uWtf6FHb6JCb5PS5j9eLK5gnmsnFTLrs0jYh8BANyN77HXIEs0YLpDAIASblbi948AALTz7Ihr29m8Oae2Vdad5l/B/rOvFAAgrJ1ccryz17DCBoaRZmtmZyv3iuPrlri3sKSHjq07svo8t49UPtCNOB98vE8Nyz5WXPx+S5QlfF50t91PM9rFynHxe8NkVHit5HqkCF8X4e0182j2o7v4Drh2JzvOSFdKevoQxFBnwCNWRowbiZWvr4RpmgOck4ggjlz0qvlI7noKVqpT3n2pvgrAMmFEG6EHaropoXv8Y+ai48Pn0PLWX1F50ldQPv8L2P/8z9C5bgk0XwCVJ3/pkMqvOu1qdK5fhuY3/z8Mv/Bm22fhta/CTEQAALq/5JDqKYS/ahjc5bWY88N78N8vnYfWFS+gbP4VebcdfvGPAcuC6mY3V4oKGLFOJFtbENn6DsJrl2L/lteguLyABVjpOPTikag89adQ3ExqpB7ki4OiuuAZeRY8IzNeMv1ltEx8/Inv/wjJls0AAF/dXKQ69iHdxTyNIluXA/j8ILaOIAiCIIi+YME6LAlRDpWh16KhyYA/WDn/6ovx/c8txs5NO1E+adpAV08QRySK6oJ/+veQOvAmVF8tAEAP1QMA0h07+uXBSmD0bOjBCiRbdrC/6+di9LV/R8OjN8FMRA+5fCgKkm37kWzdi9rzFkN1ZbL6VJx4Ofb+6+cAACN+eM2tXf4gvNWjkGgsbGjrTMsMAJovBHe5H+7yOoSmfgrJps2I7V0LRVHhKq6F6p/MJD/OSLp+xrIsRLc8CVfZZLjLpxzWuoihh2UaaH//b+wPVYNvxBxogXKUHH0xLCuBjlXPItG0G57KusFtKEEQBEEQxCeIXj1Y8fo0+HgqZBEO5ucpt8qLWYiakETUhNjn04OZsLeyxDYY+9YDAIZbm1BslAMAIloJAGCYV/gWsC9cG1OsjFAxe7+Fh4LJNGGOFKnOlJLpZCatmUgfme5ksiIZGilC5Bwht84UgN09PexLatDuyEl9WkCm0lf5SnYd/RXW3pO2dCcr6GlfHo5f+EWZzuMQbXVKCA4nmTHKX73VcI+6SPZPKsLS/VlqMdI8jFNESaiqM3xZjGNeKM9QbvCUemLOhCafiraVTyC+fzM8lWOh6gG4K8ch0bQDRixdMNwXANKRFC+Th3460kyG170lDyq6cyu8NePlvoExx2PM9Y9h379/hvYPnoenahJCE06wtV2GjvM2eLLSLUcO8Ac/vE5Pkd0DJTOP2f8V3YvIznVSdiCkBTIFqEhL7Uj5nC3P8dZOhLc249OSKYtLAkSWSd5+IZESZSYjfD3j4btyzIlUiSJFtghf5m1Kte9AdOvTwNanUX3u3dD9FTJMNiXCbnk7hWTGMApoJApQKMw9+/wP9C8q2fNdykZE6LzuXL/Ya6G11rkGyfL49qrj+pAPOVb6uA6JVJhyrAm5qlMalBVCrXo0hNc8h3R4DwCgbO4V8NYMhx50ofKUL6Jr66voWPUsYvu2wlNZh0Q4yXfk40FIBpxh2SKs3837gc9rPUtul1l3+OLhlAYJpYNMnSnSbLI/xVojj59fk0UdIoxdZi3OCu8X51GkeLa87LOUOD7HdnCsPfI8SjlKgWtPvjfl3Od/OuQ2qkfIMHgIfUxIYeDYrw/XO8V+TwP+asSE7Mg5rw/tmmrTEBSQ1yWaYgCAdCcbB95qJnEQEqEkl52lI6IfeFsdshU59w4id5KSFTHPHfvmS9Wctxzxn55Kh5AlDy2QCU9elxSHnFzs71gzpdxMzgtefpabu+axX7ed65TB0007x5bJp4HmWDvMhJDs5l8Is9Opi/9nrumOeyD79IUiUv1KmZ2jD533UOI6l7K3ndfOG+z4TFxDeerqzLzmfcg3kzIW53zhiBTPpqvweOni0mOvn0l3unjK493cC/w1sDTjF9WwH7F87mZxYKzOjp3sbx+TswRVdn/i0di9yVqMAgBoyPzwUpTaCwD4dA37MWlDismNPkqydiYd33GkLIdLvlMxu8RTINZ3cV0Usp3scyLuQ+TZFveIUoVl76OU3JFfS8R44ec1EecSKG4HEROSQIfskrXLLmEWMqwtO1jUcnk56zs3r0MvdiPlyvW1I4ihyICLcdw813va+VCEIIjeYbDsWirX9vYHJbMvhitUhf0v/ExexM1EJwp85egVrqIqAEBgzFx4KkfnfK66vBh2/v9C1Tw48MId6Nry9iHXKbCMNKK71qPp9Uex7b4b0bVpBUqP6b+UzgNJrGEZAEB1F6H1zV/CiIcHuUXEQGHEO9G6PBOtEpxwiu3zZBPLOhWaOG+gm0YQBEEQxKFisYepQ+0f0TMG/MHKglOmIxj04Oc/fWagqyaIjxWKpwQAYMbb+q1MVfcgOOlkGLEO+bOYHqxEqn0vOj76N8xk3yVB3trxCE6Yj3S0HYrmyruNorlgJtmvFrGGNUhH29H+wdOINazJ+ZVJ/BJ6MOKNu7D1jzdh9ffPxea7rsf+F/8CWCZGXfFjVJ96ZZ+PZbCwjCSi219GcMIFKFtwM4xYKxpf+g4iW55FumvfYDePOMy0v/f/wUqzn6erTv0WNF+x/CwVboTqZobv4pUgCIIgCIIYGAbcY6WoOIAzz5qBp/71HqKRGPwB30A3gSCOWIyOTYjvewmK5odnxOmAosGI7oOrbPIhlWum4uhY/TxUtx9dm96Af9Rs6TNSOvdzSEda0fLmn9Dy5p8w/JJfAZYJT/WEXsexuMuGIXFg20G3CYybj8iWZej44Bl0fJB5AKtoLgTGzINv1CwY0Xa0vvMQyuaeh9qzb8gpIx3pQKK5AVv/sBh6qAw1Z3wRgfpp8NaOh6q78oTQHxkY8XZYRgLu8ilwFY1E1aI70Lr8d+ja8Aii219E8bz/g6LTmvpxJNm+G+G1zwMAyhZcjeD4E2X4dirciJ0PfAVWOgktUNrjzEIEQRAEQRBE/9CrByuhIhcsro3zcs1maYgVIdKEhQLsP3NKOwAA5ZF1cn+jYRUA4OgpxXj8MRNtTc0I+GugcpVf0mL7VnmYmm8j2K/atRUeXif7PMK1ewe2dNjaJ7xXMinHMjeXpik8FNjfOXrpQlp8M79+ti9hUc7Un70tqzvPld6kN3V6q/T2eA7F10UwmF4q/UV/plkWHMyDJ775L1BUHWbsAIzObdACI5Bq2wDviIUAsrTnQsMqtMlC1yxSegqNsq4g2d6A1nf+itiu9wBFhaK5UXrMF2AmTK6fDaFq4S3Y+deLAAANj90IAKg46SsoPeb83Pbz8yU8FESdqa4kkm37oIfKoWgKkm274Squhu732dpce94N2Hn/VqQ6DqDixMtRcvS5iB/Yiq6NbyN+YAualv5eTqK2d59D2bxLoQdKWOUqEF73OvY98wtY6ST0YBnGfOUe+bAh3WUCSMjUr0KL7eKeLDKFrNDN87VErC0ql/kqepbeV4qI7RrgdBf3nEnY08e6QrwufrxJ7vsk5JHSD8VuHwFLV2EkmKZa9fmgejTo/krUnHU7Uu27sf+5mxF+/3aUzf06FO9I1ucOz5WCKd3FuCkwJw8lDLTQutTbtSd7zdEcHiGZce/QlBegUNplZ13qITx/c6aCzryv5H3Nahx7X8nMUSMRQePLPwUAuMvHomjqebAMCzpPWRxraICVTiJQPwOVp1ye5R2DvGWL8a/zOSoE8CLtqarlts15PM4Up1Dtc8ZMOa4xjoeZwhdCpvF067Y2G1keaTLDljOFrzONKj8eodnPeYAq/AOcnmLCRyOPB4vCb25Mh4+D01NCtoXfp8j0tY42dHedzuctI4wPepx+We6f3ztN4x4N0psiH6bz/oK9ijVT7Jvg3hQ6X9e0AI9G5P2T7uT+ICL1bQFz77wpn7PmAJDVx9xrJ8cjy+GJV2huFfRayYf0DOIvuvCtyh8xmTPfZcpju9eK8DXKvk8VfSTTK6v2sea8N8jMb/uc0/z8HKTsfoTCo0b4AIl+BAA9yPZJdXAfQrmvyB/uOC7nuSkw1kzDfu8tU4FndZ/F+9KKi3kt7lN41XwOirpkCvRuglblpdm5fmTPMV5WSS1LH26k7WmXdV7n1n2sX9aUMa+UOdaHAIDUHvaqutk9huZmHi16gvlLKm524DNKWSRuJ4Ky7oSLRRYq/DpU42YRwXv8TN69iftSdYbZvUSM+xqJ67rGz5+iiBzejv4TnjP8m56RyBy3jAAusKaK8yXXMc2+vUjxLIZvjN/viPsYXfijCK+4rGu29KzjJ1iUFT7A/Js6+Zri4WMyEHJ9stItWwAO4d7jsEFqoB4x4BErABCJCgNZOksE0VMsIw4r0QK99mSYsQMwY/sBAEbXTmDa9X0r00yj4dGvAQCqzrgZ3qoZAAD1IEZh3uHTobrcaHv3ERRPPw2q29+jusxUHF2bl6PixKsQ27sBu/+xGP76ozHqip/btnMVVWLct/6euQEzgWDwGATrZwMAUp1NSDbvxoGX7kWyZTe2/PZSjP7i7+CtZWa4HR++JOUS6a5WWKbRDw4xQwPL4A9W9IzUQ1EUuErqUHPuHWh+7U40vfJ9uMqnoHjWDQAoeuVIx7JMNL/6Wxg8nXLlKTfmRKS4QpXss4VXIDhm1oC3kSAIgiAI4pPOgHusAMDZZ0yAz6fjvy8sH4zqCeKIxEy0AAC04Oh+K7Pjo2fl/73Vk6ForoL+J76RzBDTFaqBlU7CiIVhJvO70ucjvm8TYKbhqapH86t/AQBo/uJu9srFVVyFwNjZ0LyZX36MrHTQVaddC3f5CPn3zgdv7nUdQxVmJAwoeR5muYqHofKUH6F41heRalkLI9Yy0M0jDgMdqx5HbPd7AIDimZ+Bqyg3tbq7og5QdSQadw508wiCIAiCIAgM0oMVn9eFUXWlWPHm6m7T5BEEweGxmel2lrI8MPMWKHoA3tHn9LnI4LgTEJpyFhSXFy1v3cfKj7Sg/cPH0frug0g0bZLbls//KioXLkZ83xrE9nwEWCZ2PvBlNDx5G5Itu7utq+mV++GtnQDNG0Jsz1oAgH/E1F63ueHJn2Hzby6FEeep+eZfCv+oafJzT+VojP/mA5h069MIjp+DROOOj806k+5qAAAZkeNEUXX46xawbdu3Dli7iMNDbM/7aH//YQBA0VHnoWTWZ/Nup6gaXEUVSHU0DWTzCIIgCILoZyzLGnL/iJ7RKylQdakLSf5rtktoXbmusizAntHUhVjnVyY2s53ad8j9u3axG31/zXCcu2gMfnn3cqx85klMv/AqAICQPSa418r4cvb3OoPV0cG+R8HD/V083BchHbdrd40E+wKqeTLPjVSLaw5Fu7lmU2hanXnVISWLPfctySbf9hndr/i78Lb5cEqnpE9AAQ13T9rVVznWUPY96Qm99Ygp5AeRz5OikO9KIf+KnmDGDiD2we2AoiPdtBx6+dGAZcJKR+AbPgc618xrHvuUNh1pzRU+yRSuf9X8RQjUz0V053JEtr4Jze9HePVLAAA9WI7O9S9g5OV3wFU6Fi544K1dCDPZiq4ty5HYvx5mMobYnjXY+eDX4C4bieCEkxGaOA96qALJjgiaXvkzks07Ac2FxP4tGP6ZHyKyfZlsT3DcNLiCbB4L7b7wUxCvukfoiNnfe+LNMCJtMCIsG1LLsocRHF6GunOvlPtomoqdzzyDrs3vYvwXFiO69gl0rH8fY66+De7iciSEVlno/cXcFN4qItU0Xw+EJt2p8QcAF9cBi7VE5/roRAuL5knyV6l/Fr4uXG6lc4+JaCOLuknxcsS8VtJi3Jjw1MxHfM/raFr6fRRNuxq+YbOhaG45LvWAC/Fd7wIA3GVjYfExJ7xCCnmKCLrzDDqUMdwbD6juthd9k1mHxGt+rxXn/JX+Jpb9/Z600bl2FFoLxTUlZ/+0fU6KcS+uX2pSeFg0Sl8VT9UUhKZcJseh8EMwhNbeq0MvqkSqozHjJ4DcOSXQS9n4dfvZ2Evza2aiSzyws+vsAcDD56m4vsrrjuP4xXgWxyP8PMT7wv9EzAehr/cFmJea8D/IvpHL8XPhaLxM6TUgrq2W3VsihxyvFYdnT/amDu+BXP8LWam9CkfZlmnaN3fMNeFFoelZ/SmNbfgLX95VU/h82NviLLPQeBb+KGJ8WI5zwvZV8h6XQHgmCJ8T6W3n8JrRDH7e+bi30vnPiZLHgyHjAwF7O1U+z7PWYdYWXgfyz2fZP06fo6wxnFO3eJ+PezNh9xwRdYm1xOnJIpD9ZX9b+oZkt8/5Kj1GhHcGP2wzlX+cy+PSxPkVPid2Dw7kmWOeSiYfTbbEbGWK65uU6Dp8ThSH71Wut5SoBwURZYhxme0Fxz7n9wRFbK0QvkfyMBzj3+mt4vSJYe1hfdPVlgCQWRNVbkzS0sLeDxWxNXdvhK2DiTL2Y0560wrWpmARAEDjpv/grwrYAXu5aZqStbq0GCzq1q3yewfulSJsiooCrA0JMfb4OSqrZucowb/7CH+TeNjurWUaBfoDgBHj9xm8DJO/Ki4x5vh4FeeLn/+Eaf9ceGSJOhP8mpQUXntijckaotLDS16f+HrG1wY//24nyupsS8KIpUAQRwKD4rECAJ/99BQ8+vQmPPmvDzD9wsFqBUEMfSzLQtd7t/A/0nDXnQfPyHOQbnobgAJX8eg+lmtizyPfQLrzgHxPPFTx1R2FYZ++FXseuRV7HvlfhKYuQnDC8fBWj0PpnItRPP3TSHU2Irp9JYITTkZ4zb+RaNqM1mX3o3XZ/czITdWhujwITV4AM5VAycwzEBg7B/ufuxMAM3vzVPe+7VP/5w9oWvY8Wt59GR3r2EOEnY/dg+FnXgZVy3jDVB17KrY/cg8URUXTsv8gtn8X1vz4iwhNmAE9VA1vzWh462bAVVTRp/4bDFRPCcpPuB0d79+DjvfvRseHbgRGn4bAhAul70pk23/hrpwGV0k9kpFPkOHbx4hk+w40vfw9AICieVA2/5syS1chXEVVSHU0DkTzCIIgCIIgCAeD9mBFURRcdNEs3P3717C4vRNFJaHBagpBDGmMzoykwzPqfHhGXgCA/yp7sBRC3aJA9fiBTiA4aSG8VRPQtvJRGJFWxHavwda7LoNeVIXAuHnoXLcU7SufRM3Z30VwwvEAAFeoCkVTzgAAlMy8CIquIt3VDDPRjK4t7yDZuhPVp38V3hqWocYygeY3H4IR7QAUFf7R07r9spgPVddRfeL5qDn5fKRjERx47WnsfOR3WHbNCQjWT8Kk63+M0IjRcAWLERw1Hk3vvYqRn7oWG//wA6TCLUh3hdG5ZQ1S7Y1QvUHUX/MreKvHHEI/Diyqy4+SuTci3dWAxL7l6NryHGK734R32Dy4SqqRat8FT/XRg91Moo/E9r6H1mW/ZH+oLlSfeQc0b0m3+7mKKxHd9QEsy6J0ywRBEARxBGJZlNzlSKZXD1YicROj6+zplSu5h2KFh/0yWqzzcLcoC3+3UplwQt3LflF1FVcBABbOi+C++1TccvWPcNfj/0/umzRZ4SpPvzimnIeSmiw+bn8rCwkrqWLhcBGeiiwVYa8y/DE7ZSJ/z1PB2iBSd1k8rVc6yvaVIZUFBnVPQ8YPFkre3YQp9LkznNXsgUzJ2c6eSnhkutEj9Aa9P9JB56MnUqreyiUKpt3kZSe2Pw4AcNWeAveIs+X2rqKxiFsGks3r4KmazvZxSFgKtVdVFCiKguEX/wpQFJn2LlA/By3L/oauLW8Clol0uBFFUxZgxMU3Yc9jP0Xj0t/DN3IaFCWIRPN2dG5YgvIFV0F1eaF5NejBWgC18I+aJsP0RUrXlneeRPOrf0PRUQsQXvMWSmefCt2rSRmTS6RnTkWh+fzQ+fyXaYi5rMPj4zIGt4KW7Rsw6pQzsPOR3wEAurZvwOqfXoe6hWdj278fhZlkYbxt61YBAMbf8Gu4y6qhBSpgJmLYeOd1aHnnKdSc8U3ebylbP4nQ8kwKQva+kP8AQLKD1SFlF1wC4ilna40IfTcc6QJlCDjfz1fB1jOrMcaP27C9aqaQK4qw5hq4h1+A4rL5SOx5CfHG1YjufAWK5oZ72DlIdKZy5nFf06v3JzlynENokzg+XZYhawGQkQSJdNlORL+YheQZedaRnHZq+eevnIOaglTbRqieMmi+SilbMVJpKIqKFA/j1rwmOtc/jc61T7BjClWj+qyfwFVUnlO27DNeRyqchKt8ItLhh9G1bTMCo8axMvicEmNThLmX8uvgsRPZmHvhrTZ72/mc07KkFrF2Ns5z0gcLOYIYa3wfIf0RXSjD+3mRTpmtkMJ4eAppzZOp28ffS/Lw9SS/1ifC/H7DKa9V7HWKedxdukh5brPvHfh8lpmPhVQpLY5XVMaPzxASJx5a70hLa4mszaJApfA1RZHpU+2SNzFuM6mtD56bs9DckvMlz3VeptmVb7AXPWg3Nxdlp/j4cJVwmYaQWfPxIK4Hmf5zpN92psaGPUUrkLUeO9JGizaJFPciVb3pkMDIch0SqHz+ATn3eI5UzZbzGuu8jheQBOXcx3Vz7gDA5HoMjV/7RGprQYrLWERZQjIo+ly0RZxTcT+cXbfJr2OiDzW/kHjwsvh2QkbmHB+KKtY7Pg/0/OuiM50v+6OA3EzI+R3XL5n6XPS5OI/OcS6lY3brAptcko9P5/eJCJcL+7guR+fHdYCnD99RXAcAmDDrPABAcvNrtqrTrmIAQEJnr12WF05akqzsjgQ7nxOK2PeR+gB7LZ7A3n91G5tTuxtYp0W7uDRZdI84Pj3/uBb3DNkyVClBld+bFPu+qlh7xA72so2UXUYt6hLSIOe1M7tumQZbTB2HbDbC1xIhI0rFjYOnhieIIcSgRawAwLDaEG77nxPx3duWYtv6HSg76sgJySeIgcAy0zDCzK/IW38xFDVzU6sFR0L1lCPZvFo+WOkt2REjlmVB85eg+oybkOrci8T+LQCAptf+juJpx6P2/G9h8y8/j7YVj6Ns3lVI7N+A8EfPIfzRc6g6/dsomXV6wXrC65dh7zP3oGrhZUi07IW7rAalMxcCANKRMPb++88wom3o2rEByZb98A+vx9Rv/hyBEYUjSVbf9QPse/0F23tF9RMQbdyLbc8+gpp5J2Lvmy8DAIonzkA6EsbWv/wvzHgEUDX4ho+DmYgh0bSrT303VNB8lQhM/DwCACyDf/m1CqfLJgaW+K6l6Fr/IBTNC9VTCkXTYSY7YSbDUL0V0ANVUD1FSLauh5kIy/1Ck85GZNsbMJNhmPFOuEqGIzTpDCazy4Onoh4AkGjcLh+sEARBEARBEAPDoD5YAYDaambelEjkz3JBEJ9k0u3r5P8tIwFFy/zqoSgKLMtw/PTTNyzLxL6nbkV83zpULboR3qqx8sGKHixFeO0bCI6fg9CUU9G16U2Uzv0CghNOQvPrfwAANC75DVLhPQCA8vmfg+ryyLLNdAp7Hv8FAmNmoOL4C7Hux5/BiIsXQ9F0WKaJ7ff/AJ0bVyI0fgbKZ5+C4Ih6NPznYbx365WY+KVbUTHvDHtbTQOtq1egbe37AIDaE89C+8aPEDvQgPD2TfDXjMCp9zyKDQ+xLEfzbrsL7fsasfG+n6Bi/nkonX0qYnt3IrJzHTRfMcrnX3TI/TdUUDRuAJrO/wsgMbBYloXI1qfgqpgOVfdDcYegqICq+6C4SmDEW2DGGmFEm+AbfgxCE8+FEWtD8+s/R9u7D0Bx+aH5iqC6A4hsfQORbW+hfP6X4K4YDUVzI9bwIYyuZiSaNyG6/V0ouge+4VMG+7AJgiAIgugTVkHVBDH0GfQHK8NqmbfKjs27UDt7/iC3hiCGFumWVfL/8S3/hOopQfLAMsBMyZhyxXVo/kSWZaFr0+uI72MPcTo+eAaJRp7VS1ER2fIeIlveAwCUzrkY6c4mJBo3wVs9EcMu/j/s+9cPYBlJtC1/DADQueF1BMfOQ+15X2Pt3rcVRjSMyNYPEF73NqCoKJl5CgAgsn01OjeuxLiv3oGK2dy7xa2h8tjTselPP8KWB3+N0hknQPP6ZXtbVr2FNb+6CUVjJyPecgATr/wmvMVF2Pj3uwHTxK6lz+DZC+dD9wcAAPuWLcWe115E7SkXYNhFNwEAAqNnomL+BTIrkFOmQxD9gdG1B1YyDP/oM+EqY6nFhbxGhEaLMGghL9NDNRj26fuheTUomkuG1CdatqPxxR9j3zPfA6CwrBM8TF8vrkVw0skom3eelNoSBEEQBEEQA0evHqxs3tCB7buZrrKojP0yOnsSizgJ8JvDSWoDAMDiGSqMEQvk/t7hxwEAlPB2AICrZCQq64Ax41/BumUrsPDSTwMA4mBfiEa42gEAzQkmEaoIsTq64uzGNMn1oTrX4fl5mrgoT2+quTO6PafG3pnOzZkDr7epQQ+G05elu+0K4Uyr3BP62v4jyVulJ34qQ9kIytm2bO+JdPP78v10y8q8+6vBMUhz/anBU1+KL2/Cv0R127XKQqsNTUHbO/9E+7uPyvLkQxUAdZ9ZjN2P/FL+3fYu83sJVpsonVkBVTsJodqfYOPvvptpZ8cBtL//DEYtOgWVs0/Anhe2Z8revgJlU2dh1LRhUBUFbUo5tgLwWq2ormUPT3RNAeBF6PqbsOTLn8IHt16KSZ/9IsaccwkSHe3Y+NzfAADhrevZIbVsR82EE1Bz0y3QdQVNn/40tixdgoblbyC8azsOvPcWiibMxMjPfguJGJtDIkV7TppKRzplRTVs7wv9uEglCwC+KtZuL/eBSHNvAfHQJiV07nycSh8ALr6Xunn+xdrHo00SYSbrEWuXHOdZKRSl14JjaXDOCWdaVidCe95duuXDSW9TxmaTm1ZZ7p237BzvKUc66oOtF7l9xP1INMc1BYAZb2bl+2vknJRePC67z4GIMvJUegF4pI+C9PUpmQT/lx9AsnknjOhuWKkENF8QlpGEr/4kqLpbprGUZYp1QIxnPl783HulqYv7hIjxLdYH6QOT55oj0wyLtLqOlK4ipbuwEOIpQ0WaZmfaVbFmKXz+uLi3isefuT0ZN5o/JG1mka2Ne0xbHwoyKX95H/PjkL4BBdI2y2zd+dKyyqzJvG+454JZSPOv2PvS6UnjRLZZzTUil54xwpcmJ30q30ec72782XLeFz4YZm7/5KQo1+3nXfpUpO11Sw8G7lsnPVkcaVqNQqmQD4Iz/XKhVM+irSpEyliHn4szZXYWiuP4crxfHN5Q4riEJ1DO/V4vbtucfjwC6cfCry1pbiLjLmf3vK5ingqdX3OEF434GznrYq4BjKhT1CG8k1SvmEN8O3HvLL1m7OMjZzwX8KBR7EnN+b4ObxCxZoh5LlI9m2Lt4f49vI1G1DGGHHWK+6DsNN1iDB3Y0sHK4p95eZ/GIvY0vw28KY2V7PMaP5MrF49h58TwlAAA2vVaAIAPUQBAidIFANgUz3hmRdOsfaKKNe3se9PYIvZGhZvdA8wawc5zOs0+b9jnSIUtfK7S4tXuMSawpRXn58ldZJcNi3sb5z2F00NO+jsZdh8XcW8l5oOoUstaq0V7nX4u8rrFz7O4Nqi6ms8GiiCGJIMesQIA80+cipdfWIkbKJsBQdiw0uxi7B52CqxkJxRXAL7RF0BxhZDc/yqim/4JV8mEPpff+s4/bA9VsnGX1aJywfkoO/pUdHz4CnY89AsUTZyF0Zcthre2Xm5XNvMEjL36+9h6/0/gH1aP6F72IGX/Gy+gff0q7Hz6QVQecwJmfPsneOWq0zHxiq/JfUsnHIXR534Wa//0S7gDIdQtPEd+FqwdgZN//Xdse+afWHXPHdjy9CPo3LMDAFAzZwGKR9Zj4xP/wOu3fRuXPLoE3pJSAEDl5KMQHDMFky+9Co+ffzxCI0ZhwuI7WaExkhx+HLDMFIzOnbCS7TCTYSAVhpnsgJUKyygOAFDcIfjHfAqqd3CiOPSi0QCAVOsGuIsOvQ2q7oa3Zjw8ZdMAZL78Jbh5JUEQBEEQRzDW0P4xmDg4Q+LBynEnTMU//rIEu7fswsjxowa7OQQx5PCNvyInikjlv4yYyQ5o3tzMIT1BPFTRguUwulpsn2m+ImZo6wug8vjzUXXip+SvDs5f8aoWnAMzFsb2h+9GaOxUjDjrUlQfcwLW3ns7AKD2pHPQumYlzFQS1XNPlPt17t6GyN7dsIw0tv7rQduDFQAoHT8Z8/7np5hw8ZX44N5fyAcrJ/38XqhWGhuf+AeMeBxN6z5C3fyT5H6mYWDtP/8MACgZP7VPfUMMLSwzjXTbOqSaliPVvAowWGQiFA2KqwiquxiqpwjQMr/Apds3ouPdH8Ez/BT4Rp4NqLmZGQ4nqqcUelE9ks0fIjD6xO53IAiCIAiCII5IevVgpbTKi1A5k/54efhviHtUejTxdM0eu2opmZA7hceWmZ372Rs8I8nso0fA5dKx9uUXMWP02QhpQVtRAJMCDQuyOjpibL/mNvbrcyeX/qQ6eSgeD0VTs0LcnKnEZGSMjDDML8foS1g64EgtVjA8N+cd2/bOcH7nF+u+pBQ+1DTKQykNc39IgPpD6tXf5OtbVVFyxqRePAXQfEjs/g+Cky9n74kUpSJcmYeCihSY3momWwnyV1z4BWhuD6ZfdiV0rw9ta1Yi0rgfW19+DvtXLkfLkz9BSf04vP/XezH5kisw+4bvQFEUmHnCm8dd9yXM+dxn4PIHoOpsaRnxf3fiha9+Hq3L/wNfUQmKR9Zj9BSWscTjUrD07gfQ/OFyjDt5IeZ+4WqMGJExvY2neBpPw0LZzCkY84f7se2/S9C+czvKQho0VccFv/8Lnr7hGrz6g2/jc489C1/NCADAB3/5HTY89iBmXPcdjP/05xHjIcVu3j8JnrZVhKSmk3ZpkJDxOOeo5mHH5Q5lsjNVj2TrlcHnfDSStpUtQ8T553rIvhZlQut5SlyRppmP7xhf35wpk7NJO1OjFqC7+dCdJCj7fWdacec+3aUdP5hswTJTMCJ7YHbtgiH/7QHMBFR/Lbx1Z8BVPguavwKK7ofu0W1lZtJldyGy6Z+I73gW8R3Pwj/hc/DWnS7D2nNSP1v51/2DSaRMWQaXBMh1nH2uFY1DqnVNTl1CIuEuY+e7Zia7zs2ZVgQA+GhzBEAm7ScAxPn/q0exMTetnoWIv/xqEwAgup+FnZsRLiOL2eUqvhJ2TezkcrQu7i0kZEzO62B2yuMc2ZzzGimkQbpIq2w//x4hV+BSAyTtYzbebo+6Ka7IPAQrC/BUp622TTJyG6lsUHgd+cPZc2SXDomfm6+TImUokAl1FyHyKZ7iWcgJZL/I88vLFtIIMabS9s/F9d6ZftZmPG2KkHnRXiE344frFumkldx9gcz9TaF0yw4Zh5CBZCPnBq/bmfY0s77xuecI8xdyDpny1iGByxxrbhtNfhMoJD3OMSXTL+v2tVGOTT4ncyRBYp3IqRGyz+Q9Yj55WHZd/Hi8w5hczeC6DiH5lP1QIOW77XgMx/Hq9jklxojwBEup7Nqg83td1cjMVwAwYs45C1ubsnVKOWPMkZLaSUbSxa+d4vicdYivBM70y1n9KfpadYn5yxsjJHBCuuUR/eJIw823FymiRd/LGsS6EM8d3zLjeJzPAS+XUQkpFG93kvd5mr//Et/xwOhqAMACbkUQQicAoNVg46FIYwdRbLUBAAJ6iay7Pcn7kHdVK0/lHE+za8PEUvZ5jY8dz/ga9r6H9/2a1W22tpqO+S9kOTqXStnvme1rvjgH7mIPshHfZTJySvuYkrJRISETUkCxvsvrQuZ8u7mcUl6vxSVEzG/HabIMq7CMkyCGGEMiYsXv9+DYBRPwwlNv4bJrzhrs5hDEkCTVth7x3S/BSseh6H746i+Ed/hCxPcsRWDS56DkPqnrlslXfRMA4OY+CMPmMAPp+rM+hU1PP4oVv/kJdr22BACw/rG/o3zSUag/7eyC5XmKim1/K6qK4cediHUPPwDN7cH4sz9t+7x09FhYhoF4OIyWHdtQNWky3H4/8qEoCsYuXGR7r27ucTjthz/Hyz+8GS/dchMuvP9hdO7fi42PP4ipV3wFEy68vBe9QQwWlplGqmkFjPa1MCK7YUb2gd3yKlD9tdCCI+GqOBp66VSogTpoaq6fST5UdxDuyqOR3P82ACC66SFENz2EomN+BC1Yd5iPiqOoNnkSQRAEQRBEIfrwuzkxRBgSD1YA4LIrTsL119yLv937LD53w6VQ8xi5EcQnDa1oLFRXERIHliO6/g/QQqOgequQDm9FZP0f4a49EZYRR3zPa/DVndJv9SqKggnnX4JkZxguvx+jTz0bS2/6Chreef2gD1byMXze8fjogXuQjsUweuGZts9mXnENisuLsfW1/+I/P7oNL/3kdkxadCYWfud70Ip6J286sHY12nftwJu//jl0XwCTLr6yV/sTA49lJJDc/zqSDS/BSrRCDdVDLxoPddip0IIjoQWGyxTSfcWI7gMAhGZ+A13rH4SVaEf4vR9AKxqH0PTFUHRffxxKXizTQKrxXbjKpx22OgiCIAiCIIjBZ8g8WDn+pCn4wlfPw29/+hDuv/tp/Pv9v8IfOHw3vARxJBCcfhM63vwqUjztsuYfBi1QBzPRDisdgad6PqzYbnStfQDpzt0omX45FM3VTak9Q1FVTLviSwCAWGszWjevR+vm9Zh44edQPml6j8upmDwNi+76K1xuNyom2v1OVE3DzEsuxcxLLkVHw25sff1VvP2nP+AvnzoXJ950MyadfX635b/+y5/J/z9zwzWINjfihB/fBZc/gPQAhI/GmvahfeNq+IfXI1g39rDX93HATHUhtXcpknuXwkrH4Ko6Fu4RZ7IHKf0sz/NUz0Ny39uIbn4Cpcf/GqnWdehc9UsY4S1of/N6BCZ/GZ7a+f1apyC5/02YiVZ4hi88LOUTBEEQBPExgsxrj2h69WDl+KkBhLj+zss9Vco9TPsX0nhqvVTUtk9S+KUA8BuNAIBUO9ODW1yb6eFmgzfedBbeeXUVNq7fA7fRic3mRABALdcXrmxkXxgNrjuWfgBCCym0flxXaGTphXWumRb6YKeW3Inp+ELW00Ge7a3SW5x1CE8FoYvsi6dKIU+YvpTVk/0Pp/dKb9p8uL1VnMfZk/L6slAm970u/+8ZeymSu55H8gCTNfgnXgXV7UdwytXQgiMR2fhPREvKUDztEpl+UaRs9VUyv4Ky4Ww+Dqthf1cV89SCwouFa5rFK8/WjHtuvEm2o/mVpzBrwdEAgHyBZUImKzKBqgowYdE88KbI+Zww2QZSal8xAsfOuByfueJM/P22O/DSD74Hb9NmnH/j16HpOqJxAx8tfQ3bPvgI5XV1qDpqJqrGjcXU0xZi1VNPo2z0aJimhakXXITpi9gXWeHT4uaa5ATX+xfz/hHtj/P3W/azNIZCAyx0wc5sZT5PGtv/9QCa3n0NXbu2QhR24j3PQOfZX9xc753kr3JNUe0CYsWxjkkvFu7B4eFa5Rj3dsiXbll32bX1gkJ+Tc7PnRTyWsnnmyK26c5TBQAsy0Ry51NINDB5mbv2RHhGLILqrYDusvsICKSfhJ472MR66/RWEOu9lTaBwAiYEy5G+IPfwYjuh7v8KJSe9EfEdjyL+M5/I7L+PqieErjKpkivEYMr740erOfO485ec+N7X4Or/Ci4ikfJtmkyRahua6ugMsC2u+RYptFfsTvThhQ/97NGsH3qA8xjwXM6G3PPv8yusUk+VoQviPhbpFU2+Pj3co+OCPc3kenZ+XapaEbCJDwVNOHrwftGpFGWWn3Nfi40t31suvh8EOlME9wPIcW9iRLcRyYRyDwgbo+xsueO554y7XybjqStLWKaCr8PMedyxrnDF0aka3XxOktrMnJEcVxdPPNShHsMpHl7lQLeA866pFJTta8pmRTCueUIfxYRwZv5TBqB2F9h/zi3LXxzXXhOcI8db55bQb6tWIfSPH0yLEedXt6HPvt5FvuJ+zBV+Pgo9nGS47WCrDkk/laFf4ujr8R2hj2FeY+v73nWP+k+kjYOvq3wceFTJLqDeWu4hN8JX5MtzT7WTIcfVvbYlNcCh9eKuFO3TPt6J8ag8DfxVNl/jJTzwOnB5fQmQrb/Cp/Xce7lxuer9GBR7NcGsS7Le1/hFSSPS7za/YFs7RRp7kUdDm8gZ6pvp0eOeNvpoSL2F+tZji8SslKWq8IbxO4JpKj2NNoJviZ28DZtb2afTy1jfR/QmDdWUGPrRZfJvzOpfv55tiyUzZEDYVZngrerg3+NiiZZ2SF+zRA+k1sb2ev9Z3wAAGgtmgkAeK2FXQfe2cjuY5r3sYLSCfGdKHPcpiNNupg7Vtp+XsX5FvPb+Z1C7g/7GiV9zPhJSscy4zzN+1CkehbbyFTdYoxlrd9GnnWCIIYiQyZiRTBtxmhsXL8Hnz3jFvzk1eegu/rn13eCOBKxROYTAIplIXTcb6DChJXqhOYrk5/5Rp4Go2sPIluWouioi/q9HSd+8UqMmDoFb/zt79i3YUO/l59NUXkprv/dzzByygQ8/NM78f6S13Hy5Z/BC3/4K1r2NKCoqhKdzS2wTBMurxepeByBigr4iosRj0Shuw//mrHxgV+hYelTAIDR53wWO557BKWTZsJTWo4e+sh+4rAsC4ltDyO59xV4Rp4D9/DToLqLBqRu1cPq6Xj7FpSefC8UzQf/2IthpeNINLyMzg/uQMnxd/Vre9LhbTDC2+AZd3G/lUkQBEEQBEEMTYbcg5V/P7UcALBr+35cP3MhpiyYi6tu/w7Kh9UMcssIYuDxjjwLyf1vwYw3IrnvVXjqzoCi6FA8pTnbKu5iGNEWhFc/jooT+te0dcaZizDjzEWIx5NoWL26X8vOh6IoOO/6L2Lqgrm4/5af4x/f/ynqpk7G9X/5PaomTEAiEsGGVevQsHoNimtrkDIVPHHjYuheL0rqRh62drWvXQEj2gndH5Dvtax+DwBwzG2/h+pyAwY9WXFiprqQbPgPknuXwjv+SniGnTyg9WuhzJgwo43QgqMAAL4xFyPR8DIAINHwCnz1n+q3OmPbnoTqHwbvqN55EhEEQRAE8cnEgkVSoCOY3qVb9ljwuewnO5ziYe48PNTtZh4DLWmeeszKpIoMxtcDANLRLgBAtIlJgjzV9WyDZBd+/8er8Z3FD+HTn1mAZm89Xv3nY7hhzpmYfOxsTF90KmYtWojKKpbNoSvOfpnewwegCFUVoafZ6d1kCK0ItUyKsHtH+kUZpsv+LhR+VigNcz66C0s1epCGr68MdDrhnsh1upMLHapMCej7cXfXtozkoPA2TilDb7Edv6IjNPO7SLWuhrtyJlRNlaH4Xp6mVch+YlsOAADCqx9D9WnnwFNRhxAPaR83jkmAKkIsnNPvZschou1FJLiLh8PyqFD5t8rDt9VkBMGQH6OKLdvn2duUubgMweIhwpa9T00e4O3jkpiAlv98J0wVY2ZMxc1P/RMNGzahsn403F4vfJoBuL0oPukY4KRjAABdKQUr/no/dq9eg3RnO0IexXZcIR7qXx7y8zbZ6+riaSnLilmHiFTuYl4XF7nQtmkd3v41y6J00m13YM9/HoeRTKCTS4He+c7nUTP7OLRs2Yh40354quow7sob4Stl6RhlukLeFmf6Qhliq9hTv4pQbF1IEfZn5JaGWNdkCDUPeXaM40Kp2p3zJEeOKKQ1PKw9UJt5oCRDg9P2skzDhJmKIR3eh0TTJnRtXopU63YACopnXYbi6fl9c5xyK5NLoIScxRXMRCKJOSbWfHncQgqg2Seou7QC/s//Ew1P3IB0yzK4Skbz/bwITf8GOj+6C2YqljluESrfTfrp7M9EjQYspJpXItW6Br7J1wGWCitLM51J8cvTeHIZTvPGdgDA41zeIlInq1kpj0Xo9IfLWQf4y9gYCRazvgryNSHKw7ijjTz9Mr+OxZrZMTbyv4OVdumACA93eVlfe7M+F2lGY7y94nyJ8SlkJRlJgGMsCSkRT8Ue4CnLfXwRauPHK67f4cbMOF/Nyx62gEXpLZrLIouW8E5v2xOx7SuPJ2lPASpwLvPicxGinspKBV3O0z4nedkJKTOzy1Hk3Onu+iW2d6b1FXKPrHsSmbpZzFPFcf1R7ONeriWiDMd1SshzhPxIjC2RntaWXlvIqxxpcsX7Qiogzrtog0wLLzShQo4I+7iQKYTFOphVh1OG0J10W8gnZepzh2xQniOHtC9vsYZYhw9aZQ5CbpPsYPND9KWQn8i1SaThFilys+7/LMe6LI/bkVRMSGdEincxv+P72DzwDgva3ocjzXRu2uWMdMMptxFjQ0qfROpjKeVytFnIenLGoNAIHaRjxdjR7a8ufi00hcyfj7lMKnDxml8K5ilnc1hIS7ICgTNVO64ZYu2QqaCFjJKPIbEeHGhi53uJi62VZ9Qz0/3GBJtrIRdfa1V+PVey5Dj8v+J+THRWmvedkDKLqXQgyv4zZxRbLDb7TwAA1G+6DwBwPpctnTv3ZADAWovZKby+k+3XFs4MpC6+1oX5vU680y4flemTZUpku6yqkGRXyhfF+MjjcyeGtZByivkuU7E7JG+qrsBypusmiCHKkItYmTN3LF599xcAgJXu47Ho2ivw4fMv4t0X/4vHf/YrPPzD/8OIaUfhvFv+Bxg2c3AbSxADgOoth2fYyblfgo00IttfRapjCypOvA6VJ38NFQuvwd7H/xc7H7wVY758J4D8qYv7Stve/SiuquzXMrtDVVXUTZmUTw4vURQFp9/wFdx/3dfhCQQLb3gINK9dJf+/9T/PwkgmbJ937tqGzl3bAACjz/sc9i9/Het/dysmfffPh6U9QwnLNNC54SVEdryNdMdeGLE29oGiwjfiaBRNPR+e6snQAxWD1kbV5YVvxLGINayAt/6zUjvvrjoaRXN+BtVX1S/1GNF9iG36C1yVx8BVOadfyiQIgiAIgiCGNkPuwYoTf3ERTr38Ypx6+cVoao9jzatv4vk//g33XnYFxp9/CY7+yrcHu4kEMeCYiTD2v/BzpMMNAIDS2ZdAD1aia9N/oYcqEWtYh+0PfA9Ft/0ZmtvbL3Ue2L4L21Z9iItuvrFfyhM0bNmBP373JziwswHzzj4FZ19zGWpG1/W6nOmLTsNXn3wCRVX98wXZyaYn/yH/v+edNwpuVzJpBiZfcxNM3Yfdzz4Iy7JyojE+ThjxMBpf/hmSzVvgHzkHngmnwVVUC71oGFxFtVDdge4LGSA8lVMR2fIizEQbNF/mIY8WqO2X8q1UF2Lrfg/VXQbfhC9+rM87QRAEQRD9TFaE65BiCDZpKNKrByvxrq6Cn6k6CxuLuFj4bpQ7qmtaRgrU1cnCkKM8fDvKQ868XTy0OM3j85IshC7m5vVpIoRQw1EnLUDt3PlY8egTePG3d2P3G6+g4vQvo2jKfBgJpxQoE9aqKPbMHEaCZxNIsjrNVNJ2PCKs00znH0n9KQVyhqfmfN4P0pihhNXNl43BPN7u2ibDYQ8iBUKB09nThdJ5/LJNQpagqkg2f8QeqigqVG8RVE8QjUt/i8jWN+AqHwWYaSQO7MDeF/6B2kWXIckihJFQeEYSHnoqMzPzqZLmocVpfnwpxUSkrR1rXnsDz975BxRXV6F6TD2W3PdXlA6rxsxTjpftFFKgaA+lQCosJGJx3HbRtfAE/Jh5yny89vhz+M/fHsO37/k5Jp7AUuDGDe7kLyLt+XoQNzInIc4bXDaSeWnE+FolsqiIaFQRES26OHxgL4IVVUimeAiulATYpUBJqIge2AsAcAWCSEVY+Yquw0qzdaxs8nS0rv8Iiu7Cxofuwa6nHkD1iefCjHOJQzzO6xYSILsUyEzkl1DItSjF1kkrnZGs5GQiEeOzj3Os0Bi1FJFNIVOuommwLAt7Hv4iAKDqjNvgrRwvM1rI9iftmeIKkSMFksctMl9kSYFEcpCUXQokM0+YjglqiYwHPMrIMmGmY1kSARG2bs904JRpHQwj3YHourthJTvhn7aYlxuDJeZBivdhUkgA7PH9RoKHYMfENSrKjzVzHTPcKV4Wz0zDr6FpMedEqHwsZSvDmXlFhNKnuQRObC/GRZovDErWHEunRBi9PVJL9JmUAonJJvtMZBURGZfY32kPvwYLtUI8xtvMQ9CzQr/TLp4FqItJoQyxXnFZsRG3y4hEGL+ZOLgUSIxryxTSE962zBSTmZHSsbijrpStDlGnGJymlHoU8FwqkB0ou62KKbbRbA13SoHEWBJzpZAUSMwh5/zPzKNcKZDsy5R9TRRzShEXQ3lR5GWIfkjapSTOjD5inufLjpPTN6aVt4yc/axDkAKJsrq5FSh0XyfqzvSlPVuSPBbRv1lzs9C6nPOAVhxeRk9ma7OREONC3OfytaYn963OjIdyaRVZkLhMw+B1OPtUniN7W52Z2/IijsMUE5SvGWIei7GYPLgUyIkRt0vFnJJB1m77vnKOWWxNUMR5NLl8TuVrhcaz/0VYmdFO1rYYlwLpXAoUcXG5YtZ4iHex9iT4a5KvsUIKpPHrrc7v11xp9sqXTkQNnnkokuRt5teYTrZGxawu3ja2n8i8BmRdO8S1Ip7kr/w6JOwS5LrEr6FCl5Sjp+TzWdzXOKRAzjXYtquUBYrMgHZ5maJm1l2CGOooVg++xcbjcdTX12P//v0D0SaCIAiCIAiCIAiCQE1NDbZv3w6vt3+isIcid911F77z0wdRNPMbg92UHFpeuR4frFyG6dOnD3ZThjQ9iljxer3Yvn07kslk9xsTBEEQBEEQBEEQRD/gdrs/1g9VJENVCkT0iB5Lgbxe7ydjQBMEQRAEQRAEQRAEQfSQgzlFEARBEARBEARBEARBEAdhyGcFIgiCIAiCIAiCIIiPMxYA6+A5TYghDEWsEARBEARBEARBEARB9BF6sEIQBEEQBEEQBEEQBNFHSApEEARBEARBEARBEIOJZVFWoCMYilghCIIgCIIgCIIgCILoI/RghSAIgiAIgiAIgiAIoo+QFIggCIIgCIIgCIIgBhELgGmRFOhIhSJWCIIgCIIgCIIgCIIg+ghFrBAEQRAEQRAEQRDEYGJhSJrXWhh6bRqKUMQKQRAEQRAEQRAEQRBEH6EHKwRBEARBEARBEARBEH2EpEAEQRAEQRAEQRAEMYhYlgVzCEqBiJ5BESsEQRAEQRAEQRAEQRB9hB6sEARBEARBEARBEARB9BGSAhEEQRAEQRAEQRDEIGOZg92CPJA6qUdQxApBEARBEARBEARBEEQfoQcrBEEQBEEQBEEQBEEQfYSkQARBEARBEARBEAQxiFgWKCvQEQxFrBAEQRAEQRAEQRAEQfQRerBCEARBEARBEARBEATRR0gKRBAEQRAEQRAEQRCDCUmBjmgoYoUgCIIgCIIgCIIgCKKP0IMVgiAIgiAIgiAIgiCIPkJSIIIgCIIgCIIgCIIYRCxYJAU6gqGIFYIgCIIgCIIgCIIg+oV77rkH9fX18Hq9mD17Nt54443BbtJhhx6sEARBEARBEARBEARxyDzyyCP41re+hVtvvRWrVq3CCSecgLPOOgu7du0a7KYdVujBCkEQBEEQBEEQBEEMIhbPCjTU/vWWX//617jmmmtw7bXXYvLkybjzzjtRV1eHe++99zD02tCBPFYIgiAIgiAIgiAIYjCxDFhGbLBbcUgkk0msXLkS3/ve92zvL1q0CMuWLRukVg0M9GCFIAiCIAiCIAiCIAaJUaNGAeHVMD/69mA3JRfVg0AggHA4bHvb4/HA4/HY3mtuboZhGKiurra9X11djf379x/2pg4m9GCFIAiCIAiCIAiCIAaJCy64AOFwGJY19LIC6bqOO+64A7fffrvt/dtuuw0//OEP8+6jKIrtb8uyct77uEEPVgiCIAiCIAiCIAhiEAmFQoPdhILcfPPNWLx4se09Z7QKAFRUVEDTtJzolMbGxpwolo8bZF5LEARBEARBEARBEERePB4PioqKbP/yPVhxu92YPXs2lixZYnt/yZIlmD9//kA1d1CgiBWCIAiCIAiCIAiCIA6ZxYsX44orrsAxxxyD4447Dvfddx927dqF6667brCbdlihBysEQRAEQRAEQRAEQRwyn/3sZ9HS0oIf/ehH2LdvH4466ig8//zzzKD3Y4xiDUWHHIIgCIIgCIIgCIIgiCMA8lghCIIgCIIgCIIgCILoI/RghSAIgiAIgiAIgiAIoo/QgxWCIAiCIAiCIAiCIIg+Qg9WCIIgCIIgCIIgCIIg+gg9WCEIgiAIgiAIgiAIgugj9GCFIAiCIAiCIAiCIAiij9CDFYIgCIIgCIIgCIIgiD5CD1YIgiAIgiAIgiAIgiD6CD1YIQiCIAiCIAiCIAiC6CP0YIUgCIIgCIIgCIIgCKKP0IMVgiAIgiAIgiAIgiCIPkIPVgiCIAiCIAiCIAiCIPrI/w/D7CIm/jn8mAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure(1, figsize=[15,10])\n", "\n", "# We're using cartopy to project our data.\n", "# (see documentation on cartopy)\n", "ax = plt.subplot(1, 1, 1, projection=ccrs.Mercator())\n", "ax.coastlines(resolution='10m')\n", "\n", "# We need to project our data to the new projection and for this we use `transform`.\n", "# we set the original data projection in transform (here PlateCarree)\n", "cams_AOI.isel(time=0).plot(ax=ax,\n", " transform=ccrs.PlateCarree(),\n", " vmin = 0, vmax = 35,\n", " cmap=cmc.roma_r)\n", "# One way to customize your title\n", "plt.title(\"Copernicus Atmosphere Monitoring Service PM2.5, 2 day forecasts\\n 24th December 2021 at 12:00 UTC\", fontsize=18)\n", "plt.savefig(\"CAMS-PM2_5-fc-20211224.png\")" ] }, { "cell_type": "markdown", "id": "a1d63f43", "metadata": {}, "source": [ "In the next episode, we will learn more about advanced visualization tools and how to make interactive plots using [holoviews](https://holoviews.org/), a tool part of the [HoloViz](https://holoviz.org/) ecosystem." ] }, { "cell_type": "markdown", "id": "144e3997", "metadata": {}, "source": [ "## Basic maths\n", "\n", "PM2.5 values are in µg/m3 and we can easily convert them in ng/m3 by multiplying the values by 1000." ] }, { "cell_type": "markdown", "id": "6abf28d0", "metadata": {}, "source": [ "Simple arithmetic operations can be performed without worrying about dimensions and coordinates, using the same notation we use with `numpy`. Underneath xarray will automatically vectorize the operations over all the data dimensions." ] }, { "cell_type": "code", "execution_count": 30, "id": "d1d77fd5", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'pm2p5_conc' (time: 97, level: 1, lat: 155, lon: 450)>\n",
       "array([[[[  855.6641 ,   852.48096,   833.32465, ...,   879.8937 ,\n",
       "            902.90106,   865.896  ],\n",
       "         [  885.7343 ,   891.02075,   878.97   , ...,   971.65314,\n",
       "           1061.4657 ,  1015.5647 ],\n",
       "         [  893.89136,   828.7204 ,   800.25604, ...,  1032.3335 ,\n",
       "            990.852  ,   982.55286],\n",
       "         ...,\n",
       "         [10043.194  , 10672.565  , 11238.228  , ...,  7507.282  ,\n",
       "           7414.5137 ,  7444.7827 ],\n",
       "         [13826.692  , 14108.494  , 14563.739  , ...,  7519.0063 ,\n",
       "           7214.311  ,  7085.4043 ],\n",
       "         [14878.069  , 14873.55   , 14858.358  , ...,  7069.7866 ,\n",
       "           7237.475  ,  7302.5605 ]]],\n",
       "\n",
       "\n",
       "       [[[  868.89185,   899.5873 ,   930.3964 , ...,   936.80554,\n",
       "            839.1485 ,   772.7412 ],\n",
       "         [  858.319  ,   891.28815,   934.2618 , ...,   772.7412 ,\n",
       "            733.67554,   716.23883],\n",
       "         [  873.09827,   925.96265,   940.6993 , ...,   729.8386 ,\n",
       "...\n",
       "           6790.51   ,  6748.986  ],\n",
       "         [ 1623.8978 ,  1855.4778 ,  2173.332  , ...,  5969.662  ,\n",
       "           6049.47   ,  6131.5386 ],\n",
       "         [ 2051.7156 ,  2147.7383 ,  1941.084  , ...,  5981.9263 ,\n",
       "           5846.8096 ,  5826.9146 ]]],\n",
       "\n",
       "\n",
       "       [[[ 1362.0598 ,  1371.5527 ,  1349.8243 , ...,  2480.518  ,\n",
       "           2496.761  ,  2526.6606 ],\n",
       "         [ 1398.2976 ,  1351.3591 ,  1315.5477 , ...,  2294.1143 ,\n",
       "           2327.9363 ,  2370.2136 ],\n",
       "         [ 1287.1544 ,  1304.108  ,  1268.4387 , ...,  2281.4312 ,\n",
       "           2239.3528 ,  2212.153  ],\n",
       "         ...,\n",
       "         [ 1829.8173 ,  1892.3165 ,  1997.889  , ...,  6986.432  ,\n",
       "           6914.4253 ,  6935.685  ],\n",
       "         [ 1650.3838 ,  1853.0875 ,  2025.124  , ...,  6504.3003 ,\n",
       "           6350.027  ,  6176.655  ],\n",
       "         [ 1954.8159 ,  2019.9797 ,  1916.7521 , ...,  5647.4995 ,\n",
       "           5836.5464 ,  6040.9556 ]]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 69.95 69.85 69.75 69.65 ... 54.85 54.75 54.65 54.55\n",
       "  * level    (level) float32 0.0\n",
       "  * time     (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n",
       "  * lon      (lon) float32 -2.45 -2.35 -2.25 -2.15 ... 42.15 42.25 42.35 42.45
" ], "text/plain": [ "\n", "array([[[[ 855.6641 , 852.48096, 833.32465, ..., 879.8937 ,\n", " 902.90106, 865.896 ],\n", " [ 885.7343 , 891.02075, 878.97 , ..., 971.65314,\n", " 1061.4657 , 1015.5647 ],\n", " [ 893.89136, 828.7204 , 800.25604, ..., 1032.3335 ,\n", " 990.852 , 982.55286],\n", " ...,\n", " [10043.194 , 10672.565 , 11238.228 , ..., 7507.282 ,\n", " 7414.5137 , 7444.7827 ],\n", " [13826.692 , 14108.494 , 14563.739 , ..., 7519.0063 ,\n", " 7214.311 , 7085.4043 ],\n", " [14878.069 , 14873.55 , 14858.358 , ..., 7069.7866 ,\n", " 7237.475 , 7302.5605 ]]],\n", "\n", "\n", " [[[ 868.89185, 899.5873 , 930.3964 , ..., 936.80554,\n", " 839.1485 , 772.7412 ],\n", " [ 858.319 , 891.28815, 934.2618 , ..., 772.7412 ,\n", " 733.67554, 716.23883],\n", " [ 873.09827, 925.96265, 940.6993 , ..., 729.8386 ,\n", "...\n", " 6790.51 , 6748.986 ],\n", " [ 1623.8978 , 1855.4778 , 2173.332 , ..., 5969.662 ,\n", " 6049.47 , 6131.5386 ],\n", " [ 2051.7156 , 2147.7383 , 1941.084 , ..., 5981.9263 ,\n", " 5846.8096 , 5826.9146 ]]],\n", "\n", "\n", " [[[ 1362.0598 , 1371.5527 , 1349.8243 , ..., 2480.518 ,\n", " 2496.761 , 2526.6606 ],\n", " [ 1398.2976 , 1351.3591 , 1315.5477 , ..., 2294.1143 ,\n", " 2327.9363 , 2370.2136 ],\n", " [ 1287.1544 , 1304.108 , 1268.4387 , ..., 2281.4312 ,\n", " 2239.3528 , 2212.153 ],\n", " ...,\n", " [ 1829.8173 , 1892.3165 , 1997.889 , ..., 6986.432 ,\n", " 6914.4253 , 6935.685 ],\n", " [ 1650.3838 , 1853.0875 , 2025.124 , ..., 6504.3003 ,\n", " 6350.027 , 6176.655 ],\n", " [ 1954.8159 , 2019.9797 , 1916.7521 , ..., 5647.4995 ,\n", " 5836.5464 , 6040.9556 ]]]], dtype=float32)\n", "Coordinates:\n", " * lat (lat) float32 69.95 69.85 69.75 69.65 ... 54.85 54.75 54.65 54.55\n", " * level (level) float32 0.0\n", " * time (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n", " * lon (lon) float32 -2.45 -2.35 -2.25 -2.15 ... 42.15 42.25 42.35 42.45" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams_AOI*1000" ] }, { "cell_type": "markdown", "id": "54f692ca", "metadata": {}, "source": [ "The universal function ([ufunc](https://numpy.org/doc/stable/reference/ufuncs.html)) from numpy and scipy can be applied too directly to the data. There are currently more than 60 universal functions defined in numpy on one or more types, covering a wide variety of operations including math operations, trigonometric functions, etc." ] }, { "cell_type": "code", "execution_count": 31, "id": "dffbbf28", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'pm2p5_conc' (time: 97, level: 1, lat: 155, lon: 450)>\n",
       "array([[[[  855.6641 ,   852.48096,   833.32465, ...,   879.8937 ,\n",
       "            902.90106,   865.896  ],\n",
       "         [  885.7343 ,   891.02075,   878.97   , ...,   971.65314,\n",
       "           1061.4657 ,  1015.5647 ],\n",
       "         [  893.89136,   828.7204 ,   800.25604, ...,  1032.3335 ,\n",
       "            990.852  ,   982.55286],\n",
       "         ...,\n",
       "         [10043.194  , 10672.565  , 11238.228  , ...,  7507.282  ,\n",
       "           7414.5137 ,  7444.7827 ],\n",
       "         [13826.692  , 14108.494  , 14563.739  , ...,  7519.0063 ,\n",
       "           7214.311  ,  7085.4043 ],\n",
       "         [14878.069  , 14873.55   , 14858.358  , ...,  7069.7866 ,\n",
       "           7237.475  ,  7302.5605 ]]],\n",
       "\n",
       "\n",
       "       [[[  868.89185,   899.5873 ,   930.3964 , ...,   936.80554,\n",
       "            839.1485 ,   772.7412 ],\n",
       "         [  858.319  ,   891.28815,   934.2618 , ...,   772.7412 ,\n",
       "            733.67554,   716.23883],\n",
       "         [  873.09827,   925.96265,   940.6993 , ...,   729.8386 ,\n",
       "...\n",
       "           6790.51   ,  6748.986  ],\n",
       "         [ 1623.8978 ,  1855.4778 ,  2173.332  , ...,  5969.662  ,\n",
       "           6049.47   ,  6131.5386 ],\n",
       "         [ 2051.7156 ,  2147.7383 ,  1941.084  , ...,  5981.9263 ,\n",
       "           5846.8096 ,  5826.9146 ]]],\n",
       "\n",
       "\n",
       "       [[[ 1362.0598 ,  1371.5527 ,  1349.8243 , ...,  2480.518  ,\n",
       "           2496.761  ,  2526.6606 ],\n",
       "         [ 1398.2976 ,  1351.3591 ,  1315.5477 , ...,  2294.1143 ,\n",
       "           2327.9363 ,  2370.2136 ],\n",
       "         [ 1287.1544 ,  1304.108  ,  1268.4387 , ...,  2281.4312 ,\n",
       "           2239.3528 ,  2212.153  ],\n",
       "         ...,\n",
       "         [ 1829.8173 ,  1892.3165 ,  1997.889  , ...,  6986.432  ,\n",
       "           6914.4253 ,  6935.685  ],\n",
       "         [ 1650.3838 ,  1853.0875 ,  2025.124  , ...,  6504.3003 ,\n",
       "           6350.027  ,  6176.655  ],\n",
       "         [ 1954.8159 ,  2019.9797 ,  1916.7521 , ...,  5647.4995 ,\n",
       "           5836.5464 ,  6040.9556 ]]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 69.95 69.85 69.75 69.65 ... 54.85 54.75 54.65 54.55\n",
       "  * level    (level) float32 0.0\n",
       "  * time     (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n",
       "  * lon      (lon) float32 -2.45 -2.35 -2.25 -2.15 ... 42.15 42.25 42.35 42.45\n",
       "Attributes:\n",
       "    species:        PM2.5 Aerosol\n",
       "    units:          µg/m3\n",
       "    value:          hourly values\n",
       "    standard_name:  mass_concentration_of_pm2p5_ambient_aerosol_in_air
" ], "text/plain": [ "\n", "array([[[[ 855.6641 , 852.48096, 833.32465, ..., 879.8937 ,\n", " 902.90106, 865.896 ],\n", " [ 885.7343 , 891.02075, 878.97 , ..., 971.65314,\n", " 1061.4657 , 1015.5647 ],\n", " [ 893.89136, 828.7204 , 800.25604, ..., 1032.3335 ,\n", " 990.852 , 982.55286],\n", " ...,\n", " [10043.194 , 10672.565 , 11238.228 , ..., 7507.282 ,\n", " 7414.5137 , 7444.7827 ],\n", " [13826.692 , 14108.494 , 14563.739 , ..., 7519.0063 ,\n", " 7214.311 , 7085.4043 ],\n", " [14878.069 , 14873.55 , 14858.358 , ..., 7069.7866 ,\n", " 7237.475 , 7302.5605 ]]],\n", "\n", "\n", " [[[ 868.89185, 899.5873 , 930.3964 , ..., 936.80554,\n", " 839.1485 , 772.7412 ],\n", " [ 858.319 , 891.28815, 934.2618 , ..., 772.7412 ,\n", " 733.67554, 716.23883],\n", " [ 873.09827, 925.96265, 940.6993 , ..., 729.8386 ,\n", "...\n", " 6790.51 , 6748.986 ],\n", " [ 1623.8978 , 1855.4778 , 2173.332 , ..., 5969.662 ,\n", " 6049.47 , 6131.5386 ],\n", " [ 2051.7156 , 2147.7383 , 1941.084 , ..., 5981.9263 ,\n", " 5846.8096 , 5826.9146 ]]],\n", "\n", "\n", " [[[ 1362.0598 , 1371.5527 , 1349.8243 , ..., 2480.518 ,\n", " 2496.761 , 2526.6606 ],\n", " [ 1398.2976 , 1351.3591 , 1315.5477 , ..., 2294.1143 ,\n", " 2327.9363 , 2370.2136 ],\n", " [ 1287.1544 , 1304.108 , 1268.4387 , ..., 2281.4312 ,\n", " 2239.3528 , 2212.153 ],\n", " ...,\n", " [ 1829.8173 , 1892.3165 , 1997.889 , ..., 6986.432 ,\n", " 6914.4253 , 6935.685 ],\n", " [ 1650.3838 , 1853.0875 , 2025.124 , ..., 6504.3003 ,\n", " 6350.027 , 6176.655 ],\n", " [ 1954.8159 , 2019.9797 , 1916.7521 , ..., 5647.4995 ,\n", " 5836.5464 , 6040.9556 ]]]], dtype=float32)\n", "Coordinates:\n", " * lat (lat) float32 69.95 69.85 69.75 69.65 ... 54.85 54.75 54.65 54.55\n", " * level (level) float32 0.0\n", " * time (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n", " * lon (lon) float32 -2.45 -2.35 -2.25 -2.15 ... 42.15 42.25 42.35 42.45\n", "Attributes:\n", " species: PM2.5 Aerosol\n", " units: µg/m3\n", " value: hourly values\n", " standard_name: mass_concentration_of_pm2p5_ambient_aerosol_in_air" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.multiply(cams_AOI, 1000)" ] }, { "cell_type": "code", "execution_count": 32, "id": "e9604673", "metadata": {}, "outputs": [], "source": [ "cams_AOI = cams_AOI * 1000" ] }, { "cell_type": "code", "execution_count": 33, "id": "8e1f844c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'pm2p5_conc' (time: 97, level: 1, lat: 155, lon: 450)>\n",
       "array([[[[  855.6641 ,   852.48096,   833.32465, ...,   879.8937 ,\n",
       "            902.90106,   865.896  ],\n",
       "         [  885.7343 ,   891.02075,   878.97   , ...,   971.65314,\n",
       "           1061.4657 ,  1015.5647 ],\n",
       "         [  893.89136,   828.7204 ,   800.25604, ...,  1032.3335 ,\n",
       "            990.852  ,   982.55286],\n",
       "         ...,\n",
       "         [10043.194  , 10672.565  , 11238.228  , ...,  7507.282  ,\n",
       "           7414.5137 ,  7444.7827 ],\n",
       "         [13826.692  , 14108.494  , 14563.739  , ...,  7519.0063 ,\n",
       "           7214.311  ,  7085.4043 ],\n",
       "         [14878.069  , 14873.55   , 14858.358  , ...,  7069.7866 ,\n",
       "           7237.475  ,  7302.5605 ]]],\n",
       "\n",
       "\n",
       "       [[[  868.89185,   899.5873 ,   930.3964 , ...,   936.80554,\n",
       "            839.1485 ,   772.7412 ],\n",
       "         [  858.319  ,   891.28815,   934.2618 , ...,   772.7412 ,\n",
       "            733.67554,   716.23883],\n",
       "         [  873.09827,   925.96265,   940.6993 , ...,   729.8386 ,\n",
       "...\n",
       "           6790.51   ,  6748.986  ],\n",
       "         [ 1623.8978 ,  1855.4778 ,  2173.332  , ...,  5969.662  ,\n",
       "           6049.47   ,  6131.5386 ],\n",
       "         [ 2051.7156 ,  2147.7383 ,  1941.084  , ...,  5981.9263 ,\n",
       "           5846.8096 ,  5826.9146 ]]],\n",
       "\n",
       "\n",
       "       [[[ 1362.0598 ,  1371.5527 ,  1349.8243 , ...,  2480.518  ,\n",
       "           2496.761  ,  2526.6606 ],\n",
       "         [ 1398.2976 ,  1351.3591 ,  1315.5477 , ...,  2294.1143 ,\n",
       "           2327.9363 ,  2370.2136 ],\n",
       "         [ 1287.1544 ,  1304.108  ,  1268.4387 , ...,  2281.4312 ,\n",
       "           2239.3528 ,  2212.153  ],\n",
       "         ...,\n",
       "         [ 1829.8173 ,  1892.3165 ,  1997.889  , ...,  6986.432  ,\n",
       "           6914.4253 ,  6935.685  ],\n",
       "         [ 1650.3838 ,  1853.0875 ,  2025.124  , ...,  6504.3003 ,\n",
       "           6350.027  ,  6176.655  ],\n",
       "         [ 1954.8159 ,  2019.9797 ,  1916.7521 , ...,  5647.4995 ,\n",
       "           5836.5464 ,  6040.9556 ]]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 69.95 69.85 69.75 69.65 ... 54.85 54.75 54.65 54.55\n",
       "  * level    (level) float32 0.0\n",
       "  * time     (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n",
       "  * lon      (lon) float32 -2.45 -2.35 -2.25 -2.15 ... 42.15 42.25 42.35 42.45
" ], "text/plain": [ "\n", "array([[[[ 855.6641 , 852.48096, 833.32465, ..., 879.8937 ,\n", " 902.90106, 865.896 ],\n", " [ 885.7343 , 891.02075, 878.97 , ..., 971.65314,\n", " 1061.4657 , 1015.5647 ],\n", " [ 893.89136, 828.7204 , 800.25604, ..., 1032.3335 ,\n", " 990.852 , 982.55286],\n", " ...,\n", " [10043.194 , 10672.565 , 11238.228 , ..., 7507.282 ,\n", " 7414.5137 , 7444.7827 ],\n", " [13826.692 , 14108.494 , 14563.739 , ..., 7519.0063 ,\n", " 7214.311 , 7085.4043 ],\n", " [14878.069 , 14873.55 , 14858.358 , ..., 7069.7866 ,\n", " 7237.475 , 7302.5605 ]]],\n", "\n", "\n", " [[[ 868.89185, 899.5873 , 930.3964 , ..., 936.80554,\n", " 839.1485 , 772.7412 ],\n", " [ 858.319 , 891.28815, 934.2618 , ..., 772.7412 ,\n", " 733.67554, 716.23883],\n", " [ 873.09827, 925.96265, 940.6993 , ..., 729.8386 ,\n", "...\n", " 6790.51 , 6748.986 ],\n", " [ 1623.8978 , 1855.4778 , 2173.332 , ..., 5969.662 ,\n", " 6049.47 , 6131.5386 ],\n", " [ 2051.7156 , 2147.7383 , 1941.084 , ..., 5981.9263 ,\n", " 5846.8096 , 5826.9146 ]]],\n", "\n", "\n", " [[[ 1362.0598 , 1371.5527 , 1349.8243 , ..., 2480.518 ,\n", " 2496.761 , 2526.6606 ],\n", " [ 1398.2976 , 1351.3591 , 1315.5477 , ..., 2294.1143 ,\n", " 2327.9363 , 2370.2136 ],\n", " [ 1287.1544 , 1304.108 , 1268.4387 , ..., 2281.4312 ,\n", " 2239.3528 , 2212.153 ],\n", " ...,\n", " [ 1829.8173 , 1892.3165 , 1997.889 , ..., 6986.432 ,\n", " 6914.4253 , 6935.685 ],\n", " [ 1650.3838 , 1853.0875 , 2025.124 , ..., 6504.3003 ,\n", " 6350.027 , 6176.655 ],\n", " [ 1954.8159 , 2019.9797 , 1916.7521 , ..., 5647.4995 ,\n", " 5836.5464 , 6040.9556 ]]]], dtype=float32)\n", "Coordinates:\n", " * lat (lat) float32 69.95 69.85 69.75 69.65 ... 54.85 54.75 54.65 54.55\n", " * level (level) float32 0.0\n", " * time (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n", " * lon (lon) float32 -2.45 -2.35 -2.25 -2.15 ... 42.15 42.25 42.35 42.45" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams_AOI" ] }, { "cell_type": "markdown", "id": "5b08fadf-0214-447f-938c-03655b8269d6", "metadata": {}, "source": [ "## Updating attributes\n", "\n", "As we changed the units of the variable PM2.5, we need to reflect this change in the metadata of the data e.g. the attributes of `pm2p5_conc`. As we can see above, the operation did not keep any attributes so we will first copy the attributes from the original dataset and update the units." ] }, { "cell_type": "code", "execution_count": 34, "id": "dfef4688-7c85-41b6-af62-e7ca876fcd99", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'pm2p5_conc' (time: 97, level: 1, lat: 155, lon: 450)>\n",
       "array([[[[  855.6641 ,   852.48096,   833.32465, ...,   879.8937 ,\n",
       "            902.90106,   865.896  ],\n",
       "         [  885.7343 ,   891.02075,   878.97   , ...,   971.65314,\n",
       "           1061.4657 ,  1015.5647 ],\n",
       "         [  893.89136,   828.7204 ,   800.25604, ...,  1032.3335 ,\n",
       "            990.852  ,   982.55286],\n",
       "         ...,\n",
       "         [10043.194  , 10672.565  , 11238.228  , ...,  7507.282  ,\n",
       "           7414.5137 ,  7444.7827 ],\n",
       "         [13826.692  , 14108.494  , 14563.739  , ...,  7519.0063 ,\n",
       "           7214.311  ,  7085.4043 ],\n",
       "         [14878.069  , 14873.55   , 14858.358  , ...,  7069.7866 ,\n",
       "           7237.475  ,  7302.5605 ]]],\n",
       "\n",
       "\n",
       "       [[[  868.89185,   899.5873 ,   930.3964 , ...,   936.80554,\n",
       "            839.1485 ,   772.7412 ],\n",
       "         [  858.319  ,   891.28815,   934.2618 , ...,   772.7412 ,\n",
       "            733.67554,   716.23883],\n",
       "         [  873.09827,   925.96265,   940.6993 , ...,   729.8386 ,\n",
       "...\n",
       "           6790.51   ,  6748.986  ],\n",
       "         [ 1623.8978 ,  1855.4778 ,  2173.332  , ...,  5969.662  ,\n",
       "           6049.47   ,  6131.5386 ],\n",
       "         [ 2051.7156 ,  2147.7383 ,  1941.084  , ...,  5981.9263 ,\n",
       "           5846.8096 ,  5826.9146 ]]],\n",
       "\n",
       "\n",
       "       [[[ 1362.0598 ,  1371.5527 ,  1349.8243 , ...,  2480.518  ,\n",
       "           2496.761  ,  2526.6606 ],\n",
       "         [ 1398.2976 ,  1351.3591 ,  1315.5477 , ...,  2294.1143 ,\n",
       "           2327.9363 ,  2370.2136 ],\n",
       "         [ 1287.1544 ,  1304.108  ,  1268.4387 , ...,  2281.4312 ,\n",
       "           2239.3528 ,  2212.153  ],\n",
       "         ...,\n",
       "         [ 1829.8173 ,  1892.3165 ,  1997.889  , ...,  6986.432  ,\n",
       "           6914.4253 ,  6935.685  ],\n",
       "         [ 1650.3838 ,  1853.0875 ,  2025.124  , ...,  6504.3003 ,\n",
       "           6350.027  ,  6176.655  ],\n",
       "         [ 1954.8159 ,  2019.9797 ,  1916.7521 , ...,  5647.4995 ,\n",
       "           5836.5464 ,  6040.9556 ]]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 69.95 69.85 69.75 69.65 ... 54.85 54.75 54.65 54.55\n",
       "  * level    (level) float32 0.0\n",
       "  * time     (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n",
       "  * lon      (lon) float32 -2.45 -2.35 -2.25 -2.15 ... 42.15 42.25 42.35 42.45\n",
       "Attributes:\n",
       "    species:        PM2.5 Aerosol\n",
       "    units:          µg/m3\n",
       "    value:          hourly values\n",
       "    standard_name:  mass_concentration_of_pm2p5_ambient_aerosol_in_air
" ], "text/plain": [ "\n", "array([[[[ 855.6641 , 852.48096, 833.32465, ..., 879.8937 ,\n", " 902.90106, 865.896 ],\n", " [ 885.7343 , 891.02075, 878.97 , ..., 971.65314,\n", " 1061.4657 , 1015.5647 ],\n", " [ 893.89136, 828.7204 , 800.25604, ..., 1032.3335 ,\n", " 990.852 , 982.55286],\n", " ...,\n", " [10043.194 , 10672.565 , 11238.228 , ..., 7507.282 ,\n", " 7414.5137 , 7444.7827 ],\n", " [13826.692 , 14108.494 , 14563.739 , ..., 7519.0063 ,\n", " 7214.311 , 7085.4043 ],\n", " [14878.069 , 14873.55 , 14858.358 , ..., 7069.7866 ,\n", " 7237.475 , 7302.5605 ]]],\n", "\n", "\n", " [[[ 868.89185, 899.5873 , 930.3964 , ..., 936.80554,\n", " 839.1485 , 772.7412 ],\n", " [ 858.319 , 891.28815, 934.2618 , ..., 772.7412 ,\n", " 733.67554, 716.23883],\n", " [ 873.09827, 925.96265, 940.6993 , ..., 729.8386 ,\n", "...\n", " 6790.51 , 6748.986 ],\n", " [ 1623.8978 , 1855.4778 , 2173.332 , ..., 5969.662 ,\n", " 6049.47 , 6131.5386 ],\n", " [ 2051.7156 , 2147.7383 , 1941.084 , ..., 5981.9263 ,\n", " 5846.8096 , 5826.9146 ]]],\n", "\n", "\n", " [[[ 1362.0598 , 1371.5527 , 1349.8243 , ..., 2480.518 ,\n", " 2496.761 , 2526.6606 ],\n", " [ 1398.2976 , 1351.3591 , 1315.5477 , ..., 2294.1143 ,\n", " 2327.9363 , 2370.2136 ],\n", " [ 1287.1544 , 1304.108 , 1268.4387 , ..., 2281.4312 ,\n", " 2239.3528 , 2212.153 ],\n", " ...,\n", " [ 1829.8173 , 1892.3165 , 1997.889 , ..., 6986.432 ,\n", " 6914.4253 , 6935.685 ],\n", " [ 1650.3838 , 1853.0875 , 2025.124 , ..., 6504.3003 ,\n", " 6350.027 , 6176.655 ],\n", " [ 1954.8159 , 2019.9797 , 1916.7521 , ..., 5647.4995 ,\n", " 5836.5464 , 6040.9556 ]]]], dtype=float32)\n", "Coordinates:\n", " * lat (lat) float32 69.95 69.85 69.75 69.65 ... 54.85 54.75 54.65 54.55\n", " * level (level) float32 0.0\n", " * time (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n", " * lon (lon) float32 -2.45 -2.35 -2.25 -2.15 ... 42.15 42.25 42.35 42.45\n", "Attributes:\n", " species: PM2.5 Aerosol\n", " units: µg/m3\n", " value: hourly values\n", " standard_name: mass_concentration_of_pm2p5_ambient_aerosol_in_air" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams_AOI.attrs = cams.pm2p5_conc.attrs\n", "cams_AOI" ] }, { "cell_type": "code", "execution_count": 35, "id": "079a509c-d560-4a08-9f33-e26cc873f4d7", "metadata": {}, "outputs": [], "source": [ "cams_AOI.attrs[\"units\"] = \"ng/m3\"" ] }, { "cell_type": "code", "execution_count": 36, "id": "f9dc638f-7b94-4308-b2d9-a6b27c89d22d", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'pm2p5_conc' (time: 97, level: 1, lat: 155, lon: 450)>\n",
       "array([[[[  855.6641 ,   852.48096,   833.32465, ...,   879.8937 ,\n",
       "            902.90106,   865.896  ],\n",
       "         [  885.7343 ,   891.02075,   878.97   , ...,   971.65314,\n",
       "           1061.4657 ,  1015.5647 ],\n",
       "         [  893.89136,   828.7204 ,   800.25604, ...,  1032.3335 ,\n",
       "            990.852  ,   982.55286],\n",
       "         ...,\n",
       "         [10043.194  , 10672.565  , 11238.228  , ...,  7507.282  ,\n",
       "           7414.5137 ,  7444.7827 ],\n",
       "         [13826.692  , 14108.494  , 14563.739  , ...,  7519.0063 ,\n",
       "           7214.311  ,  7085.4043 ],\n",
       "         [14878.069  , 14873.55   , 14858.358  , ...,  7069.7866 ,\n",
       "           7237.475  ,  7302.5605 ]]],\n",
       "\n",
       "\n",
       "       [[[  868.89185,   899.5873 ,   930.3964 , ...,   936.80554,\n",
       "            839.1485 ,   772.7412 ],\n",
       "         [  858.319  ,   891.28815,   934.2618 , ...,   772.7412 ,\n",
       "            733.67554,   716.23883],\n",
       "         [  873.09827,   925.96265,   940.6993 , ...,   729.8386 ,\n",
       "...\n",
       "           6790.51   ,  6748.986  ],\n",
       "         [ 1623.8978 ,  1855.4778 ,  2173.332  , ...,  5969.662  ,\n",
       "           6049.47   ,  6131.5386 ],\n",
       "         [ 2051.7156 ,  2147.7383 ,  1941.084  , ...,  5981.9263 ,\n",
       "           5846.8096 ,  5826.9146 ]]],\n",
       "\n",
       "\n",
       "       [[[ 1362.0598 ,  1371.5527 ,  1349.8243 , ...,  2480.518  ,\n",
       "           2496.761  ,  2526.6606 ],\n",
       "         [ 1398.2976 ,  1351.3591 ,  1315.5477 , ...,  2294.1143 ,\n",
       "           2327.9363 ,  2370.2136 ],\n",
       "         [ 1287.1544 ,  1304.108  ,  1268.4387 , ...,  2281.4312 ,\n",
       "           2239.3528 ,  2212.153  ],\n",
       "         ...,\n",
       "         [ 1829.8173 ,  1892.3165 ,  1997.889  , ...,  6986.432  ,\n",
       "           6914.4253 ,  6935.685  ],\n",
       "         [ 1650.3838 ,  1853.0875 ,  2025.124  , ...,  6504.3003 ,\n",
       "           6350.027  ,  6176.655  ],\n",
       "         [ 1954.8159 ,  2019.9797 ,  1916.7521 , ...,  5647.4995 ,\n",
       "           5836.5464 ,  6040.9556 ]]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 69.95 69.85 69.75 69.65 ... 54.85 54.75 54.65 54.55\n",
       "  * level    (level) float32 0.0\n",
       "  * time     (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n",
       "  * lon      (lon) float32 -2.45 -2.35 -2.25 -2.15 ... 42.15 42.25 42.35 42.45\n",
       "Attributes:\n",
       "    species:        PM2.5 Aerosol\n",
       "    units:          ng/m3\n",
       "    value:          hourly values\n",
       "    standard_name:  mass_concentration_of_pm2p5_ambient_aerosol_in_air
" ], "text/plain": [ "\n", "array([[[[ 855.6641 , 852.48096, 833.32465, ..., 879.8937 ,\n", " 902.90106, 865.896 ],\n", " [ 885.7343 , 891.02075, 878.97 , ..., 971.65314,\n", " 1061.4657 , 1015.5647 ],\n", " [ 893.89136, 828.7204 , 800.25604, ..., 1032.3335 ,\n", " 990.852 , 982.55286],\n", " ...,\n", " [10043.194 , 10672.565 , 11238.228 , ..., 7507.282 ,\n", " 7414.5137 , 7444.7827 ],\n", " [13826.692 , 14108.494 , 14563.739 , ..., 7519.0063 ,\n", " 7214.311 , 7085.4043 ],\n", " [14878.069 , 14873.55 , 14858.358 , ..., 7069.7866 ,\n", " 7237.475 , 7302.5605 ]]],\n", "\n", "\n", " [[[ 868.89185, 899.5873 , 930.3964 , ..., 936.80554,\n", " 839.1485 , 772.7412 ],\n", " [ 858.319 , 891.28815, 934.2618 , ..., 772.7412 ,\n", " 733.67554, 716.23883],\n", " [ 873.09827, 925.96265, 940.6993 , ..., 729.8386 ,\n", "...\n", " 6790.51 , 6748.986 ],\n", " [ 1623.8978 , 1855.4778 , 2173.332 , ..., 5969.662 ,\n", " 6049.47 , 6131.5386 ],\n", " [ 2051.7156 , 2147.7383 , 1941.084 , ..., 5981.9263 ,\n", " 5846.8096 , 5826.9146 ]]],\n", "\n", "\n", " [[[ 1362.0598 , 1371.5527 , 1349.8243 , ..., 2480.518 ,\n", " 2496.761 , 2526.6606 ],\n", " [ 1398.2976 , 1351.3591 , 1315.5477 , ..., 2294.1143 ,\n", " 2327.9363 , 2370.2136 ],\n", " [ 1287.1544 , 1304.108 , 1268.4387 , ..., 2281.4312 ,\n", " 2239.3528 , 2212.153 ],\n", " ...,\n", " [ 1829.8173 , 1892.3165 , 1997.889 , ..., 6986.432 ,\n", " 6914.4253 , 6935.685 ],\n", " [ 1650.3838 , 1853.0875 , 2025.124 , ..., 6504.3003 ,\n", " 6350.027 , 6176.655 ],\n", " [ 1954.8159 , 2019.9797 , 1916.7521 , ..., 5647.4995 ,\n", " 5836.5464 , 6040.9556 ]]]], dtype=float32)\n", "Coordinates:\n", " * lat (lat) float32 69.95 69.85 69.75 69.65 ... 54.85 54.75 54.65 54.55\n", " * level (level) float32 0.0\n", " * time (time) timedelta64[ns] 00:00:00 01:00:00 ... 4 days 00:00:00\n", " * lon (lon) float32 -2.45 -2.35 -2.25 -2.15 ... 42.15 42.25 42.35 42.45\n", "Attributes:\n", " species: PM2.5 Aerosol\n", " units: ng/m3\n", " value: hourly values\n", " standard_name: mass_concentration_of_pm2p5_ambient_aerosol_in_air" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams_AOI" ] }, { "cell_type": "markdown", "id": "3c9a350f", "metadata": {}, "source": [ "## Statistics\n", "\n", "All the standard statistical operations can be used such as `min`, `max`, `mean`. When no argument is passed to the function, the operation is done over all the dimensions of the variable (same as with `numpy`)." ] }, { "cell_type": "code", "execution_count": 37, "id": "d235169d", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'pm2p5_conc' ()>\n",
       "array(375.96038818)
" ], "text/plain": [ "\n", "array(375.96038818)" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams_AOI.min()" ] }, { "cell_type": "markdown", "id": "19379f3b", "metadata": {}, "source": [ "You can make a statistical operation over a dimension. For instance, let's retrieve the maximum pm2p5_conc value among all those available for different times, at each lat-lon location." ] }, { "cell_type": "code", "execution_count": 38, "id": "53283302", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'pm2p5_conc' (level: 1, lat: 155, lon: 450)>\n",
       "array([[[ 2121.0813,  2219.4773,  2217.5305, ...,  3652.913 ,\n",
       "          3473.7568,  3577.1978],\n",
       "        [ 2229.2544,  2233.2195,  2240.6362, ...,  4046.014 ,\n",
       "          3602.7063,  3208.9517],\n",
       "        [ 2284.292 ,  2295.2058,  2309.7578, ...,  4741.6777,\n",
       "          4632.1265,  4161.8325],\n",
       "        ...,\n",
       "        [13408.843 , 13095.977 , 14038.214 , ..., 18508.65  ,\n",
       "         18356.64  , 17824.658 ],\n",
       "        [17083.7   , 16497.771 , 16912.217 , ..., 19211.908 ,\n",
       "         19491.762 , 18477.52  ],\n",
       "        [19680.336 , 19178.678 , 18560.22  , ..., 18558.336 ,\n",
       "         18246.791 , 18232.215 ]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 69.95 69.85 69.75 69.65 ... 54.85 54.75 54.65 54.55\n",
       "  * level    (level) float32 0.0\n",
       "  * lon      (lon) float32 -2.45 -2.35 -2.25 -2.15 ... 42.15 42.25 42.35 42.45
" ], "text/plain": [ "\n", "array([[[ 2121.0813, 2219.4773, 2217.5305, ..., 3652.913 ,\n", " 3473.7568, 3577.1978],\n", " [ 2229.2544, 2233.2195, 2240.6362, ..., 4046.014 ,\n", " 3602.7063, 3208.9517],\n", " [ 2284.292 , 2295.2058, 2309.7578, ..., 4741.6777,\n", " 4632.1265, 4161.8325],\n", " ...,\n", " [13408.843 , 13095.977 , 14038.214 , ..., 18508.65 ,\n", " 18356.64 , 17824.658 ],\n", " [17083.7 , 16497.771 , 16912.217 , ..., 19211.908 ,\n", " 19491.762 , 18477.52 ],\n", " [19680.336 , 19178.678 , 18560.22 , ..., 18558.336 ,\n", " 18246.791 , 18232.215 ]]], dtype=float32)\n", "Coordinates:\n", " * lat (lat) float32 69.95 69.85 69.75 69.65 ... 54.85 54.75 54.65 54.55\n", " * level (level) float32 0.0\n", " * lon (lon) float32 -2.45 -2.35 -2.25 -2.15 ... 42.15 42.25 42.35 42.45" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams_AOI.max(dim='time')" ] }, { "cell_type": "markdown", "id": "00a0ec25", "metadata": {}, "source": [ "## Aggregation\n", "We have hourly data. To obtain daily values, we can group values per day and compute the mean. Let's first convert the time in a more human readable manner." ] }, { "cell_type": "code", "execution_count": 39, "id": "2d4c80de-ae78-4fd4-aae4-56d1545039c2", "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 40, "id": "92f0f3b2-ba19-4342-8ef0-24171d72fc0f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Index(['22 Dec 00:00 UTC', '22 Dec 01:00 UTC', '22 Dec 02:00 UTC',\n", " '22 Dec 03:00 UTC', '22 Dec 04:00 UTC', '22 Dec 05:00 UTC',\n", " '22 Dec 06:00 UTC', '22 Dec 07:00 UTC', '22 Dec 08:00 UTC',\n", " '22 Dec 09:00 UTC', '22 Dec 10:00 UTC', '22 Dec 11:00 UTC',\n", " '22 Dec 12:00 UTC', '22 Dec 13:00 UTC', '22 Dec 14:00 UTC',\n", " '22 Dec 15:00 UTC', '22 Dec 16:00 UTC', '22 Dec 17:00 UTC',\n", " '22 Dec 18:00 UTC', '22 Dec 19:00 UTC', '22 Dec 20:00 UTC',\n", " '22 Dec 21:00 UTC', '22 Dec 22:00 UTC', '22 Dec 23:00 UTC',\n", " '23 Dec 00:00 UTC', '23 Dec 01:00 UTC', '23 Dec 02:00 UTC',\n", " '23 Dec 03:00 UTC', '23 Dec 04:00 UTC', '23 Dec 05:00 UTC',\n", " '23 Dec 06:00 UTC', '23 Dec 07:00 UTC', '23 Dec 08:00 UTC',\n", " '23 Dec 09:00 UTC', '23 Dec 10:00 UTC', '23 Dec 11:00 UTC',\n", " '23 Dec 12:00 UTC', '23 Dec 13:00 UTC', '23 Dec 14:00 UTC',\n", " '23 Dec 15:00 UTC', '23 Dec 16:00 UTC', '23 Dec 17:00 UTC',\n", " '23 Dec 18:00 UTC', '23 Dec 19:00 UTC', '23 Dec 20:00 UTC',\n", " '23 Dec 21:00 UTC', '23 Dec 22:00 UTC', '23 Dec 23:00 UTC',\n", " '24 Dec 00:00 UTC', '24 Dec 01:00 UTC', '24 Dec 02:00 UTC',\n", " '24 Dec 03:00 UTC', '24 Dec 04:00 UTC', '24 Dec 05:00 UTC',\n", " '24 Dec 06:00 UTC', '24 Dec 07:00 UTC', '24 Dec 08:00 UTC',\n", " '24 Dec 09:00 UTC', '24 Dec 10:00 UTC', '24 Dec 11:00 UTC',\n", " '24 Dec 12:00 UTC', '24 Dec 13:00 UTC', '24 Dec 14:00 UTC',\n", " '24 Dec 15:00 UTC', '24 Dec 16:00 UTC', '24 Dec 17:00 UTC',\n", " '24 Dec 18:00 UTC', '24 Dec 19:00 UTC', '24 Dec 20:00 UTC',\n", " '24 Dec 21:00 UTC', '24 Dec 22:00 UTC', '24 Dec 23:00 UTC',\n", " '25 Dec 00:00 UTC', '25 Dec 01:00 UTC', '25 Dec 02:00 UTC',\n", " '25 Dec 03:00 UTC', '25 Dec 04:00 UTC', '25 Dec 05:00 UTC',\n", " '25 Dec 06:00 UTC', '25 Dec 07:00 UTC', '25 Dec 08:00 UTC',\n", " '25 Dec 09:00 UTC', '25 Dec 10:00 UTC', '25 Dec 11:00 UTC',\n", " '25 Dec 12:00 UTC', '25 Dec 13:00 UTC', '25 Dec 14:00 UTC',\n", " '25 Dec 15:00 UTC', '25 Dec 16:00 UTC', '25 Dec 17:00 UTC',\n", " '25 Dec 18:00 UTC', '25 Dec 19:00 UTC', '25 Dec 20:00 UTC',\n", " '25 Dec 21:00 UTC', '25 Dec 22:00 UTC', '25 Dec 23:00 UTC',\n", " '26 Dec 00:00 UTC'],\n", " dtype='object')\n" ] } ], "source": [ "list_times = np.datetime64('2021-12-22') + cams.time\n", "print(pd.to_datetime(list_times).strftime(\"%d %b %H:%S UTC\"))" ] }, { "cell_type": "code", "execution_count": 41, "id": "49d35f09-7526-4426-bbb0-605f87e41978", "metadata": {}, "outputs": [], "source": [ "cams_AOI[\"time\"] = list_times" ] }, { "cell_type": "code", "execution_count": 42, "id": "59415ec6-5497-40db-91ce-78aea34a35d6", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'pm2p5_conc' (time: 97, level: 1, lat: 155, lon: 450)>\n",
       "array([[[[  855.6641 ,   852.48096,   833.32465, ...,   879.8937 ,\n",
       "            902.90106,   865.896  ],\n",
       "         [  885.7343 ,   891.02075,   878.97   , ...,   971.65314,\n",
       "           1061.4657 ,  1015.5647 ],\n",
       "         [  893.89136,   828.7204 ,   800.25604, ...,  1032.3335 ,\n",
       "            990.852  ,   982.55286],\n",
       "         ...,\n",
       "         [10043.194  , 10672.565  , 11238.228  , ...,  7507.282  ,\n",
       "           7414.5137 ,  7444.7827 ],\n",
       "         [13826.692  , 14108.494  , 14563.739  , ...,  7519.0063 ,\n",
       "           7214.311  ,  7085.4043 ],\n",
       "         [14878.069  , 14873.55   , 14858.358  , ...,  7069.7866 ,\n",
       "           7237.475  ,  7302.5605 ]]],\n",
       "\n",
       "\n",
       "       [[[  868.89185,   899.5873 ,   930.3964 , ...,   936.80554,\n",
       "            839.1485 ,   772.7412 ],\n",
       "         [  858.319  ,   891.28815,   934.2618 , ...,   772.7412 ,\n",
       "            733.67554,   716.23883],\n",
       "         [  873.09827,   925.96265,   940.6993 , ...,   729.8386 ,\n",
       "...\n",
       "           6790.51   ,  6748.986  ],\n",
       "         [ 1623.8978 ,  1855.4778 ,  2173.332  , ...,  5969.662  ,\n",
       "           6049.47   ,  6131.5386 ],\n",
       "         [ 2051.7156 ,  2147.7383 ,  1941.084  , ...,  5981.9263 ,\n",
       "           5846.8096 ,  5826.9146 ]]],\n",
       "\n",
       "\n",
       "       [[[ 1362.0598 ,  1371.5527 ,  1349.8243 , ...,  2480.518  ,\n",
       "           2496.761  ,  2526.6606 ],\n",
       "         [ 1398.2976 ,  1351.3591 ,  1315.5477 , ...,  2294.1143 ,\n",
       "           2327.9363 ,  2370.2136 ],\n",
       "         [ 1287.1544 ,  1304.108  ,  1268.4387 , ...,  2281.4312 ,\n",
       "           2239.3528 ,  2212.153  ],\n",
       "         ...,\n",
       "         [ 1829.8173 ,  1892.3165 ,  1997.889  , ...,  6986.432  ,\n",
       "           6914.4253 ,  6935.685  ],\n",
       "         [ 1650.3838 ,  1853.0875 ,  2025.124  , ...,  6504.3003 ,\n",
       "           6350.027  ,  6176.655  ],\n",
       "         [ 1954.8159 ,  2019.9797 ,  1916.7521 , ...,  5647.4995 ,\n",
       "           5836.5464 ,  6040.9556 ]]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 69.95 69.85 69.75 69.65 ... 54.85 54.75 54.65 54.55\n",
       "  * level    (level) float32 0.0\n",
       "  * lon      (lon) float32 -2.45 -2.35 -2.25 -2.15 ... 42.15 42.25 42.35 42.45\n",
       "  * time     (time) datetime64[ns] 2021-12-22 2021-12-22T01:00:00 ... 2021-12-26\n",
       "Attributes:\n",
       "    species:        PM2.5 Aerosol\n",
       "    units:          ng/m3\n",
       "    value:          hourly values\n",
       "    standard_name:  mass_concentration_of_pm2p5_ambient_aerosol_in_air
" ], "text/plain": [ "\n", "array([[[[ 855.6641 , 852.48096, 833.32465, ..., 879.8937 ,\n", " 902.90106, 865.896 ],\n", " [ 885.7343 , 891.02075, 878.97 , ..., 971.65314,\n", " 1061.4657 , 1015.5647 ],\n", " [ 893.89136, 828.7204 , 800.25604, ..., 1032.3335 ,\n", " 990.852 , 982.55286],\n", " ...,\n", " [10043.194 , 10672.565 , 11238.228 , ..., 7507.282 ,\n", " 7414.5137 , 7444.7827 ],\n", " [13826.692 , 14108.494 , 14563.739 , ..., 7519.0063 ,\n", " 7214.311 , 7085.4043 ],\n", " [14878.069 , 14873.55 , 14858.358 , ..., 7069.7866 ,\n", " 7237.475 , 7302.5605 ]]],\n", "\n", "\n", " [[[ 868.89185, 899.5873 , 930.3964 , ..., 936.80554,\n", " 839.1485 , 772.7412 ],\n", " [ 858.319 , 891.28815, 934.2618 , ..., 772.7412 ,\n", " 733.67554, 716.23883],\n", " [ 873.09827, 925.96265, 940.6993 , ..., 729.8386 ,\n", "...\n", " 6790.51 , 6748.986 ],\n", " [ 1623.8978 , 1855.4778 , 2173.332 , ..., 5969.662 ,\n", " 6049.47 , 6131.5386 ],\n", " [ 2051.7156 , 2147.7383 , 1941.084 , ..., 5981.9263 ,\n", " 5846.8096 , 5826.9146 ]]],\n", "\n", "\n", " [[[ 1362.0598 , 1371.5527 , 1349.8243 , ..., 2480.518 ,\n", " 2496.761 , 2526.6606 ],\n", " [ 1398.2976 , 1351.3591 , 1315.5477 , ..., 2294.1143 ,\n", " 2327.9363 , 2370.2136 ],\n", " [ 1287.1544 , 1304.108 , 1268.4387 , ..., 2281.4312 ,\n", " 2239.3528 , 2212.153 ],\n", " ...,\n", " [ 1829.8173 , 1892.3165 , 1997.889 , ..., 6986.432 ,\n", " 6914.4253 , 6935.685 ],\n", " [ 1650.3838 , 1853.0875 , 2025.124 , ..., 6504.3003 ,\n", " 6350.027 , 6176.655 ],\n", " [ 1954.8159 , 2019.9797 , 1916.7521 , ..., 5647.4995 ,\n", " 5836.5464 , 6040.9556 ]]]], dtype=float32)\n", "Coordinates:\n", " * lat (lat) float32 69.95 69.85 69.75 69.65 ... 54.85 54.75 54.65 54.55\n", " * level (level) float32 0.0\n", " * lon (lon) float32 -2.45 -2.35 -2.25 -2.15 ... 42.15 42.25 42.35 42.45\n", " * time (time) datetime64[ns] 2021-12-22 2021-12-22T01:00:00 ... 2021-12-26\n", "Attributes:\n", " species: PM2.5 Aerosol\n", " units: ng/m3\n", " value: hourly values\n", " standard_name: mass_concentration_of_pm2p5_ambient_aerosol_in_air" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams_AOI" ] }, { "cell_type": "code", "execution_count": 43, "id": "1afbe549", "metadata": {}, "outputs": [], "source": [ "cams_daily = cams_AOI.groupby(cams_AOI.time.dt.day).mean()" ] }, { "cell_type": "code", "execution_count": 44, "id": "0047f659", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'pm2p5_conc' (day: 5, level: 1, lat: 155, lon: 450)>\n",
       "array([[[[ 1169.239  ,  1166.6467 ,  1160.973  , ...,  1441.5961 ,\n",
       "           1446.9415 ,  1449.0151 ],\n",
       "         [ 1173.6224 ,  1171.9554 ,  1171.7555 , ...,  1428.3876 ,\n",
       "           1443.7915 ,  1446.5171 ],\n",
       "         [ 1181.1288 ,  1189.5563 ,  1205.5222 , ...,  1435.0128 ,\n",
       "           1436.0138 ,  1443.3612 ],\n",
       "         ...,\n",
       "         [ 9959.0625 ,  9706.599  , 10212.829  , ...,  8834.37   ,\n",
       "           8843.07   ,  8738.081  ],\n",
       "         [11996.876  , 11674.386  , 11926.778  , ...,  8548.44   ,\n",
       "           8362.801  ,  8002.9683 ],\n",
       "         [13141.722  , 12680.837  , 12554.7    , ...,  7965.3184 ,\n",
       "           7982.112  ,  7990.6177 ]]],\n",
       "\n",
       "\n",
       "       [[[ 1686.1406 ,  1708.1188 ,  1722.3102 , ...,  1365.6635 ,\n",
       "           1362.4203 ,  1382.3403 ],\n",
       "         [ 1709.118  ,  1726.6967 ,  1740.0448 , ...,  1310.9231 ,\n",
       "           1319.0963 ,  1326.693  ],\n",
       "         [ 1732.6241 ,  1738.5929 ,  1748.2808 , ...,  1290.9888 ,\n",
       "...\n",
       "           4905.723  ,  4991.6763 ],\n",
       "         [ 1478.167  ,  1535.4425 ,  1637.3916 , ...,  4755.4307 ,\n",
       "           4620.1465 ,  4505.0903 ],\n",
       "         [ 1717.3419 ,  1729.2365 ,  1662.1465 , ...,  4393.5034 ,\n",
       "           4420.8423 ,  4419.639  ]]],\n",
       "\n",
       "\n",
       "       [[[ 1362.0598 ,  1371.5527 ,  1349.8243 , ...,  2480.518  ,\n",
       "           2496.761  ,  2526.6606 ],\n",
       "         [ 1398.2976 ,  1351.3591 ,  1315.5477 , ...,  2294.1143 ,\n",
       "           2327.9363 ,  2370.2136 ],\n",
       "         [ 1287.1544 ,  1304.108  ,  1268.4387 , ...,  2281.4312 ,\n",
       "           2239.3528 ,  2212.153  ],\n",
       "         ...,\n",
       "         [ 1829.8173 ,  1892.3165 ,  1997.889  , ...,  6986.432  ,\n",
       "           6914.4253 ,  6935.685  ],\n",
       "         [ 1650.3838 ,  1853.0875 ,  2025.124  , ...,  6504.3003 ,\n",
       "           6350.027  ,  6176.655  ],\n",
       "         [ 1954.8159 ,  2019.9797 ,  1916.7521 , ...,  5647.4995 ,\n",
       "           5836.5464 ,  6040.9556 ]]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 69.95 69.85 69.75 69.65 ... 54.85 54.75 54.65 54.55\n",
       "  * level    (level) float32 0.0\n",
       "  * lon      (lon) float32 -2.45 -2.35 -2.25 -2.15 ... 42.15 42.25 42.35 42.45\n",
       "  * day      (day) int64 22 23 24 25 26\n",
       "Attributes:\n",
       "    species:        PM2.5 Aerosol\n",
       "    units:          ng/m3\n",
       "    value:          hourly values\n",
       "    standard_name:  mass_concentration_of_pm2p5_ambient_aerosol_in_air
" ], "text/plain": [ "\n", "array([[[[ 1169.239 , 1166.6467 , 1160.973 , ..., 1441.5961 ,\n", " 1446.9415 , 1449.0151 ],\n", " [ 1173.6224 , 1171.9554 , 1171.7555 , ..., 1428.3876 ,\n", " 1443.7915 , 1446.5171 ],\n", " [ 1181.1288 , 1189.5563 , 1205.5222 , ..., 1435.0128 ,\n", " 1436.0138 , 1443.3612 ],\n", " ...,\n", " [ 9959.0625 , 9706.599 , 10212.829 , ..., 8834.37 ,\n", " 8843.07 , 8738.081 ],\n", " [11996.876 , 11674.386 , 11926.778 , ..., 8548.44 ,\n", " 8362.801 , 8002.9683 ],\n", " [13141.722 , 12680.837 , 12554.7 , ..., 7965.3184 ,\n", " 7982.112 , 7990.6177 ]]],\n", "\n", "\n", " [[[ 1686.1406 , 1708.1188 , 1722.3102 , ..., 1365.6635 ,\n", " 1362.4203 , 1382.3403 ],\n", " [ 1709.118 , 1726.6967 , 1740.0448 , ..., 1310.9231 ,\n", " 1319.0963 , 1326.693 ],\n", " [ 1732.6241 , 1738.5929 , 1748.2808 , ..., 1290.9888 ,\n", "...\n", " 4905.723 , 4991.6763 ],\n", " [ 1478.167 , 1535.4425 , 1637.3916 , ..., 4755.4307 ,\n", " 4620.1465 , 4505.0903 ],\n", " [ 1717.3419 , 1729.2365 , 1662.1465 , ..., 4393.5034 ,\n", " 4420.8423 , 4419.639 ]]],\n", "\n", "\n", " [[[ 1362.0598 , 1371.5527 , 1349.8243 , ..., 2480.518 ,\n", " 2496.761 , 2526.6606 ],\n", " [ 1398.2976 , 1351.3591 , 1315.5477 , ..., 2294.1143 ,\n", " 2327.9363 , 2370.2136 ],\n", " [ 1287.1544 , 1304.108 , 1268.4387 , ..., 2281.4312 ,\n", " 2239.3528 , 2212.153 ],\n", " ...,\n", " [ 1829.8173 , 1892.3165 , 1997.889 , ..., 6986.432 ,\n", " 6914.4253 , 6935.685 ],\n", " [ 1650.3838 , 1853.0875 , 2025.124 , ..., 6504.3003 ,\n", " 6350.027 , 6176.655 ],\n", " [ 1954.8159 , 2019.9797 , 1916.7521 , ..., 5647.4995 ,\n", " 5836.5464 , 6040.9556 ]]]], dtype=float32)\n", "Coordinates:\n", " * lat (lat) float32 69.95 69.85 69.75 69.65 ... 54.85 54.75 54.65 54.55\n", " * level (level) float32 0.0\n", " * lon (lon) float32 -2.45 -2.35 -2.25 -2.15 ... 42.15 42.25 42.35 42.45\n", " * day (day) int64 22 23 24 25 26\n", "Attributes:\n", " species: PM2.5 Aerosol\n", " units: ng/m3\n", " value: hourly values\n", " standard_name: mass_concentration_of_pm2p5_ambient_aerosol_in_air" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams_daily" ] }, { "cell_type": "markdown", "id": "8a18d11a", "metadata": {}, "source": [ "As we have data from 2021-12-22 to 2021-12-26, the time dimension is now `day` and takes values from `22` to `26`." ] }, { "cell_type": "code", "execution_count": 45, "id": "0c4f652a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'day' (day: 5)>\n",
       "array([22, 23, 24, 25, 26])\n",
       "Coordinates:\n",
       "  * day      (day) int64 22 23 24 25 26\n",
       "Attributes:\n",
       "    long_name:  FORECAST time from 20211222
" ], "text/plain": [ "\n", "array([22, 23, 24, 25, 26])\n", "Coordinates:\n", " * day (day) int64 22 23 24 25 26\n", "Attributes:\n", " long_name: FORECAST time from 20211222" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams_daily.day" ] }, { "cell_type": "markdown", "id": "9f9cf66f-ec20-4717-9f81-450ce5e98be0", "metadata": {}, "source": [ "
\n", " Exercise\n", "
\n", "
    \n", "
  • Could you change the attribute \"value\" from \"hourly values\" to \"daily values\"?
  • \n", "
\n", "
" ] }, { "cell_type": "markdown", "id": "935b9333", "metadata": {}, "source": [ "## Mask\n", "\n", "Masking can be achieved through the method `DataSet|Array.where(cond, other)` or `xr.where(cond, x, y)`.\n", "\n", "The difference consists in the possibility to specify the value in case the condition is positive or not; `DataSet|Array.where(cond, other)` only offer the possibility to define the false condition value (by default is set to np.NaN))" ] }, { "cell_type": "code", "execution_count": 46, "id": "4d4042aa-2cef-45ba-8c21-1e6159e38e3a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(\n", " array(375.96038818),\n", " \n", " array(86237.3515625))" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cams_AOI.min(), cams_AOI.max()" ] }, { "cell_type": "code", "execution_count": 47, "id": "af2544b2", "metadata": {}, "outputs": [], "source": [ "cams_masked = cams_AOI.where((cams_AOI >= 5000) & (cams_AOI <= 20000))" ] }, { "cell_type": "code", "execution_count": 48, "id": "74287eb4", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAHFCAYAAADbiAxsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC69ElEQVR4nOzdeVxU1fvA8c8dYFhlZBERRaRyQ3FJy9T6qpkCuVSWSxquaWZJ7mVlaqVpmUtW7rlmtpil9RV3LXPLrTJNyw01EBUE2QaYub8/+DI/RxBm00F53q/Xfb3k3nPufQZJns459zmKqqoqQgghhBDCLhpnByCEEEIIcTeQpEoIIYQQwgEkqRJCCCGEcABJqoQQQgghHECSKiGEEEIIB5CkSgghhBDCASSpEkIIIYRwAEmqhBBCCCEcQJIqIYQQQggHkKTqDrRkyRIUReHMmTPODoXt27ejKArbt2+/7c+ePXs2derUwd3dnfDwcCZOnEheXp5FffPy8pg4cSI1atTA3d2dOnXqMHv2bIv69u3bF0VRUBSF+vXr2/MRihg2bJjp3j4+PjbdY9euXUyYMIGrV68Wuda6dWtat25tX5Bl1IkTJxg1ahRNmjShYsWK+Pv707JlS7755pti2ycnJ9O3b18CAwPx8vKiefPmbNmyxaxNeno6kyZNonXr1gQHB+Pj40NkZCRTp04lJyenyD3ffPNNOnbsSNWqVVEUhb59+1r1Gc6fP8+wYcNo1aoVFStWRFEUlixZUqSdtXEVx5rv17fffsuzzz7Lfffdh6enJzVq1KBXr178/fffVn0+Ie52klSJO9KkSZN45ZVX6NKlCxs2bGDIkCFMnjyZl156yaL+Q4YM4b333uOll15iw4YNPPXUU7zyyitMnjzZov7BwcHs3r2blStX2vMxihg+fDi7d+/m8ccft/keu3btYuLEicUmVZ9++imffvqpHRGWXRs3buTHH3/k6aef5uuvv+bzzz+nZs2adO3albffftusrV6vp23btmzZsoVZs2bx/fffU7lyZaKjo9mxY4epXUJCAjNnzuT+++9n/vz5rF27lmeeeYYJEybQsWNHbtzla8aMGVy5coXOnTuj1Wqt/gz//PMPn3/+OVqttsSfAWvjKo4136+pU6eSlZXFG2+8QXx8PO+++y6HDh3i/vvv588//7T6cwpx11LFHWfx4sUqoJ4+fdrZoajbtm1TAXXbtm237ZmXL19WPTw81EGDBpmdnzRpkqooivrnn3+W2P/IkSOqoijq5MmTzc4PHDhQ9fT0VK9cuVJi/z59+qhhYWE2xW6pPn36qN7e3jb1/eCDD8rMz8ftdOnSJdVoNBY536FDB9XLy0vNyckxnfvkk09UQN21a5fpXF5enhoREaE++OCDpnMZGRlqRkZGkXsWfo9//vlns/MGg8H0Z29vb7VPnz5WfYbr+//6668qoC5evLhIO2vjKo4136+LFy8WaXfhwgXVzc1NHTBgQKnPEqK8kJGqu8jmzZtp27Ytvr6+eHl50bJlS7PpjO+++w5FUYpMcQDMmTMHRVH4/fffTef2799P586d8ff3x8PDg8aNG/PVV1/dls9Skvj4eHJycujXr5/Z+X79+qGqKt99912J/b/77jtUVS22f3Z2NvHx8TbHpigKL7/8MosXL6Z27dp4enrStGlT9uzZg6qqfPDBB4SHh+Pj48Ojjz7KP//8Y/OzijNhwgRGjx4NQHh4uGkqsXB69sbpvzNnzqAoCh988AFTp06lRo0aeHp60rp1a06cOEFeXh6vvfYaISEh6HQ6nnrqKZKTk4s898svv6R58+Z4e3vj4+NDVFQUhw4dcuhnK01gYCCKohQ5/+CDD5KVlUVKSorp3Jo1a6hduzbNmzc3nXN1deW5555j3759XLhwAQBvb2+8vb2LvSfAuXPnzM5rNPb9k2ppf2vjKo4136+goKAi7UJCQqhWrZpFzxKivJCk6i6xYsUK2rdvj6+vL0uXLuWrr77C39+fqKgoUxLVsWNHgoKCWLx4cZH+S5Ys4f7776dBgwYAbNu2jZYtW3L16lXmzp3L999/T6NGjejevXuxazwskZ+fb9GhljJ1ceTIEQAiIyPNzlepUoXAwEDT9ZL6V6pUieDgYLPzhZ+9tP6l+eGHH1i4cCFTpkzhiy++4Nq1a3To0IGRI0fyyy+/8PHHHzN//nyOHj3K008/bdFUjaWef/55hg4dChSsg9m9eze7d+/m/vvvL7HfJ598wi+//MInn3zCwoUL+euvv+jUqRMDBgzg0qVLfPbZZ7z//vts3ryZ559/3qzv5MmTefbZZ4mIiOCrr75i+fLlXLt2jUceeYSjR4+WGrOjfi5uZtu2bVSqVMksMThy5Ijp7/t6hedKm9LaunUrAPXq1bMpplvFEXEV9/0qzqlTpzh79myZ+x4I4VTOHCYTtrlx+i8zM1P19/dXO3XqZNbOYDCoDRs2NJvOGDFihOrp6alevXrVdO7o0aMqoM6ePdt0rk6dOmrjxo3VvLw8s3t27NhRrVKlimmawtLpv9OnT6uARUdp9xo4cKDq7u5e7LVatWqp7du3L7F/u3bt1Nq1axd7TavVFplWvFFJ03+AGhwcbDY1891336mA2qhRI7PplpkzZ6qA+vvvvxf7jFsx/deqVSu1VatWpq8L/14aNmxoNvVUGFvnzp3N+g8bNkwF1LS0NFVVVTUhIUF1dXVVhw4datbu2rVranBwsNqtW7cSY3Xkz0VxFixYoALqrFmzzM67ubmpL7zwQpH2u3btUgF15cqVN73nb7/9pnp6eqpPPfVUic+2ZfrveiVN/9kTV0lu9v26UV5entq6dWvV19dXTUhIsPl5QtxtXG910iZuvV27dpGSkkKfPn3Iz883uxYdHc37779PZmYm3t7e9O/fn+nTp/Pll18yaNAgABYvXoy7uzs9e/YEChbL/vXXX0ybNg3A7J6PP/44P/zwA8ePH6du3boWxxgSEsKvv/5qUdvatWuX2qa4aQtLrjmqf0natGljNjVT+H2KiYkxu3fh+bNnzxYZdbvdHn/8cbOpp8LYOnToYNau8HxCQgL169dnw4YN5Ofn07t3b7OfEw8PD1q1asW2bdtKfK6jfy6ut379el566SWeeeYZ0+jd9Wz5GThz5gwdO3YkNDSUhQsXWhVPIVVVMRgMZudcXe37p7ikuG78N8HFxaXYz1fa96uQqqoMGDCAn3/+mdWrVxMaGmpX7ELcTSSpugtcvHgRgGeeeeambVJSUvD29qZevXo88MADLF68mEGDBmEwGFixYgVPPPEE/v7+ZvcbNWoUo0aNKvZ+ly9ftipGrVZLo0aNLGrr4uJS4vWAgABycnLIysrCy8vL7FpKSgpNmjQptf/hw4eLnM/MzCQ3N9f0fbDVjf0L3wK72XlLX4G/lWyNufBn5YEHHij2vqWtEXLkz8X1NmzYQJcuXWjXrh2ff/55kSQiICCAK1euFOlXuI6ouJ+Bs2fP0qZNG1xdXdmyZYvNPydLly4tsp5PtWMKuLS43NzczL5evHhxkVIPpX2/ro/z+eefZ8WKFSxdupQnnnjC5riFuBtJUnUXCAwMBArqNj300EPFtqlcubLpz/369WPIkCEcO3aMU6dOkZiYaPaPfOH9xo4dS5cuXYq9n7WjBmfOnCE8PNyittu2bSuxllLhqM4ff/xBs2bNTOeTkpK4fPlyqbWjIiMjWbVqFUlJSWbrqv744w8Ah9eeupsV/qx88803hIWFWd3fkT8XhTZs2MCTTz5Jq1atWL16dbGlDSIjI01/39e72c/A2bNnad26Naqqsn37dqpVq2ZRzMXp1KmTxaNzpbEkrhufdeP325LvF/x/QrV48WIWLVrEc88955DPIMTdRJKqu0DLli2pWLEiR48e5eWXXy61/bPPPsuIESNYsmQJp06domrVqrRv3950vXbt2tSsWZPffvvN4rpNpXHkNE90dDQeHh4sWbLELKkqLIr65JNPltj/iSee4M0332Tp0qW8+uqrZv09PT2Jjo62KM6yyt3dHYDs7Oxb/qyoqChcXV05efIkTz/9tNX9HT39t3HjRp588kkefvhhvvvuO9P34kZPPfUUQ4YMYe/evaafofz8fFasWEGzZs0ICQkxtU1ISKB169YYDAa2b99uU/J4vYCAAAICAuy6hzVxNW3a9Kb3sPT7paoqAwcOZPHixcybN6/ISJsQooAkVXcBHx8fZs+eTZ8+fUhJSeGZZ54hKCiIS5cu8dtvv3Hp0iXmzJljal+xYkWeeuoplixZwtWrVxk1alSRaZp58+YRExNDVFQUffv2pWrVqqSkpHDs2DEOHjzI119/bVWMWq22xH/creHv78+bb77JuHHj8Pf3p3379vz6669MmDCB559/noiICFPbZcuW0b9/fz777DN69+4NFLwZNWDAAMaPH4+LiwsPPPAAGzduZP78+bz77rt2T//dKn379mXp0qWcPn2aGjVq3LRd4UjerFmz6NOnD25ubtSuXZsKFSo4PKYaNWrw9ttv88Ybb3Dq1Cmio6Px8/Pj4sWL7Nu3D29vbyZOnHjT/o78udi5cydPPvkkwcHBvP7660WmeCMiIvD19QWgf//+fPLJJ3Tt2pUpU6YQFBTEp59+yvHjx9m8ebOpT3JyMm3atCExMZFFixaRnJxsVlKiWrVqZqNDO3bs4NKlSwAYDAbOnj1rqlDeqlUrKlWqVOrnKGx/6tQpoKC0SWF1/cIpfmvjsvf7FRcXx6JFi+jfvz+RkZHs2bPH1M7d3Z3GjRuX+rmEKBect0Ze2OpmxT937NihdujQQfX391fd3NzUqlWrqh06dFC//vrrIvfYuHGj6a2qEydOFPuc3377Te3WrZsaFBSkurm5qcHBweqjjz6qzp0719TGGcU/C82aNUutVauWqtVq1erVq6vjx49Xc3NzzdoUfq9ufIMqNzdXHT9+vFq9enVVq9WqtWrVUj/66COLnlva238vvfSS2bnCN9w++OADs/OF37vi/n6Ke/vv6aefVj09PdXU1NRSYxw7dqwaEhKiajQas7+fm739Z2lshd/PX3/91ez8d999p7Zp00b19fVV3d3d1bCwMPWZZ55RN2/eXGqsjjJ+/Hir3h5MSkpSe/furfr7+6seHh7qQw89pG7atMmsTeH34WbH+PHjzdq3atXK7rcXS3qerXHZ+/0KCwu7abtbXQhXiDuJoqoOLJIjRDnQt29ftm/fzj///IOiKFYtoC6N0WjEaDQyYMAAVq9eTUZGhulacHAwsbGxfPDBBw57nhBCCMeR4p9C2ODs2bO4ubnRsGFDh953xIgRuLm5sWzZMrPzf/75J1lZWWZrwIQQQpQtMlIlhJXOnDljKinh6enp0IrS586dM5UpcHFxkbUqQghxB5GkSgghhBDCAZw6/VejRg3Thq/XHy+99BJQ8BrvhAkTCAkJMW3yWtqeXEIIIYQQzuDUpOrXX38lMTHRdGzatAmArl27AvD+++8zffp0Pv74Y3799VeCg4Np164d165dc2bYQgghhBBFlKnpv2HDhvHDDz/w999/AwWFAYcNG2ZanKvX66lcuTJTp07lhRdecGaoQgghhBBmykzxz9zcXFasWMGIESNQFIVTp06RlJRkVunb3d2dVq1asWvXrpsmVXq9Hr1eb/raaDSSkpJCQECA3RvlCiGEuLupqsq1a9cICQkpde9Ke+Tk5JCbm2v3fbRaLR4eHg6ISDhCmUmqvvvuO65evWra6DMpKQkw37Ou8OuzZ8/e9D7vvfdeiRWchRBCiNKcO3fOrj0eS5KTk0N4mA9JyQa77xUcHMzp06clsSojykxStWjRImJiYsz23AKKjC6pqlriiNPYsWMZMWKE6eu0tDSqV6/OuXPnTFsuCCGEEMVJT08nNDT0lmzrVCg3N5ekZANnD9TAt4Lto2Hp14yENTlDbm6uJFVlRJlIqs6ePcvmzZv59ttvTeeCg4OBghGrKlWqmM4nJycXGb26nru7e7Gbgvr6+kpSJYQQwiK3Y7mITwUFnwq2P8eILGkpa8pERfXFixcTFBREhw4dTOfCw8MJDg42vREIBdn9jh07aNGihTPCFEIIIRzGoBrtPkTZ4vSRKqPRyOLFi+nTpw+urv8fjqIoDBs2jMmTJ1OzZk1q1qzJ5MmT8fLyomfPnk6MWAghhLCfERUjtr+Ab09fcWs4PanavHkzCQkJ9O/fv8i1MWPGkJ2dzZAhQ0hNTaVZs2Zs3Ljxls51CyGEEELYokzVqboV0tPT0el0pKWlyZoqIYQQJbodvzMKn/Hv8Wp2L1QPqX1efr+VIU4fqRJCCCHKI4OqYrBjXMOevuLWKBML1YUQQggh7nQyUiWEEEI4gSxUv/tIUiWEEEI4gREVgyRVdxWZ/hNCCCGEcAAZqRJCCCGcQKb/7j6SVAkhhBBOIG//3X1k+k8IIYQQwgFkpEoIIYRwAuP/Dnv6i7JFkiohhBDCCQx2vv1nT19xa0hSJYQQQjiBQS047OkvyhZZUyWEEEII4QAyUiWEEEI4gaypuvtIUiWEEEI4gREFA4pd/UXZItN/QgghhBAOICNVQgghhBMY1YLDnv6ibJGkSgghhHACg53Tf/b0FbeGTP8JIYQQQjiAjFQJIYQQTiAjVXcfSaqEEEIIJzCqCkbVjrf/7Ogrbg2Z/hNCCCGEcAAZqRJCCCGcQKb/7j6SVAkhhBBOYECDwY4JI4MDYxGOIUmVEEII4QSqnWuqVFlTVebImiohhBBCCAeQkSohhBDCCWRN1d1HkiohhBDCCQyqBoNqx5oq2aamzJHpPyGEEEIIB5CRKiGEEMIJjCgY7RjbMCJDVWWNJFVCCCGEE8iaqruPTP8JIYQQQjiAjFQJIYQQTmD/QnWZ/itrJKkSQgghnKBgTZUdGyrL9F+ZI9N/QgghhBAOICNVQgghhBMY7dz7T97+K3skqRJCCCGcQNZU3X0kqRJCCCGcwIhG6lTdZZy+purChQs899xzBAQE4OXlRaNGjThw4IDpekZGBi+//DLVqlXD09OTunXrMmfOHCdGLIQQQtyZfvrpJzp16kRISAiKovDdd9+ZXbfkd65er2fo0KEEBgbi7e1N586dOX/+vFmb1NRUYmNj0el06HQ6YmNjuXr1qlmbhIQEOnXqhLe3N4GBgcTFxZGbm3srPvZt49SkKjU1lZYtW+Lm5sb69es5evQoH374IRUrVjS1GT58OPHx8axYsYJjx44xfPhwhg4dyvfff++8wIW4S7Rz6U60/0BnhyFEuWRQFbsPa2VmZtKwYUM+/vjjYq9b8jt32LBhrFmzhlWrVrFz504yMjLo2LEjBoPB1KZnz54cPnyY+Ph44uPjOXz4MLGxsf//2Q0GOnToQGZmJjt37mTVqlWsXr2akSNHWv2ZyhKnTv9NnTqV0NBQFi9ebDpXo0YNsza7d++mT58+tG7dGoBBgwYxb9489u/fzxNPPHEboxVCCCEcx2DnQnWDDdN/MTExxMTE3PR6ab9z09LSWLRoEcuXL+exxx4DYMWKFYSGhrJ582aioqI4duwY8fHx7Nmzh2bNmgGwYMECmjdvzvHjx6lduzYbN27k6NGjnDt3jpCQEAA+/PBD+vbty6RJk/D19bX6s5UFTh2pWrt2LU2bNqVr164EBQXRuHFjFixYYNbm4YcfZu3atVy4cAFVVdm2bRsnTpwgKiqq2Hvq9XrS09PNDiGEEEKUrrTfuQcOHCAvL4/27dub+oSEhFC/fn127doFFCRmOp3OlFABPPTQQ+h0OrM29evXNyVUAFFRUej1erMlQHcapyZVp06dYs6cOdSsWZMNGzYwePBg4uLiWLZsmanNRx99REREBNWqVUOr1RIdHc2nn37Kww8/XOw933vvPdMcrk6nIzQ09HZ9HCHuOJsMX4JGCgjeqdq1eJeoJuNpp+nq7FCEDYyqxu4DKDKQoNfrbY6ptN+5SUlJaLVa/Pz8zPpVrlyZpKQkU5ugoKAi9w4KCjJrU7lyZbPrfn5+aLVaU5s7kVOn/4xGI02bNmXy5MkANG7cmD///JM5c+bQu3dvoOAveM+ePaxdu5awsDB++uknhgwZQpUqVUxDj9cbO3YsI0aMMH2dnp4uiZUQQogyx1HTfzf+jhs/fjwTJkyw6Z7W/s4tpKoqivL//4N2/Z/taXOncWpSVaVKFSIiIszO1a1bl9WrVwOQnZ3N66+/zpo1a+jQoQMADRo04PDhw0ybNq3Yv2B3d3fc3d1vffBC3AViwkegZmY7Owxho0273iTa73k0Xl7ODkU40blz58zWINn6O9CS37nBwcHk5uaSmppqNlqVnJxMixYtAAgODubixYtF7n/p0iXT6FRwcDB79+41u56amkpeXl6REaw7iVOn/1q2bMnx48fNzp04cYKwsDAA8vLyyMvLQ6MxD9PFxQWj0Xjb4hRCCCEczYh9bwAW/hb09fU1O2xNqiz5ndukSRPc3NzYtGmT6XpiYiJHjhwxJVXNmzcnLS2Nffv2mdrs3buXtLQ0szZHjhwhMTHR1Gbjxo24u7vTpEkTm+IvC5w6UjV8+HBatGjB5MmT6datG/v27WP+/PnMnz8fKPhBadWqFaNHj8bT05OwsDB27NjBsmXLmD59ujNDF0IIIexif/FP6/tmZGTwzz//mL4+ffo0hw8fxt/fn+rVq5f6O1en0zFgwABGjhxJQEAA/v7+jBo1isjISNPsUd26dYmOjmbgwIHMmzcPKHiLsGPHjtSuXRuA9u3bExERQWxsLB988AEpKSmMGjWKgQMH3rFv/gEoqurcOvc//PADY8eO5e+//yY8PJwRI0YwcOD/181JSkpi7NixbNy4kZSUFMLCwhg0aBDDhw+3aN41PT0dnU5HWlraHf0XJYQQ4ta7Hb8zCp8x5+ADePrYPraRnZHPi/f/alWs27dvp02bNkXO9+nThyVLllj0OzcnJ4fRo0ezcuVKsrOzadu2LZ9++qnZ2q6UlBTi4uJYu3YtAJ07d+bjjz82q0OZkJDAkCFD2Lp1K56envTs2ZNp06bd0Ut4nJ5U3WqSVAkhhLDU7UyqPj7QzO6k6uUme+X3Wxkie/8JIYQQTmBEwYjtb7rZ01fcGpJUCSGEEE5gUDUYVDtKKtjRV9wa8jcihBBCCOEAMlIlhBBCOIH9xT9lXKSskaRKCCGEcAKjqmBU7VhTZUdfcWtImiuEEEII4QAyUiWEEEI4gdHO6T97CoeKW0OSKiGEEMIJjKoGox1v8NnTV9wa8jcihBBCCOEAMlIlhBBCOIEBBYMdBTzt6StuDUmqhBBCCCeQ6b+7jyRVQgghhLijZWRkYDQazc45Yz9ESaqEEEIIJzBg3xSewXGh3JFOnz7Nyy+/zPbt28nJyTGdV1UVRVEwGG7/d0iSKiGEEMIJZPrPPr169QLgs88+o3LlyiiK89eYSVIlhBBCOIFsqGyf33//nQMHDlC7dm1nh2JSvv9GhBBCCHFHeuCBBzh37pyzwzAjI1VCCCGEE6goGO1YU6WW85IKCxcuZPDgwVy4cIH69evj5uZmdr1Bgwa3PSZJqoQQQggnkOk/+1y6dImTJ0/Sr18/0zlFUWShuhBCCCGENfr370/jxo354osvZKG6EEIIUZ4ZVQWjansiYE/fu8HZs2dZu3Yt9913n7NDMSnfY4dCCCGEkxjQ2H2UZ48++ii//fabs8MwIyNVQgghhLjjdOrUieHDh/PHH38QGRlZZKF6586db3tMklQJIYQQTiDTf/YZPHgwAG+//XaRa7JQXQghhChHjGgw2jGFZ0/fu8GNe/2VBeX7b0QIIYQQwkFkpEoIIYRwAoOqYLBjCs+evneLzMxMduzYQUJCArm5uWbX4uLibns8klQJIYQQTiBrquxz6NAhHn/8cbKyssjMzMTf35/Lly/j5eVFUFCQU5Iqmf4TQgghnEBVNRjtONRyXlF9+PDhdOrUiZSUFDw9PdmzZw9nz56lSZMmTJs2zSkxle+/ESGEEELckQ4fPszIkSNxcXHBxcUFvV5PaGgo77//Pq+//rpTYpKkSgghhHACA4rdR3nm5uZm2pqmcuXKJCQkAKDT6Ux/vt1kTZUQQgjhBEbVvnVRRtWBwdyBGjduzP79+6lVqxZt2rThrbfe4vLlyyxfvpzIyEinxCQjVUIIIYS440yePJkqVaoA8M477xAQEMCLL75IcnIy8+fPd0pMMlIlhBBCOEHhgnN7+pdnTZs2Nf25UqVK/Pe//y223S+//ELTpk1xd3e/5TFJUiWEEEI4gREFox3rouzpW57ExMRw+PBhnnnmGav6KYrC2rVrqVq1qsV9JKkSQgghxF1LVQsWnxW+Lejj42NRnylTpqDX6616liRVQgghhBNIRfXbb/To0QQFBVnU9sMPP7T6/k6fkL1w4QLPPfccAQEBeHl50ahRIw4cOGDW5tixY3Tu3BmdTkeFChV46KGHnPa6pBBCCOEI9hT+tHc9Vnl0+vRpKlWqZHH7o0ePEhYWZtUznDpSlZqaSsuWLWnTpg3r168nKCiIkydPUrFiRVObkydP8vDDDzNgwAAmTpyITqfj2LFjeHh4OC9wIYQQQtxRrE2QQkNDrX6GU5OqqVOnEhoayuLFi03natSoYdbmjTfe4PHHH+f99983nbvnnntuV4hCCCHELWHEzr3/ZKG6RQoLhF7PYDDg4uJi+nrv3r3o9XqaN2+Om5ubzc9y6tjh2rVradq0KV27diUoKIjGjRuzYMEC03Wj0ciPP/5IrVq1iIqKIigoiGbNmvHdd985L2ghhBDCAdT/vf1n66HakFT99NNPdOrUiZCQEBRFKfb3aWlLbvR6PUOHDiUwMBBvb286d+7M+fPnze6RmppKbGwsOp0OnU5HbGwsV69eNWuTkJBAp06d8Pb2JjAwkLi4OHJzc63+TKUpXKgOkJiYyMMPP4y7uzutWrUiNTWVjh070rx5c1q3bk39+vVJTEy0+VlOTapOnTrFnDlzqFmzJhs2bGDw4MHExcWxbNkyAJKTk8nIyGDKlClER0ezceNGnnrqKbp06cKOHTuKvaderyc9Pd3sEEIIIcoao6rYfVgrMzOThg0b8vHHHxd7vXDJTZ06ddi+fTu//fYb48aNM1tyM2zYMNasWcOqVavYuXMnGRkZdOzYEYPBYGrTs2dPDh8+THx8PPHx8Rw+fJjY2FjTdYPBQIcOHcjMzGTnzp2sWrWK1atXM3LkSKs/U2muXbtmmuF69dVXUVWVNWvWUKVKFTp27Eh6ejrnzp3j7NmzVK5cmUmTJtn8LEW9PoW7zbRaLU2bNmXXrl2mc3Fxcfz666/s3r2bf//9l6pVq/Lss8+ycuVKU5vOnTvj7e3NF198UeSeEyZMYOLEiUXOp6Wl4evre2s+iBBCiLtCeno6Op3ulv7OKHzG05v74Oattfk+eZm5rH5sqc2xKorCmjVrePLJJ03nevTogZubG8uXLy+2T1paGpUqVWL58uV0794dgH///ZfQ0FD++9//EhUVxbFjx4iIiGDPnj00a9YMgD179tC8eXP++usvateuzfr16+nYsSPnzp0jJCQEgFWrVtG3b1+Sk5NL/DwnTpygZs2apmm9nTt3Mm3aNP7++2+qVKnC0KFDeeKJJ4rtGxISwrfffstDDz1ESkoKgYGBbNq0ibZt2wKwbds2nn/+eU6ePGndN/N/nDpSVaVKFSIiIszO1a1b1zTMGBgYiKura4ltbjR27FjS0tJMx7lz525N8EIIIYQdHPX2342zM9bWVjLFY8GSmwMHDpCXl0f79u1N50JCQqhfv75pgGT37t3odDpTQgXw0EMPodPpzNrUr1/flFABREVFodfri1QAuFHdunW5dOkSANu3b6dVq1YYjUZ69epFxYoV6dKlCxs2bCi2b2pqqqmYp7+/P15eXmYL2O+99947d/qvZcuWHD9+3OzciRMnTB9Qq9XywAMPlNjmRu7u7vj6+podQgghRFnjqOm/0NBQ09olnU7He++9Z1M8liy5SUpKQqvV4ufnZ9a3cuXKJCUlmdoUVwsqKCjIrE3lypXNrvv5+aHVak1tbub6CbZ3332XwYMHs3btWl5//XW++eYbxowZw+TJk4vtGxQUZJY0vfzyy/j7+5u+Tk1Nxdvbu8Tnl8Spb/8NHz6cFi1aMHnyZLp168a+ffuYP3++2UaIo0ePpnv37vznP/+hTZs2xMfHs27dOrZv3+68wIUQQogy4ty5c2YDCLbucWc0GgF44oknGD58OACNGjVi165dzJ07l1atWt20r6qqZm/ZFffGnS1tSnP06NEia6BiY2PNXnq7XqNGjdi9ezcPPvggAFOmTDG7vnPnTho0aGDx82/k1KTqgQceYM2aNYwdO5a3336b8PBwZs6cSa9evUxtnnrqKebOnct7771HXFwctWvXZvXq1Tz88MNOjFwIIYSwj6P2/nPUrExJS2527twJQHBwMLm5uaSmppqNViUnJ9OiRQtTm4sXLxa5/6VLl0yjU8HBwezdu9fsempqKnl5eUVGsIpz7do1PDw88PT0LJJEarVasrOzi+33/fffl3jfBx98sMTksTROL8fasWNH/vjjD3Jycjh27BgDBw4s0qZ///78/fffZGdnc/jw4ZsuQBNCCCHuFM54+68kliy5adKkCW5ubmzatMl0PTExkSNHjpiSqubNm5OWlsa+fftMbfbu3UtaWppZmyNHjphNxW3cuBF3d3eaNGlSaqy1atXCz8+P06dPF1mD9eeff1q1CfL1HnjgAerXr29TX5C9/4QQQohyIyMjg3/++cf09enTpzl8+DD+/v5Ur1691CU3Op2OAQMGMHLkSAICAvD392fUqFFERkby2GOPAQUjW9HR0QwcOJB58+YBMGjQIDp27Ejt2rUBaN++PREREcTGxvLBBx+QkpLCqFGjGDhwYKmjbtu2bTP7ukqVKmZfnzlzptgBmhtduHCBX375heTkZNPUZ6G4uLhS+xfHopIK999/v3U3VRTWrl1rc6boSLfj9VghhBB3h9tZUiEmfqDdJRXWRy+wKtbt27fTpk2bIuf79OnDkiVLAPjss8947733OH/+PLVr12bixIlmM0Q5OTmMHj2alStXkp2dTdu2bfn000/NtnVJSUkhLi6OtWvXAgWlkD7++GOzbegSEhIYMmQIW7duxdPTk549ezJt2jSb14RZY/HixQwePBitVktAQECRtV6nTp2y6b4WJVUajYaRI0fi4+NT6g1VVWXKlCkcPXq0TGwnI0mVEEIIS93OpCpq/SC7k6oNMfPL/e+3/fv3c+zYMRRFoU6dOjRt2rTUPqGhoQwePJixY8ei0ThuJZTF03+jR48u9hXJ4nz44Yc2BySEEEIIUZrz58/z7LPP8ssvv5hGwK5evUqLFi344osvStwQOSsrix49ejg0oQILF6qfPn2aSpUqWXzTo0ePWr0btBBCCFGelLWF6nea/v37k5eXx7Fjx0hJSSElJYVjx46hqioDBgwose+AAQP4+uuvHR6TU7epuR1k+k8IIYSlbuf032P/fQFXb9vXD+Vn6tn8+Lxy+/vN09OTXbt20bhxY7PzBw8epGXLljctqwAFew927NiR7OxsIiMjcXNzM7s+ffp0m2Ky6e2/q1evsm/fvmJXzPfu3dumQIQQQojyxN7RpvI+UlW9enXy8vKKnM/Pzy/1RbnJkyezYcMG09uIpRUltZTVSdW6devo1asXmZmZVKhQoUggklQJIYQQ4lZ7//33GTp0KJ988glNmjRBURT279/PK6+8wrRp00rsO336dD777DP69u3r0Jisnv6rVasWjz/+OJMnT8bLy8uhwdwKMv0nhBDCUrdz+q/1Dy/aPf23veOccvv7zc/Pj6ysLPLz83F1LRgjKvzzjfv3paSkmH0dHBzMzz//TM2aNR0ak9UjVRcuXCAuLu6OSKiEEEKIskqm/+wzc+ZMm/u+8sorzJ49m48++shxAWFDUhUVFcX+/fvLRA0qIYQQQpRPffr0sbnvvn372Lp1Kz/88AP16tUrslD922+/tem+FiVVhRVRATp06MDo0aM5evRosSvmO3fubFMgQgghRHkiI1XOU7FiRbp06eLw+1qUVD355JNFzr399ttFzimKgsFgsDsoIYQQ4m6nqgqqHYmRPX3vdJ9++inffvst/v7+DB48mEcffdR07fLlyzz44IPFbjWTkZGBj48PixcvviVxWVT802g0WnRIQiWEEEKIW+mjjz5i9OjR1KlTB3d3dx5//HHee+8903WDwcDZs2eL7RsYGEhMTAxz5szh33//dXhsVtdnX7ZsGXq9vsj53Nxcli1b5pCghBBCiLudEcXuozyaN28eCxYs4OOPP2b58uVs27aNmTNn8tZbb5Xa9/jx4zz++OOsXr2a8PBwHnjgAd555x1+//13h8RmdVLVr18/0tLSipy/du0a/fr1c0hQQgghxN1OtqmxzenTp2nRooXp6+bNm7N161bmz5/P2LFjS+wbFhbG0KFD2bx5M8nJyYwYMYI///yT//znP4SHh/PKK6+wdetWm2ferE6qVFUtttro+fPn0el0NgUhhBBCCGGJwMBAzp07Z3auXr16bN26lcWLFzN69GiL7qPT6Xj22WdZtWoVly9fZt68eRiNRvr160elSpX4/PPPrY7N4pIKjRs3RlEUFEWhbdu2pkJbUDB/efr0aaKjo60OQAghhCiPZKG6bR5++GFWr17NI488YnY+IiKCLVu20KZNG6vv6erqSvv27Wnfvj2zZ8/m4MGDNo1WWZxUFb4BePjwYaKiovDx8TFd02q11KhRg6efftrqAIQQQojySEoq2Oa1117jwIEDxV6rV68e27Zt45tvvinxHjdbQ6UoCh4eHtSrVw93d+ur3VucVI0fPx6DwUBYWBhRUVFUqVLF6ocJIYQQooCMVNmmQYMGNGjQ4KbX69WrR7169Uq8R6NGjUrcONnNzY3u3bszb948PDw8LI7NqorqLi4uDB48mGPHjlnTTQghhBDC4XJycvj9999JTk7GaDSaziuKQqdOnW7ab82aNbz66quMHj2aBx98EFVV+fXXX/nwww8ZP348+fn5vPbaa7z55pulbs58Pau3qYmMjOTUqVOEh4db21UIIYQQ/6PaOf1XXkeqCsXHx9O7d28uX75c5FppxcgnTZrErFmziIqKMp1r0KAB1apVY9y4cezbtw9vb29GjhxpVVJl9dt/kyZNYtSoUfzwww8kJiaSnp5udgghhBCidCqgqnYczv4ATvbyyy/TtWtXEhMTrS5G/scffxAWFlbkfFhYGH/88QdQMEWYmJhoVUxWj1QVvuHXuXNns/nIwlILUlVdCCGEELdaYZ2pypUrW923Tp06TJkyhfnz56PVagHIy8tjypQp1KlTB4ALFy5YfW+rk6pt27ZZ20UIIYQQNzCioNhRFb28VlQv9Mwzz7B9+3buvfdeq/t+8skndO7cmWrVqtGgQQMUReH333/HYDDwww8/AHDq1CmGDBli1X0VVVXv6hHE9PR0dDodaWlp+Pr6OjscIYQQZdjt+J1R+IwGX4/Cxcv61/YLGbL0/N51Wrn9/ZaVlUXXrl2pVKkSkZGRuLm5mV2Pi4srsX9GRgYrVqzgxIkTqKpKnTp16NmzJxUqVLA5JqtHqgCuXr3KokWLOHbsGIqiEBERQf/+/aWiuhBCCCFui5UrV7JhwwY8PT3Zvn272ZIkRVFKTap8fHwYPHiwQ2OyOqnav38/UVFReHp6ml5DnD59OpMmTWLjxo3cf//9Dg1QCCGEsES0rj/xaZ85OwyLGVUFRYp/2uzNN9/k7bff5rXXXkOjsfq9O06cOMH27duLlGMALNqcuThWJ1XDhw+nc+fOLFiwwLRVTX5+Ps8//zzDhg3jp59+sikQIYQQojwpfIvPnv7lWW5uLt27d7cpoVqwYAEvvvgigYGBBAcHFxnlum1J1f79+80SKijYM2fMmDE0bdrUpiCEEEIIu5X3LKOc6dOnD19++SWvv/661X3fffddJk2axKuvvurQmKxOqnx9fUlISDC9cljo3Llzdi3uEkIIIcoT2abGPgaDgffff58NGzbQoEGDIgvVp0+fftO+qampdO3a1eExWZ1Ude/enQEDBjBt2jRatGiBoijs3LmT0aNH8+yzzzo8QCGEEOJuJEmVff744w8aN24MwJEjR8yulbSvH0DXrl3ZuHGj8xeqT5s2DUVR6N27N/n5+UDBxoMvvvgiU6ZMcWhwQgghhKXUvHxnh2AVWahuH3vqZt53332MGzeOPXv22FSO4WZsrlOVlZXFyZMnUVWV++67Dy8vL5sCuNWkTpUQQpQPUZ6xbMhebtc9bmedqtorX7O7TtXxnlPk9xsFS5AURaFatWoWtS9p/2JFUTh16pRNcdhUpwrAy8uLyMhIW7sLIYQQDmVvQnW7ydt/9snPz2fixIl89NFHZGRkAAW1p4YOHcr48eOLjD5d7/Tp07ckJquTqszMTKZMmcKWLVuKre1ga3YnhBBClCcFSZU9a6ocGMwd6OWXX2bNmjW8//77NG/eHIDdu3czYcIELl++zNy5c297TFYnVc8//zw7duwgNjaWKlWqlLoYTAghhBDC0b744gtWrVpFTEyM6VyDBg2oXr06PXr0KJJUjRgxgnfeeQdvb2+L7j927FhGjx6Nv7+/xTFZnVStX7+eH3/8kZYtW1rbtVgXLlzg1VdfZf369WRnZ1OrVi0WLVpEkyZNirR94YUXmD9/PjNmzGDYsGEOeb4QQgjhDPL2n308PDyoUaNGkfM1atRAq9UWOT9r1izGjh1rcVL1ySefMHDgwFubVPn5+Vn1gJKkpqbSsmVL2rRpw/r16wkKCuLkyZNUrFixSNvvvvuOvXv3EhIS4pBnCyGEEM6k/u+wp3959tJLL/HOO++wePFi3N0LFvzr9XomTZrEyy+/XKS9qqrUqlXL4hm2zMxMq2OyOql65513eOutt1i6dKndb/xNnTqV0NBQFi9ebDpXXNZ54cIFXn75ZTZs2ECHDh3seqYQQggh7nyHDh1iy5YtVKtWjYYNGwLw22+/kZubS9u2benSpYup7bfffmuWa1iqcuXKVrW3Oqn68MMPOXnyJJUrV6ZGjRpFVtcfPHjQ4nutXbuWqKgounbtyo4dO6hatSpDhgxh4MCBpjZGo5HY2FhGjx5NvXr1Sr2nXq9Hr9ebvk5PT7c4HiGEEOJ2kek/+1SsWJGnn37a7FxoaOhN2/fp0+dWh2R9UvXkk0867OGnTp1izpw5jBgxgtdff519+/YRFxeHu7s7vXv3BgpGs1xdXS0uxPXee+8xceJEh8UohBBC3BJOmP/76aef+OCDDzhw4ACJiYmsWbPmpr/Xb7aOWa/XM2rUKL744guys7Np27Ytn376qVmNqNTUVOLi4li7di0AnTt3Zvbs2WbLexISEnjppZfYunUrnp6e9OzZk2nTphW7Hqo4lo48/fLLL+j1etMU4a1kdVI1fvx4i9p98cUXdO7cucQFYUajkaZNmzJ58mQAGjduzJ9//smcOXPo3bs3Bw4cYNasWRw8eNDiOdCxY8cyYsQI09fp6eklZq5CCCGEU9g5UoUNfTMzM2nYsCH9+vUrMspzvZLWMQ8bNox169axatUqAgICGDlyJB07duTAgQO4uLgA0LNnT86fP098fDwAgwYNIjY2lnXr1gEF+/Z16NCBSpUqsXPnTq5cuUKfPn1QVZXZs2db/blKEhMTw+HDh7nnnnscet/i2Fz8szQvvPACzZo1K/FDVKlShYiICLNzdevWZfXq1QD8/PPPJCcnU716ddN1g8HAyJEjmTlzJmfOnClyT3d399uSjQohhBB3mpiYGLMSBMUpaR1zWloaixYtYvny5Tz22GMArFixgtDQUDZv3kxUVBTHjh0jPj6ePXv20KxZMwAWLFhA8+bNOX78OLVr12bjxo0cPXqUc+fOmRK3Dz/8kL59+zJp0iSHVoi3ceMYm2hu1Y0t+RAtW7bk+PHjZudOnDhBWFgYALGxsfz+++8cPnzYdISEhDB69Gg2bNhwS+IWQgghbofCiur2HFAwI3P9cf26YmuVto75wIED5OXl0b59e9O5kJAQ6tevz65du4CCApw6nc6UUAE89NBD6HQ6szb169c3GwmLiopCr9dz4MABm+N3tls2UmWJ4cOH06JFCyZPnky3bt3Yt28f8+fPZ/78+QAEBAQQEBBg1sfNzY3g4GBq167tjJCFEEIIh3DUQvUbl7iMHz+eCRMm2HTP0tYxJyUlodVq8fPzMztfuXJlkpKSTG2CgoKK9A0KCjJrc+ObdX5+fmi1WlObWyU/Px8PDw8OHz5M/fr1HXpvpyZVDzzwAGvWrGHs2LG8/fbbhIeHM3PmTHr16uXMsIQQQog7xrlz58ymy2xdAmPLOuZCqqqa9Smuvy1tbgVXV1fCwsIwGAyOv7fD72iljh070rFjR4vbF7eOSgghhLjjqIpNi83N+gO+vr4OWYNkyTrm4OBgcnNzSU1NNRutSk5OpkWLFgAEBwdz8eLFIve/dOmSaXQqODiYvXv3ml1PTU0lLy/P6tpQpSkuSXvzzTcZO3YsK1ascFhBc7iFa6qEEEIIcXOOWlPlKJasY27SpAlubm5s2rTJ1C8xMZEjR46YkqrmzZuTlpbGvn37TG327t1LWlqaWZsjR46QmJhoarNx40bc3d2L3aau0Nq1a8nLy7PqcxW3xvujjz7i559/JiQkhNq1a3P//febHba6ZSNVYWFhRQqDCiGEEMJ5MjIy+Oeff0xfnz59msOHD+Pv70/16tVLXces0+kYMGAAI0eOJCAgAH9/f0aNGkVkZKTpbcC6desSHR3NwIEDmTdvHlBQUqFjx46m+7Rv356IiAhiY2P54IMPSElJYdSoUQwcOLDEUbennnqKpKQkKlWqhIuLC4mJicWu37retWvXipxzZM3N61mdVJ07dw5FUUxFvvbt28fKlSuJiIhg0KBBpnZHjhxxXJRCCCHE3cYJxT/3799PmzZtTF8X1nXs06cPS5YssegeM2bMwNXVlW7dupmKfy5ZssRUowrg888/Jy4uzvSWYOfOnfn4449N111cXPjxxx8ZMmQILVu2NCv+WZJKlSqxZ88eOnXqZNf6K0trblpLUa0s4PDII4+YinglJSVRu3Zt6tWrx4kTJ4iLi+Ott966JYHaKj09HZ1OR1pamkPrXgghhLj73I7fGYXPqD7/LTReHjbfx5iVQ8Kgt8vV77cJEybw9ttvW5RM3YqF6KWxeqTqyJEjPPjggwB89dVX1K9fn19++YWNGzcyePDgMpdUCSGEEOLuMGHCBHr06ME///xD586dWbx4sdnWNyXx9/fnxIkTBAYG4ufnV2JilpKSYlN8VidVeXl5ptc1N2/eTOfOnQGoU6eO2YIzIRwpyjOWDdnLnR2GsEJ7bU825q50dhhClG23r9j3XaNOnTrUqVOH8ePH07VrV7y8vCzqN2PGDCpUqADAzJkzb0lsVidV9erVY+7cuXTo0IFNmzbxzjvvAPDvv/8WWeAmhBBCiOI5qvhneVW4LurSpUscP34cRVGoVasWlSpVKrZ9nz59iv2zI1ldUmHq1KnMmzeP1q1b8+yzz9KwYUOg4DXHwmlBIYQQQpRCdcBRjmVlZdG/f39CQkL4z3/+wyOPPEJISAgDBgwgKyvL4vtkZ2cX2erHVlaPVLVu3ZrLly+Tnp5uVvhr0KBBFg/BCWEtmfq788jUnxDiVho+fDg7duxg7dq1tGzZEoCdO3cSFxfHyJEjmTNnzk37ZmZm8uqrr/LVV19x5cqVItdtXeRuU/FPVVU5cOAA8+bNM9V/0Gq1klQJIYQQFlMccJRfq1evZtGiRcTExJiqyj/++OMsWLCAb775psS+Y8aMYevWrXz66ae4u7uzcOFCJk6cSEhICMuWLbM5JqtHqs6ePUt0dDQJCQno9XratWtHhQoVeP/998nJyWHu3Lk2ByOEuDvEVB/G+oSZzg5DiLLNCXWq7iZZWVnFbmkTFBRU6vTfunXrWLZsGa1bt6Z///488sgj3HfffYSFhfH555/bvAex1SNVr7zyCk2bNiU1NRVPT0/T+aeeeootW7bYFIQQQgghhDWaN2/O+PHjycnJMZ3Lzs5m4sSJNG/evMS+KSkphIeHAwV7JxaWUHj44Yf56aefbI7J6pGqnTt38ssvv6DVas3Oh4WFceHCBZsDEULcHWKqvIQx9aqzwxCi7JORKrvMmjWL6OhoqlWrRsOGDVEUhcOHD+Ph4WHaq/Bm7rnnHs6cOUNYWBgRERF89dVXPPjgg6xbt87iulfFsTqpMhqNxS7gOn/+vKn+gxBCCCFKoSoFhz39y7H69evz999/s2LFCv766y9UVaVHjx706tXLbCatOP369eO3336jVatWjB07lg4dOjB79mzy8/OZPn26zTFZnVS1a9eOmTNnMn/+fAAURSEjI4Px48fz+OOP2xyIEEIIIYQ1PD09GThwYIltOnTowMKFC6lSpYrp3PDhw01/btOmDX/99Rf79+/n3nvvNZWKsoXVSdWMGTNo06YNERER5OTk0LNnT/7++28CAwP54osvbA5ECHHnigkegpqVjeLtBRV94X/Tf+00Xdlk/Nq5wQlRRqlqwWFPf1G6n376iezs7BLbVK9enerVqxc5HxkZyX//+19CQ0MtepbVSVVISAiHDx/miy++4ODBgxiNRgYMGGDRcJsQQggh/kfWVJV5Z86cIS8vz+L2VidVUDDc1r9/f/r3729LdyHE3cbFBfXe6mAwgKqiaLVE+fRB4+5BO5fuuHh7oRoMbMi0vf6LEEKUdTYV/1y+fDkPP/wwISEhnD17FiiYFvz+++8dGpwQQghx1ypcqG7PIcoUq5OqOXPmMGLECGJiYkhNTTW9Cejn53fLdn0WQpRt6y/MZsOhicT//i6GP0+g5uaiuLmheLijcXNFNRgwlrKmQYjyRlHtP0TZYnVSNXv2bBYsWMAbb7yBq+v/zx42bdqUP/74w6HBCSGEEHct2VD5rmN1UnX69GkaN25c5Ly7uzuZmZkOCUoIIYQQwhFef/11/P39b8uzrF6oHh4ezuHDhwkLCzM7v379eiIiIhwWmBDizrTJ+DXRuv4oWjfUQH80l1MwpmdIaQUhbiTFP+124sQJtm/fTnJyMkaj0ezaW2+9BcDYsWNtvv+8efOK3V/wZqxOqkaPHs1LL71ETk4Oqqqyb98+vvjiC9577z0WLlxo7e2EEEKI8klKKthlwYIFvPjiiwQGBhIcHIyi/H+SqSiKKam6mS1btrBly5ZiE7LPPvsMgJ49e1oVk9VJVb9+/cjPz2fMmDFkZWXRs2dPqlatyqxZs+jRo4e1txNC3GXaa3ui5uexKe0zYqq8BIrChuzlzg5LCHGXeffdd5k0aRKvvvqq1X0nTpzI22+/TdOmTalSpYpZQmYPq5Kq/Px8Pv/8czp16sTAgQO5fPkyRqORoKAghwQjhBBClBsyUmWX1NRUunbtalPfuXPnsmTJEmJjYx0ak1UL1V1dXXnxxRfR6/UABAYGSkIlhBBC2ELe/rNL165d2bhxo019c3NzadGihYMjsmH6r1mzZhw6dKjIQnUhhADYmLvS9GfDlVTUfMu3eBBCCEvdd999jBs3jj179hAZGYmbm5vZ9bi4uJv2ff7551m5ciXjxo1zaExWJ1VDhgxh5MiRnD9/niZNmuDt7W12vUGDBg4LTgghhLhrydt/dpk/fz4+Pj7s2LGDHTt2mF1TFKXEpConJ4f58+ezefNmGjRoUCQhmz59uk0xWZ1Ude/eHTDPABVFQVVVFEUxVVgXQtivXct32fTLm84Oo4goz1iLFp9fP2olhDBnb1X08l5R/fTp0zb3/f3332nUqBEAR44cMbtmz6J1q5Mqez6EEEIIIYSjqWpBhmlpQrRt27ZbEofVFdXDwsJKPIQQjtFe2xPXc5eJqTnG2aGYsXSUSghRClmobrdly5YRGRmJp6cnnp6eNGjQgOXLnffvk9UjVWvXri32vKIoeHh4cN999xEeHm53YEIIIYQQNzN9+nTGjRvHyy+/TMuWLVFVlV9++YXBgwdz+fJlhg8fbta+S5cuLFmyBF9fX7p06VLivb/99lubYrI6qXryySdNa6iud/26qocffpjvvvsOPz8/m4ISQggh7nYKdq6pclgkd6bZs2czZ84cevfubTr3xBNPUK9ePSZMmFAkqdLpdKbpQZ1Od0tisjqp2rRpE2+88QaTJk3iwQcfBGDfvn28+eabjBs3Dp1OxwsvvMCoUaNYtGiRwwMWorwoXOQdHTjIyZGYk6k/IURZkJiYWGytqRYtWpCYmFjk/OLFi4v9c0l++eUXmjZtiru7u0XtrV5T9corrzB9+nTatm1LhQoVqFChAm3btmXatGmMHj2ali1bMnPmTDZt2mTtrYUQQojyo7Ckgj1HOXbffffx1VdfFTn/5ZdfUrNmTYc8IyYmhgsXLljc3uqRqpMnT+Lr61vkvK+vL6dOnQKgZs2aXL582dpbCyGKEX95vrNDEELcCrJNjV0mTpxI9+7d+emnn2jZsiWKorBz5062bNlSbLJlixuXOpXG6pGqJk2aMHr0aC5dumQ6d+nSJcaMGcMDDzwAwN9//021atUsut+FCxd47rnnCAgIwMvLi0aNGnHgwAEA8vLyePXVV4mMjMTb25uQkBB69+7Nv//+a23YQgghhLiLPP300+zdu5fAwEC+++47vv32WwIDA9m3bx9PPfWUU2KyeqRq0aJFPPHEE1SrVo3Q0FAURSEhIYF77rmH77//HoCMjAyLSr+npqbSsmVL2rRpw/r16wkKCuLkyZNUrFgRgKysLA4ePMi4ceNo2LAhqampDBs2jM6dO7N//35rQxdCCCHKDhmpsluTJk1YsWKFs8MwsTqpql27NseOHWPDhg2cOHECVVWpU6cO7dq1Q6MpGPh68sknLbrX1KlTCQ0NNVswVqNGDdOfdTpdkbVZs2fP5sEHHyQhIYHq1atbG74QQghRJkhFdeulp6ebliClp6eX2La4pUq3mtVJFRSUT4iOjqZ169a4u7vbXNJ97dq1REVF0bVrV3bs2EHVqlUZMmQIAwcOvGmftLQ0FEUxjWbdSK/Xo9frTV+X9k0XQgghxJ3Bz8+PxMREgoKCqFixYrH5hyO3zbM2v7E6qTIajUyaNIm5c+dy8eJFTpw4wT333MO4ceOoUaMGAwYMsPhep06dYs6cOYwYMYLXX3+dffv2ERcXh7u7u1ndiUI5OTm89tpr9OzZ86YZ6HvvvcfEiROt/VhCCCHE7SXTf1bbunUr/v7+wK3bauZ61i5Utzqpevfdd1m6dCnvv/++2YhSZGQkM2bMsCqpMhqNNG3alMmTJwPQuHFj/vzzzyLFvKBg0XqPHj0wGo18+umnN73n2LFjGTFihOnr9PR0QkNDLY5JCCGEuC0kqbJaq1atTH8ODw83re2+nqqqnDt3ziHPu3btmlXtrX77b9myZcyfP59evXrh4uJiOt+gQQP++usvq+5VpUoVIiIizM7VrVuXhIQEs3N5eXl069aN06dPs2nTphLnSd3d3fH19TU7hCgrYqq8RJRnrLPDEEKUUz/99BOdOnUiJCQERVH47rvvTNcsfeNer9czdOhQAgMD8fb2pnPnzpw/f96sTWpqKrGxseh0OnQ6HbGxsVy9etWsTUJCAp06dcLb25vAwEDi4uLIzc21+LOEh4ebVSIolJKSUux2eY0bN+b++++36LCV1SNVFy5c4L777ity3mg0kpeXZ9W9WrZsyfHjx83OnThxwmxj5sKE6u+//2bbtm0EBARYG7IQQghR5jhjoXpmZiYNGzakX79+PP3002bXLH3jftiwYaxbt45Vq1YREBDAyJEj6dixIwcOHDANtvTs2ZPz588THx8PwKBBg4iNjWXdunUAGAwGOnToQKVKldi5cydXrlyhT58+qKrK7NmzLfoshWunbpSRkYGHh0eR85a+RGcPq5OqevXq8fPPP5slPgBff/01jRs3tupew4cPp0WLFkyePJlu3bqxb98+5s+fz/z5BcUO8/PzeeaZZzh48CA//PADBoOBpKQkAPz9/dFqtdaGL4QQQpQN9lZFt6FvTEwMMTExxV6z5I37tLQ0Fi1axPLly3nssccAWLFiBaGhoWzevJmoqCiOHTtGfHw8e/bsoVmzZgAsWLCA5s2bc/z4cWrXrs3GjRs5evQo586dIyQkBIAPP/yQvn37MmnSpBJnmQqX+CiKwrhx4/Dy8jJdMxgM7N27l0aNGhXpN378eMu/UTayOqkaP348sbGxXLhwAaPRyLfffsvx48dZtmwZP/zwg1X3euCBB1izZg1jx47l7bffJjw8nJkzZ9KrVy8Azp8/z9q1awGKfIO2bdtG69atrQ1f3CXaabqiuLoB/79H3p1gfeInzg5BCFFWOGhN1Y1vubu7u1u8V11pbnzj/sCBA+Tl5dG+fXtTm5CQEOrXr8+uXbuIiopi9+7d6HQ6U0IF8NBDD6HT6di1axe1a9dm9+7d1K9f35RQAURFRaHX6zlw4ABt2rS5aUyHDh0CCkaq/vjjD7MBFq1WS8OGDRk1apRFn+/AgQMcO3YMRVGIiIiwenDoRlYnVZ06deLLL79k8uTJKIrCW2+9xf3338+6deto166d1QF07NiRjh07FnutRo0aVq+8F0IIIcqTG1/GGj9+PBMmTLD7vsW9cZ+UlIRWq8XPz8+sbeXKlU0zSUlJSQQFBRW5X1BQkFmbypUrm1338/NDq9Wa2txM4Vt//fr1Y9asWTatnU5OTqZHjx5s376dihUroqoqaWlptGnThlWrVlGpUiWr7wk21qmKiooiKirKpgcKUZKY8BEYky+zIXNZie02Gb8myrs3mgo+tNN0ZZPx69sUoRBCOIaj1lSdO3fOLLFwxCiVpW/cF7pxfVNJ9aOsaVOS6wuHW2vo0KGkp6fz559/UrduXQCOHj1Knz59iIuL44svvrDpvjYlVUIIIYSwk4Om/xz9pvv1b9xv3brV7N7BwcHk5uaSmppqNlqVnJxMixYtTG0uXrxY5L6XLl0yjU4FBwezd+9es+upqank5eUVGcEqya+//srXX39NQkJCkTcHv/3225v2i4+PZ/PmzaaECiAiIoJPPvnEbGrTWhaVVPDz88Pf39+iQwh7rD89HQwGYqq8VGrbwtEsjacn7TRdb3VoQghx17v+jfvNmzcXeeO+SZMmuLm5mS1oT0xM5MiRI6akqnnz5qSlpbFv3z5Tm71795KWlmbW5siRIyQmJprabNy4EXd3d5o0aWJRrKtWraJly5YcPXqUNWvWkJeXx9GjR9m6dSs6na7EvkajETc3tyLn3dzcMBqNFj2/OBaNVM2cOdP05ytXrvDuu+8SFRVF8+bNAdi9ezcbNmywaBNlIYQQQgB2Tv/ZMsqVkZHBP//8Y/r69OnTHD58GH9/f0JCQkp9416n0zFgwABGjhxJQEAA/v7+jBo1isjISNPbgHXr1iU6OpqBAwcyb948oKCkQseOHalduzYA7du3JyIigtjYWD744ANSUlIYNWoUAwcOtHjUbfLkycyYMYOXXnqJChUqMGvWLMLDw3nhhReoUqVKiX0fffRRXnnlFb744gvTYvkLFy4wfPhw2rZta9039TqKauVK8Keffpo2bdrw8ssvm53/+OOP2bx5s1khsbIgPT0dnU5HWlqaFAK9Q0R59ELjV9GiN+VigodgvJaBMTtb1lUJIex2O35nFD7jnjcn41JMPSVLGXJyOPXu61bFun379mLfrOvTpw8TJkwotmgmmL9xn5OTw+jRo1m5ciXZ2dm0bduWTz/91GzBfEpKCnFxcaY3+Dt37szHH39stm9vQkICQ4YMYevWrXh6etKzZ0+mTZtm8Zowb29v/vzzT2rUqEFgYCDbtm0jMjKSY8eO8eijj5qNgt3o3LlzPPHEExw5csRUlT0hIYHIyEi+//57qlWrZlEMN7I6qfLx8eHw4cNFCoD+/fffNG7cmIyMDJsCuVUkqbpzxVQazPpLc0tvV3Uo5OZZ1FYIIUpytydVd5PQ0FD++9//EhkZScOGDXnttdd49tln2b17N9HR0aSlpZV6j02bNvHXX3+hqioRERGm0TZbWb1QPSAggDVr1jB69Giz8999951UOxdCCCEsJXv/2eWRRx5h06ZNREZG0q1bN1555RW2bt3Kpk2bLJ7Ca9eunakc1I3b6NjC6qRq4sSJDBgwgO3bt5vWVO3Zs4f4+HgWLlxod0BCmHh6EHPPKNafmlZyO4MBdBWIqRbH+vMf3Z7YhBDCTs7YpuZu8vHHH5OTkwPA2LFjcXNzY+fOnXTp0qXUNd5Tp06lRo0adO/eHYBu3bqxevVqgoOD+e9//0vDhg1tisnqDZX79u3Lrl27qFixIt9++y2rV69Gp9Pxyy+/0LdvX5uCEEIIIYSwVH5+PuvWrUOjKUhjNBoNY8aMYe3atUyfPr1IcdIbzZs3z7QGbNOmTWzatIn169cTExNTZCbOGjbVqWrWrBmff/65zQ8VQgghhLCVq6srL774IseOHbOpf2Jioimp+uGHH+jWrRvt27enRo0aZtvrWMuikaob9xUqzbVr12wKRojrGRKTID+fmFqvEh04qNg2MVWHgqqCmytU8CYmfMRtjlIIIWykOuAox5o1a2baB9Bafn5+nDt3DigoBFq4QF1VVQwGg80xWTRS5efnR2JiYrF7+RSnatWqHD58mHvuucfmwIQQQoi7maypss+QIUMYOXIk58+fp0mTJnh7e5tdb9CgwU37dunShZ49e1KzZk2uXLlCTEwMQLHVDaxhUVKlqioLFy7Ex8fHopvm5eXZHJAQhTbmrSLafyCKi4bTcXWJCR/B+tPTifbthxIUWNDI26tgpCrfwLUGQexcbdnO5MJ27Vy6s8nwpbPDEEKUc4WLzOPi4kznFEUx7R9Y0ojTjBkzqFGjBufOneP999835TeJiYkMGTLE5pgsSqqqV6/OggULLL5pcHBwseXfhRBCCHGdcj7aZI/Tp0/b3NfNzY1Ro4r+T/iwYcPsiMjCpOrMmTN2PUQIW0Tr+oOLC/kJFwj7oSLJj4USU2M4am4ueLmj5BnIq+SD26UMuJyKz6ZLzg65XLh+lEpGrYSwg9SpssvZs2dp0aIFrq7mqUx+fj67du0iLCysxP4nT55k5syZHDt2DEVRqFu3LsOGDbNr6ZLVJRWEEEIIIZytTZs2pKSkFDmflpZW7FY819uwYQMRERHs27ePBg0aUL9+ffbu3UtERITZZtHWsqmkghBCCCHsIwvV7VO4dupGV65cKbJo/UavvfYaw4cPZ8qUKUXOv/rqq6Yq69aSpEo4XZR3bwA2ZC4zO6/46UBRcNVVgGvZ+J51R/X2Qm1ch0sNfdCdzgXAzWBENRjAxeW2xy6EEDaT6T+bdOnSBShYlN63b1+zDZgNBgO///47LVq0KPEex44d46uvvipyvn///sycOdPm2CSpEkIIIcQdQ6fTAQUjVRUqVMDT09N0TavV8tBDDzFw4MAS71GpUiUOHz5MzZo1zc4fPnzY4vJRxZGkSjjdhsxltNf2JOa+0XAtg/UX5wBw6bFQKq37G3S+qG4uuOTko6/miybXiDZDJe0eLXme4FW5Mv5bsjBeKTq3LhwrpupQ1l+YbfpaFqkLYTuZ/rPN4sWLAahRowajRo0qdaqvOAMHDmTQoEGcOnWKFi1aoCgKO3fuZOrUqYwcOdLm2GxKqn7++WfmzZvHyZMn+eabb6hatSrLly8nPDychx9+2OZghBBCiHJDpv/sMn78eJv7jhs3jgoVKvDhhx8yduxYAEJCQpgwYYJZ3StrWf323+rVq4mKisLT05NDhw6h1+uBgq1pJk+ebHMgonyI9u1XsLXMDTbmrmT9Px9gSEklyqcPMVWHUuFcHvn3VsVYwQM0GjR5RgAuNvXgUmPI94SsEJXMygpo3diQI/tR3moyGiiEKCsuXrxIbGwsISEhuLq64uLiYnbcTH5+PsuWLePZZ5/l/PnzpKWlkZaWxvnz53nllVeKXfxuKatHqt59913mzp1L7969WbVqlel8ixYtePvtt20ORAghhChXZKTKLn379iUhIYFx48ZRpUoVi5OhGzdjrlChgsNisjqpOn78OP/5z3+KnPf19eXq1auOiEkIIYS468maKvvs3LmTn3/+mUaNGlndt3Az5tIKhFrL6qSqSpUq/PPPP9SoUcPs/M6dO2UDZVGq+PTFJV7fmFcw+hntPxD3pAwMFTzIr+AOGoW0e9y53MyA32EI2JKPi96IJtedCufzWX96+m2I3jrtNF1xve8eyM5h/blZ1vV16Y6Ln474y/NvUXS2kSlWIRxIRqrsEhoaiqra9k2wZzPmklidVL3wwgu88sorfPbZZyiKwr///svu3bsZNWoUb731lk1BCCGEEEJYY+bMmbz22mvMmzevyEBPaezZjLkkVidVY8aMMZWAz8nJ4T//+Q/u7u6MGjWKl19+2aYghLhRfErBBt4xlV9ErRyA6u6Ga7aW6utAm5aNS2YuWdW88T2Xj/tlvZOjLSo68g0yuj+E3ldDxVPWx7fJ8CUx1Wx/A0UIcQeQkSq7dO/enaysLO699168vLxwc3Mzu17cFjaF7NmMuSQ2lVSYNGkSb7zxBkePHsVoNBIREYGPj4+jYxNCCCHuWrKmyj72VD539FqqQjYX//Ty8qJp06aOjEUIIYQQwiJ9+vSxq//y5cuZO3cup0+fZvfu3YSFhTFz5kzCw8N54oknbLqnRUlV4T47lvj2229tCkSI4qy/OIco794YG9XC+4Iet6s55AZ4cbWRLwZ3BcUA3scuOzvMIvIq+ZBaS0Pw3ly0+/+x6R7rz3/k4KiEEGWKTP/Z7eTJkyxevJiTJ08ya9YsgoKCiI+PJzQ0lHr16t2035w5c3jrrbcYNmwYkyZNMq2hqlixIjNnzrQ5qbKo+KdOpzMdvr6+bNmyhf3795uuHzhwgC1btpj24xFCCCFEyQqn/+w5yrMdO3YQGRnJ3r17+fbbb8nIyADg999/L7Xa+uzZs1mwYAFvvPGGWaHQpk2b8scff9gck0UjVYX77AC8+uqrdOvWjblz55oCMRgMDBkyBF9fX5sDEeJmNmQuI6buWJIfDiL9Xk+q7MrH65IBTa7K5fpuZNUOdHaIRWzZWrDtQZR3b5QKst5QCCEc7bXXXuPdd99lxIgRZgU827Rpw6xZJZexOX36NI0bNy5y3t3dnczMTJtjsnqbms8++4xRo0aZZXYuLi6MGDGCzz77zOZAhBBCiHJFdcBRjv3xxx889dRTRc5XqlSJK1eulNg3PDycw4cPFzm/fv16IiIibI7J6oXq+fn5HDt2jNq1a5udP3bsGEaj0eZAhLiZyJEzcGsdhPaaSp6fkcQWrvj9peKRasAlF5IedCW63hvE/znJ2aEWsSFzmbNDEEKUVbKmyi4VK1YkMTGR8PBws/OHDh2iatWqJfYdPXo0L730Ejk5Oaiqyr59+/jiiy947733WLhwoc0xWZ1U9evXj/79+/PPP//w0EMPAbBnzx6mTJlCv379bA5ECCGEEMJSPXv25NVXX+Xrr79GURSMRiO//PILo0aNonfv3iX27devH/n5+YwZM4asrCx69uxJ1apVmTVrFj169LA5JquTqmnTphEcHMyMGTNITEwECrauGTNmDCNHjrQ5ECGEEKI8Uf532NO/PJs0aRJ9+/alatWqqKpKREQEBoOBnj178uabb5baf+DAgQwcOJDLly9jNBoJCgqyOyar11RpNBrGjBnDhQsXuHr1KlevXuXChQuMGTPGbJ2VpS5cuMBzzz1HQEAAXl5eNGrUiAMHDpiuq6rKhAkTCAkJwdPTk9atW/Pnn39a/Rxx54ny6EVM9WFca6gnPRzcU/MJ+96IYoDMygqKEYIOZOF2DYze7s4OVwghrCNrquzi5ubG559/zt9//81XX33FihUr+Ouvv1i+fLlV+UhgYKBDEiqwo/gnYPfbfqmpqbRs2ZI2bdqwfv16goKCOHnyJBUrVjS1ef/995k+fTpLliyhVq1avPvuu7Rr147jx4+brfYXQggh7iRSUd0x7rnnHu655x6r+33zzTd89dVXJCQkkJuba3bt4MGDNsVi9UhVeHi46QMUd1hj6tSphIaGsnjxYh588EFq1KhB27Ztuffee4GCUaqZM2fyxhtv0KVLF+rXr8/SpUvJyspi5cqV1oYu7iDttT3B1RW8PXE/644mHxQjGDw0eF4Ez8sqRleFq7U80abDxn2ymbcQQpQnzzzzDFOmTCly/oMPPqBr164l9v3oo4/o168fQUFBHDp0iAcffJCAgABOnTpFTEyMzTFZnVQNGzaMV155xXQMGTKE5s2bk5aWxqBBg6y619q1a2natCldu3YlKCiIxo0bs2DBAtP106dPk5SURPv27U3n3N3dadWqFbt27bI2dCGEEKLskOk/u+zYsYMOHToUOR8dHc1PP/1UYt9PP/2U+fPn8/HHH6PVahkzZgybNm0iLi6OtLQ0m2OyevrvlVdeKfb8J598YlZl3RKnTp1izpw5jBgxgtdff519+/YRFxeHu7s7vXv3JikpCYDKlSub9atcuTJnz54t9p56vR69Xm/6Oj093aqYhBBCiNumnCdG9sjIyECr1RY57+bmVurv/oSEBFq0aAGAp6cn165dAyA2NpaHHnqIjz/+2KaYrB6pupmYmBhWr15tVR+j0cj999/P5MmTady4MS+88AIDBw5kzpw5Zu0UxfwdB1VVi5wr9N5775ltqxMaGmrdBxFlgsbHG2rWQL2QxD0fHcfvmMqVum5kB7igb32NSy3zOf90HrqTORycO9zZ4Zaqvbanff3dbH/FVzhfdKO3iKkW5+wwhLir1K9fny+//LLI+VWrVpVawDM4ONhUIDQsLIw9e/YABTNkqmp7pmvXQvXrffPNN/j7+1vVp0qVKkU+eN26dU3JWXBwMABJSUlUqVLF1CY5ObnI6FWhsWPHMmLECNPX6enpklgJIYQoc2Shun3GjRvH008/zcmTJ3n00UcB2LJlC1988QVff/11iX0fffRR1q1bx/3338+AAQMYPnw433zzDfv376dLly42x2R1UtW4cWOzUSJVVUlKSuLSpUt8+umnVt2rZcuWHD9+3OzciRMnCAsLAwoWxQcHB7Np0ybTHj25ubns2LGDqVOnFntPd3d33N3l9fo7nTEjE2MFLZvTC/adfLTdFJIfdEN7VYPmcAVc/FRODR8Dzzk5UAttzLXvxYpzrzWjTdRUtm141UERidtJVRQUjYb2bj3YmLfK2eGIskIqqtulc+fOfPfdd0yePJlvvvkGT09PGjRowObNm2nVqlWJfefPn2/aBWbw4MH4+/uzc+dOOnXqxODBg22OyerpvyeeeMLs6NKlC+PHj+fIkSNWL1QfPnw4e/bsYfLkyfzzzz+sXLmS+fPn89JLLwEF037Dhg1j8uTJrFmzhiNHjtC3b1+8vLzo2dO+6RQhhBCivPnpp5/o1KkTISEhKIrCd999Z3bdktqQer2eoUOHEhgYiLe3N507d+b8+fNmbVJTU4mNjTUtxYmNjeXq1atmbRISEujUqRPe3t4EBgYSFxdXpLRBaTp06MAvv/xCZmYmly9fZuvWraUmVFBQc9PV9f/Hlbp168ZHH31EXFyc2TqtIUOGcPnyZYvjsXqkasKECdZ2uakHHniANWvWMHbsWN5++23Cw8OZOXMmvXr1MrUZM2YM2dnZDBkyhNTUVJo1a8bGjRulRtVdTnFzJbWOF/dOm05Qg2QMIUF4Jyi46CE7GNwyyk8t4fbanrgMe4BcX1diao5h/d/vOzskYSXl1DmoXAlNrXuJbvQWJCQSn7Kg9I7iruaM6b/MzEwaNmxIv379ePrpp4tct6Q25LBhw1i3bh2rVq0iICCAkSNH0rFjRw4cOGAqutmzZ0/Onz9PfHw8AIMGDSI2NpZ169YBYDAY6NChA5UqVWLnzp1cuXKFPn36oKoqs2fPtuoz5ebmkpycXGT/4erVq1v9/bnRihUrGDVqFIGBgRa1tzqpcnFxITExsUj10StXrhAUFITBYLDqfh07dqRjx443va4oChMmTHBoMieEEEI4nROm/2JiYm5ah+nG2pAAS5cupXLlyqxcuZIXXniBtLQ0Fi1axPLly3nssceAgsQjNDSUzZs3ExUVxbFjx4iPj2fPnj00a9YMgAULFtC8eXOOHz9O7dq12bhxI0ePHuXcuXOEhIQA8OGHH9K3b18mTZpkUXHxv//+m/79+xcpsVT4Mpu1+cjNvifWsHr672YP0Ov1xb7aKIQQQohbJz093ey4vqyQNSypDXngwAHy8vLM2oSEhFC/fn1Tm927d6PT6UwJFcBDDz2ETqcza1O/fn1TQgUQFRWFXq8326quJH379kWj0fDDDz9w4MABDh48yMGDBzl06JDNFdHtZfFI1UcffQQUjBwtXLgQHx8f0zWDwcBPP/1EnTp1HB+hKDei673Btbp+eKTk4WpUyfUBxaiQ9UNlcu4FfYARTa6Ca6aC9wVnR2ufKI9eBRXja9dAyTcS/9s7QEHpBJfwMAynz5oWNLuEVCYjzIjPvwp5IRWdGLWwVXzaZ8RUfhGCA8nz80TjFebskEQZ4KjpvxvfcB8/frxNszuW1IZMSkpCq9Xi5+dXpE1h/6SkpGL30gsKCjJrc+Nz/Pz80Gq1pjalOXz4MAcOHChTuYfFSdWMGTOAgpGquXPnmm1WqNVqqVGjBnPnznV8hEIIIcTdyEHTf+fOnTObLrP3DXhrakPerE1x7W1pU5KIiAirFpHfDhYnVadPnwagTZs2fPvtt0WyVCFsEVP5RdTcvIIvjEZ8zp5HU8GH/Nxcqv14kaz7/Ln4gBu5fkbwzkd7SYv3v3Bgftkv+Hm9dpquuIZUQQ3QQb4R5d4aZN1bkYwQVyr+XTBUH+3bD5cqweDqgkvlIGKqDwMXDZkNQ/D7UwOqkTwfV2IiXif/+Ek2GYoWvRNl1/qLc4jy6YOr9h6M7q7E1HqV9SeKLw1zq8TcM4r1p6bd1meKEjgoqfL19bVoDVJpLKkNGRwcTG5uLqmpqWZ5QHJysqlCeXBwMBcvXixy/0uXLpndZ+/evWbXU1NTycvLu2kdyhtNnTqVMWPGMHnyZCIjI3FzczO77ojvibWsXlO1bds2SaiEEEKIu8z1tSELFdaGLEyYmjRpgpubm1mbxMREjhw5YmpTuB/wvn37TG327t1LWlqaWZsjR46QmJhoarNx40bc3d1p0qSJRfE+9thj7Nmzh7Zt2xIUFISfnx9+fn5UrFix1DwlISGh2DXiqqqSkJBg+vq5556zKjmzaKRqxIgRvPPOO3h7e5tVKy/O9OnTLX64EADxqQuLPR9T+UU8/nUneK83qCr/PqJFmwZGV4jyjGVD9vLbHKn1ojx6oQnwxyWyDvk+7qAoGF0V8nRuZIS44p5mRHvwHwAMGRm4enqAiwby8sDVlfUJM4mpOpSswHBc9CpZlV1Jr1GJSj4eTv5kwhYbMpYSU3csGLWQbyCmWhzrz39UYp/2D77Nxn1vOeT5xsSiowfCeZxRUiEjI4N//vnH9PXp06c5fPgw/v7+VK9e3VQbsmbNmtSsWZPJkyeb1YbU6XQMGDCAkSNHEhAQgL+/P6NGjSIyMtL0NmDdunWJjo5m4MCBzJs3DygoqdCxY0dq164NQPv27YmIiCA2NpYPPviAlJQURo0axcCBAy1OYrZt22b9N+B/wsPDi61kkJKSQnh4uOnNwRu3zSuNRUnVoUOHyMsrmKI5ePCgxfOdQgghhLgJJ5RU2L9/P23atDF9XThQ0qdPH5YsWWJRbcgZM2bg6upKt27dyM7Opm3btixZssRsrfXnn39OXFyc6S3Bzp07m21S7OLiwo8//siQIUNo2bIlnp6e9OzZk2nTLJ+etqTI583cbO1WRkYGHh62/0+rRUnV9dng9u3bbX6YEEIIIZyndevWJdZesqQ2pIeHB7Nnzy6xSKe/vz8rVqwoMZbq1avzww8/lBpzSa5evcqiRYs4duwYiqIQERFB//790el0xbYvTCIVRWHcuHF4eXmZrhkMBvbu3UujRo1sjsfqNVX9+/fn2rVrRc5nZmbSv39/mwMR5VQJo57G9Aw0qem4ZuWjahQqHTLgdzyPQ58Ox6jPuY1BWi7atx/ttT2J8u5NtG8/NCFVQFcBVaNBMRhRNaDJNZIZ5EpGNUitpUG9L7SgarpOB16eqL7eoNGQn5hElGcsKAo+F/IwahUuPZJPRutMznSuwGOtJhdcF3eWq+loLlwCvb7UqT8Ag49bqW0sdSdMmZcniqrafZRn+/fv595772XGjBmkpKRw+fJlpk+fzr333nvTOlWHDh3i0KFDqKrKH3/8Yfr60KFD/PXXXzRs2JAlS5bYHJPVFdWXLl3KlClTimwTk52dzbJly/jss89sDkYIIYQoN2RDZbsMHz6czp07s2DBAtM+fvn5+Tz//PMMGzaMn376qUifwpm3fv36MWvWLIe/IWhxUpWeno6qqqiqyrVr18zmHA0GA//973+LLfYlREmMGZmmxbo3LsjVVA1G9fYgz8cV1VXBd/8F1p8pqJe2yfg1UR69MObmssn4tbPCN2mv7YmLf0WUCj64+FdETSsYzVXT0yEdNO7uqJX8UPIM5AZ4YfAA12wIW/UvpF3DoBoLRu0MRpTMHMg3oHH3QOPrA64uZAe5ofdV0P6rIb+CC/gaSanrSWB2TSd/cmEtNSsbAGO2ZaOtiqGc/+YU4ib2799vllABuLq6MmbMGJo2bVpi38WLF9+SmCxOqipWrIiiKCiKQq1atYpcVxSFiRMnOjQ4IYQQ4m7ljLf/7ia+vr4kJCQUqah+7ty5IrNpN8rMzGTKlCls2bKl2M2YT506ZVNMFidV27ZtQ1VVHn30UVavXo2/v7/pmlarJSwszGwPHyGEEEKUQKb/7NK9e3cGDBjAtGnTaNGiBYqisHPnTkaPHs2zzz5bYt/nn3+eHTt2EBsbS5UqVRxW1cDipKrw1cXTp08TGhqKRmP1GnchitiQsZRov+eJ9h9IxmN1aNHtQ3Z9NRIA1ccTAK9/Ulh/fErRvjmf39ZYS7IxdyXRvv0K9vPLBoxGFM+CKXI1P/9/U3sGFFWDJt+I79l8vA9fwJiSyoaMpUT59Cm4UV4eaN1Ao8D/pgTzwipxpZ5CfkUDnhdcMLppyK+UR76nBpd/y9YWDaJ08WmfEeUZi/q/Ojilcfv36q0N6DaK9nuexOVVCH7mlN3//UZ59CpT/waI22/atGkoikLv3r3Jz88HwM3NjRdffJEpU4r+zrje+vXr+fHHH2nZsqVDY7J6oXpYWMFGoFlZWSQkJJCbm2t2vUGDBo6JTAghhLiLyfSffbRaLbNmzeK9997j5MmTqKrKfffdZ1Ym4Wb8/PzMZtwcxeqk6tKlS/Tr14/169cXe91g4f99ibIhpspLrE/8xKkxxKcupJ1Ld7zPZ5NV1ZNo/4EYr11D4+lJfPqtWUx4K9wYa5RnLBofbxQ3N3B1ARcXcit5oWoUvM6kgYsGjc6XaP+BKC4u8L//dtSraWAwognwB18f8nxcMXoa8UhywfMi6E6puGZpcE/JtuiVfFH2bMheTjuX7ha1VS9eusXR3D5KBR/qBFwi5Yb/GbfFXTFKJdN/dklLS8NgMODv709kZKTpfEpKCq6uriW+2ffOO+/w1ltvsXTpUouSMEtZPYc3bNgwUlNT2bNnD56ensTHx7N06VJq1qzJ2rVrHRaYEEIIcTcrHKmy5yjPevTowapVq4qc/+qrr+jRo0eJfT/88EM2bNhA5cqViYyM5P777zc7bGX1SNXWrVv5/vvveeCBB9BoNISFhdGuXTt8fX1577336NChg83BiNsrJngIVx+9t0zsXL/J8CUx94zCSwEluBJKVtYdNUpVnOsLLUb79sNYxZ/MYC2qBlwzPXHN0oMhB1WvB6OK4uYKqgp5+eDmCkYjqquGHH9XQjfk45ahR/3fWkrt2ctw3ZYQ4s6zyfClRe2M2dm003QtE6VD7LU+YWbBH4wlNhPCInv37i12v+HWrVvzxhtvlNj3ySefvCUxWZ1UZWZmmupR+fv7c+nSJWrVqkVkZORNK5gKIYQQ4gYy/WcXvV5vWqB+vby8PLKzs0vsO378+FsSk9XTf7Vr1+b48eMANGrUiHnz5nHhwgXmzp1LlSpVHB6gEEIIcbeSqT/bPfDAA8yfP7/I+blz59KkSZNS+1+9epWFCxcyduxYUlJSADh48CAXLlywOSarR6qGDRtGYmIiUJDpRUVF8fnnn6PVau3aL0fcfuuTPiUmfASql6ezQwHAeDEZTUAFjAkX7o5FqNdRjUaU3Hy8LuahTclGcy0HcvPA1RWNjzfGjMyCdvpc0GggNw/VUDBH4r/3IsZ/k9iQsbSgcnvVYMjLZ/3posPe4u6jGlVcfHycHYbDvHf0ccZG/NfZYYi7wKRJk3jsscf47bffaNu2LQBbtmzh119/ZePGjSX2/f3333nsscfQ6XScOXOGgQMH4u/vz5o1azh79izLli2zKSark6pevXqZ/ty4cWPOnDnDX3/9RfXq1QkMDLQpCCGEEKLcUdWCw57+5VjLli3ZvXs3H3zwAV999RWenp40aNCARYsWUbNmyVt4jRgxgr59+/L++++bVV+PiYmhZ8+eNsdkdVJ1Iy8vL7tWygvnKkujHWpuLi6ZetA5doNLZ2qv7YnG2wtFq4WziXgkaMBFU/CPYWEFX6OK4uqKovMFTw/Q6zEmJYOLCxv+mGR2v425K53wKYQzKS4uGHP0zg7DYb4525gd3d8g/oaf7fJI6lTZr1GjRnz+eckzG1OmTGHw4MFUrFjRdO7XX39l3rx5RdpWrVqVpKQkm+OxKKkaMWKExTcsbiW+EEIIIYQzTJ48mW7dupklVR4eHqSnpxdpe/z4cSpVqmTzsyxKqg4dOmTRzRy1d44QQghx15O3/24LtZhp0ieeeIK3336br776CijIXxISEnjttdd4+umnbX6WRUnVtm3bbH6AENYw/HMGja9zF+W2c+lucQ2h0mh8vFH8KxYsPs/RF0z9eXqgurmgpKRDbm7BHnAaTcGfr2UQn7rQIc8WdwdFo7Ah5/O7plZVeoYn6b28ifbtd8fXorOXYiw47OkvbDNt2jQef/xxgoKCyM7OplWrViQlJdG8eXMmTbJ9atruNVVCCCGEEHcSX19fdu7cydatWzl48CBGo5H777+fxx57zK77SlIlygyXAH/yL11BzTQv2hbl04cNGUtvWxyOGKVq79YDFA0aD3fQ54KXJ/rawWQGa1GMKhXO5hRUVM/LQ3HXYrh8hY2pRbdbEOVDVOPxaLL0rD8+pci1DTmf017b0+JRqvZuPdiYVzZ/lqKajCfoHl8udMzlr4/q3DWjbzaT6T+ne/TRR3n00Ucddj9JqoQQQggnkLf/bq+PPvqIQYMG4eHhwUcflbwZfVxcnE3PkKRKlBnGtGsF60eu2zMPQNFYXfjfoaL9nrd4nVOUTx8UrRaXAH+o4IOxojcqoJy+gNbdFVWpgFJYmyYvD1QVNTunzI4siNtDcyUNXDQ3HbmxtJRGlHdvNJ6exFR+ETU7p+ytWVIU3K7l4/2XFq+LKkkjWjg7IueSOlW3xSOPPIKnpyczZsygV69eeHh4MGPGjJu2VxRFkiohhBBClB8HDx7Ezc2NyMhIAL7//nsWL15MREQEEyZMQKvVAvDf/xZU8D99+rSp7/V/diTnDgEIIYQQ5ZQ9+/7J/n/wwgsvcOLECQBOnTpFjx498PLy4uuvv2bMmDEW30dV1WLLLthCkipRdrhoCsoL3EA1GokOHOSEgApYU+JgQ8ZS4lMWkJ98CfVyCkqeAVVRUCoFgEaDa1Y+blf1uCZcwvDvRfIvpxCf9tktjF7cCdYnzES9loHG3cPqvu3detBe25Nov+fRVA5CCQ4Cb28UnW/BCxNAlEevUu5ye2zYPwFtWi5Vt1wj30Ohyk/XnB2Sc6kOOMqxEydO0KhRIwC+/vpr/vOf/7By5UqWLFnC6tWrS+2/aNEi6tevj4eHBx4eHtSvX5+FC+0raSPTf0IIIYS446iqitFYUKxr8+bNdOzYEYDQ0FAuX75cYt9x48YxY8YMhg4dSvPmzQHYvXs3w4cP58yZM7z77rs2xaSojhrzKqPS09PR6XSkpaXh63v37Cl3N2qv7VnsgtyYSoNBo6AaDMRfnu+EyBwj5p5RBcU/s7IxJF+SxemiiNJKDNxYmLadS3c0Wi0aXx/U3DzUe6uh5Bf8klGy9Kw/MfWWx2yLmMovgrs7hhB/XC5eLVN7kN6O3xmFz3iowzu4ulk/OlkoPy+HPT+OK7e/3x599FFCQ0N57LHHGDBgAEePHuW+++5jx44d9OnThzNnzty0b2BgILNnz+bZZ581O//FF18wdOjQUpOym5HpPyGEEMIZCt/+s+cox2bOnMnBgwd5+eWXeeONN7jvvvsA+Oabb2jRouQ3Sw0GA02bNi1yvkmTJuTn59sckyRVwuFiwkfQTtPV6n43fW1c64YaHIji4UG0/0A7o3Me47+JGM8nkp+YJKNUolilFcK8sTCtxsMdja4CaDQoXp5oLqehKgqqi4KakmpqZ8t/j7fS+otzMF5JweXsRQyVKjp1zaS4czVo0IA//viDtLQ0xo8fbzr/wQcfsHRpyQWjn3vuOebMmVPk/Pz58+nVy/Y1iE5NqiZMmICiKGZHcHCw6XpGRgYvv/wy1apVw9PTk7p16xb7TRBCCCHuNPL2n33OnTvH+fPnTV/v27ePYcOGsWzZMtzc3Iq0HzFihOlQFIWFCxdSv359nn/+eZ5//nnq16/PggUL0NhRG9HpC9Xr1avH5s2bTV+7uLiY/jx8+HC2bdvGihUrqFGjBhs3bmTIkCGEhITwxBNPOCNcIYQQwjFkmxq79OzZk0GDBhEbG0tSUhLt2rWjXr16rFixgqSkJN566y2z9ocOHTL7ukmTJgCcPHkSgEqVKlGpUiX+/PNPm2NyelLl6upqNjp1vd27d9OnTx9at24NwKBBg5g3bx779++XpKqMim70Fkq+wbH7eekqYHR3Qwn2R5N8lZjKL7L+YtkZsbzZAvsbbcj5/DZEI8oVRQFVxXg1DVxd0VStgkafB4AxIxOAaN9+uOh0RHn3xpijd8jelo6wIXMZ7bU9cVFV1JAgonX9MWZlkf+fRrj98of89yJKdeTIER588EEAvvrqK+rXr88vv/zCxo0bGTx4cJGkatu2bbc8Jqevqfr7778JCQkhPDycHj16cOrUKdO1hx9+mLVr13LhwgVUVWXbtm2cOHGCqKiom95Pr9eTnp5udgghhBBljUz/2ScvLw93d3egoKRC586dAahTpw6JiYlOicmpSVWzZs1YtmwZGzZsYMGCBSQlJdGiRQuuXLkCFGx+GBERQbVq1dBqtURHR/Ppp5/y8MMP3/Se7733HjqdznSEhobero9T7sXUGI7xzxOsPzfLYfeMrvcGRm93VFcNSr4RY2U/1Dzb38y4Vdq5dHd2CKI8UlUMqWkoPt5gMEJWNlzLhGuZKF5etHfrgeLthRLojyYoEBedb5n6Wd2YuxJjRibKlTSUAH9cat6D9rdT4Or0SZTbw6jaf5Rj9erVY+7cufz8889s2rSJ6OhoAP79918CAgKcEpNTk6qYmBiefvppIiMjeeyxx/jxxx8BTKv2P/roI/bs2cPatWs5cOAAH374IUOGDDFbg3WjsWPHkpaWZjrOnTt3Wz6LEEIIYRWpqG6XqVOnMm/ePFq3bs2zzz5Lw4YNAVi7dq1pWvB2K1P/O+Dt7U1kZCR///032dnZvP7666xZs4YOHToABa9PHj58mGnTpvHYY48Vew93d3fTcKAQQggh7k6tW7fm8uXLpKen4+fnZzo/aNAgvLy8nBJTmUqq9Ho9x44d45FHHiEvL4+8vLwirza6uLiYytJb4+mIV3HVuENuLsZrGWzIXEaURy80FSqg6vWoBgOKiwuq0QiqipqXj5qf59gF13ehdpquKK4Fr65asljbGjHV4lB8fcj3csPg4YKiqmRW9aRCThAx1YexPmGmQ59nK42nB9jxCq4Q1iqsO3X9v0/Ruv4FC9eNRtDnori54hLgXzCVptGg6nzAxxNXL0+iffsRn77Y/J4u3dF4uLMhc9lt/SzGrCw0np7g5gqXUlCCAlGysokJHsL6pE9vayy3m4J966IUh0Vy53JxcTFLqABq1KjhnGBwclI1atQoOnXqRPXq1UlOTubdd98lPT2dPn364OvrS6tWrRg9ejSenp6EhYWxY8cOli1bxvTpZWdLAyGEEMIm9lZFL+cV1aGgevpXX31FQkICubm5ZtcOHjx42+Nx6v9enz9/nmeffZbatWvTpUsXtFote/bsISwsDIBVq1bxwAMP0KtXLyIiIpgyZQqTJk1i8ODB1j/MXQse7qDzRVO9KtH+A9HofMHVBUXni+LqiiEjgw0ZS9mQuYyNuStllMoCm4xfszF3pcNHqQAwGMgL9CazqjsZIW5kVPciO9CFrHsqol7LKNg/7H+ctfi2vVsPDNeuoXjIlLO4fTYZvy7y71N82mcYky+h5uSg5uZizMjEmHatYOQqNxclPQslLRNVVwElwK9IlfVNhi9v+ygVFHwWY0Ym5OVDoB9kZGEI8kMN8ie63htF2kf79qO9Ww+L7h1TfRgxVYc6OuQ7Vn5+Pm+++Sbh4eF4enpyzz338Pbbb5vN/qiqyoQJEwgJCcHT05PWrVsXqduk1+sZOnQogYGBeHt707lzZ7MinACpqanExsaaXhqLjY3l6tWrDv08H330Ef369SMoKIhDhw7x4IMPEhAQwKlTp4iJiXHosyzl1JGqVatK3qojODiYxYsXl9hGCCGEuBPZWxbB2r5Tp05l7ty5LF26lHr16rF//3769euHTqfjlVdeAeD9999n+vTpLFmyhFq1avHuu+/Srl07jh8/ToUKFQAYNmwY69atY9WqVQQEBDBy5Eg6duzIgQMHTAW8e/bsyfnz54mPjwcwFelct26d7R/4Bp9++inz58/n2WefZenSpYwZM4Z77rmHt956i5SUFIc9xxrlZiFITpg/2fcGoK9WEUNFL9Ao4O4OLi6o6deIT/tMRqbKmPyLyVxs6kVSh1xSIuFKfQ0pjQyk3ucKRiPGjEyiPHoVvDauUYjy7n3bY9yYt4pNxq8xXEktvbEQDhblGWv29YaczzGkphWsC83NZUP2ctSsbMjRw7UM1IxMlMspYDDiWiOMaN9+ZWJfQKM+p6CAKWAM0KEYjeT5e2Hw8yK64TgAonz6FFyvE44+uglt2k8t9b755y+AohSsNyuLbvPbf7t37+aJJ56gQ4cO1KhRg2eeeYb27duzf//+gnBUlZkzZ/LGG2/QpUsX6tevz9KlS8nKymLlyoLZiLS0NBYtWsSHH37IY489RuPGjVmxYgV//PGH6c38Y8eOER8fz8KFC2nevDnNmzdnwYIF/PDDDxw/ftyub9n1EhISTBsne3p6cu3aNQBiY2P54osvHPYca5SbpEoIIYQozx5++GG2bNnCiRMnAPjtt9/YuXMnjz/+OACnT58mKSmJ9u3bm/q4u7vTqlUrdu3aBcCBAwfIy8szaxMSEkL9+vVNbXbv3o1Op6NZs2amNg899BA6nc7UxhGCg4NNdS3DwsLYs2eP6XOoTlpvVqbe/hNCCCHKC0VVUez45V/Y98adQ25WWujVV18lLS2NOnXq4OLigsFgYNKkSTz77LMAJCUlAVC5cmWzfpUrV+bs2bOmNlqttsgbd5UrVzb1T0pKIigoqMjzg4KCTG0c4dFHH2XdunXcf//9DBgwgOHDh/PNN9+wf/9+unTp4rDnWKPcJFUGDw2eqXqUnHw0aZlQKQBS01D1ucSnfebs8EQxzn0TyaZm7zP3SnO2BNbmSro3bkBusndBBWm9HkNqmtleZlGesWzIXn7bY70lC/WFKMWG7OVE6/qj6vWmvfI2Gb6kvVsPNub9b82qwYCamYUhI6OgdEF+PsaUVJSGdTAGV8T18jWiAwehZmQ6Zb+9dpquaDw9UVxdIUeP4qpBdXEjJ1CLe1o++V4+xNwzCkOT2sTUHYtLjp6rzSug94eHu0zD56cTxF+eX+y9Nxm/Niv7UuYY/3fY0x+K7Bwyfvx4JkyYUKT5l19+yYoVK1i5ciX16tXj8OHDDBs2jJCQEPr06WNqpyjmxRpUVS1y7kY3timuvSX3scb8+fNNi+wHDx5MQEAAP//8M506deLFF18spfetUW6SKiGEEOJudO7cOXx9fU1f36wA9ujRo3nttdfo0aPg7cnIyEjOnj3Le++9R58+fQgODgYKRpqqVKli6pecnGwavQoODiY3N5fU1FSz0ark5GTT+qbg4GAuXrxY5PmXLl0qMgpmD41GQ25uLgcPHiQ5ORl3d3dTYfD4+Hg6derksGdZHNNtf6KTuGYayPdxI6eKN/lVKmL00KLm52PMyHDKAmdRstrvzOCvLm8RpPGklmcSNSteoop/GgG+mehD88itHYJSwQcXH2/zjhophyfKl/i0z1C0WqJ9+xHl3Zso794oWi3tNF1p79YDY44eQ0YGm4xfsyFzGfHpi9mYt4oN+yfg+nfBa/BKgD+a0KrEVHnpps+5VQvaFVc3ND7eKH46UDQouQaU3Hx8zmaS4+eG0VXhWqNgXP88A5nZGC9dIeSbU/icU1FdFHIb3kNUk/EAtNf2LHL/TcavUdxcifYfeNMYiut3OxRO/9lzAPj6+podN0uqsrKySiyoHR4eTnBwMJs2bTJdz83NZceOHaaEqUmTJri5uZm1SUxM5MiRI6Y2zZs3Jy0tjX379pna7N27l7S0NFMbR4iPjyc0NJSHHnqIzp078+STT5odziAjVUIIIYQz2Lt/n5V9O3XqxKRJk6hevTr16tXj0KFDTJ8+nf79C96OVBSFYcOGMXnyZGrWrEnNmjWZPHkyXl5e9OxZkHjqdDoGDBjAyJEjCQgIwN/fn1GjRpn28AWoW7cu0dHRDBw4kHnz5gEFJRU6duxI7dq17fjA5l5++WW6devGW2+95dARMHtIUiWEEEI4w22uqD579mzGjRvHkCFDSE5OJiQkhBdeeIG33nrL1GbMmDFkZ2czZMgQUlNTadasGRs3bjTVqAKYMWMGrq6udOvWjezsbNq2bcuSJUtMNaoAPv/8c+Li4kxvCXbu3JmPP/7Y9s9ajOTkZEaMGFFmEioARXXWe4e3SXp6OjqdjseqvIBLYCBGb3eMWhdc/zxD/OX5RHnGohoMqAYDqEapVeVkMdXiSG0VRlK7fJ5pfBC9wZVQjxROZFXmn7RAzvwTjKZCLv5bPPBNyMUtNQflzL8Y09LZmLeKaF3/W/7iQZR3b4zZ2Rb9rJgtGBbiFory6AWKxvSixo37A7Zz6W72Usf12rl0x9XfD3y8QKsl/++Tt/XfwiiPXmgq6sC/4v8nCoqC0dONtLo6XLOMVDichDGgAprEK6iZWWS2rkOel4L2mhFtWh5uCZfJP3vupnFH+z2P4uHO+sRPSoyl8HdGWlqa2TolRyp8xn9ajsPV1cPm++Tn5/DTL+/c0ljLsv79+9OyZUsGDBjg7FBMZKRKCCGEcILbXVH9bvPxxx/TtWtXfv75ZyIjI3FzM3/LMy4u7rbHVG5GqlorT+ERUg1DaCU0mXo4+y9qfr5pr6t2mq4FiyQ1CigaeUXeiR7sM53kNnkEVE4nW++Gt3su1XzTOHG5Enq9K/k5rniccsczGTyuGvFJyEGTkwd/nWZDxlJiKr+ImqO/ZSNWMVVeQs3MIj5dtlASd4/22p4FC8ZdXMDTg/UJM60albVH4UiZGhyA0bNgkbWqdUGjz0fJzedKEz+06UYqbD2OUjkQMrJQs7PJalETg1bBNcuIUavgc/hf1IxMDCmpZjG3d+uB4uKCotWi6HxZf27WTWO5nSNVrZq/afdI1Y7d75bbkaqFCxcyePBgPD09CQgIKFLS4dSpU7c9JhmpEkIIIcQd58033+Ttt9/mtddeK/JWo7OUjShuA8XFBVQVl5RMlItXwM0VxdW14DVknz5ovLzQeHqg8fSUUSonivKMRfd3FmGrNVxN98LN1YBB1ZCc5UNengv5qR6Q6YomH1QN5HsoZFT34No9FchvWrtgXYmbG7i5FrvDvSMYLl9BCQqk/YNv35L7iztHO01Xp72O72gbc1cSn7IA47VroHUjusGbaMKq3fpRKk1XNB7uqLm5KMkpuFxOR5ObjyYnDyXPAIDP+TwM7gpKpQBIzwBVRXF1xWvX3xi1CkZ3DS56lavNq6F4eeGi0xX8W1D42fJWoRSWGcjPJyZ8BDFVh97Sz2UJxWj/UZ7l5ubSvXv3MpNQQTlKqoQQQogypfDtP3uOcqxPnz58+WXxL184i0z/CSGEEOKOYzAYeP/999mwYQMNGjQoslB9+vTptz2mcjNSpWhdUbOyIeUqxvQMFEWD4umB4lsBTaA/Gn8/VL1eFh87SUzt14ipMRxN5UBcL1/D9Voebe89QVToX7Sv9hdebrnovLPxqpwBRgX3FAqmABUwuiioLqAP0KI2qA15eSgeHpCYTEyN4Q6PdWPeKjCq6Ct7EhP6isPvL+4cm4xfo/Eovnr1nUr53/6Aij4fsnOIqTmGaF1Bcch2Lt0d+qwoj14F+/5ptQDkX07BmHgR5UIympQMFH0eqCraS1mgKORW1YGioObkoOpzIS8f3Y9/ompAk2vE+189aQ+FolTwQeNXkfbN3yE68g2ifPr8/4sr+YaCJQI37sbgDKoDjnLsjz/+oHHjxmg0Go4cOcKhQ4dMx+HDh50Sk4xUCSGEEE5w/VYztvYvz7Zt2+bsEIooNyUVHgvsj6tGi5qbh5qbC4Di7o6q19+WV4bFzcXcM6rgD64uqB5uYFDBVUNWmC/Xqrmi94d8D/C4AkZX8ElUUTUFo1QaA2jyVDT5KopBxSNZj+bQcRQPd9QcPZqqwZCjZ/35j25J3IZAX1wuXGL9hdkOv39580D/6agKBKw8ZCpgeScoqajmnSjKpw8aH2/UrGwU3wrg7QVGIygKGI0Yk5LZkLHU7udE+/YDV1cUdy1oNJCbh/HaNVSDoWD0ytsLKvoW7NPq4YrB3QXXa3pUFxdczl3EeC0DDAUrtRUPd3Ka1URjUHHNyCOvghaPs6lk1glAyS/498Ft229szF1JtP9AFE8P1ICCUS8lJ4/1x6eY4rqdJRXaNH3d7pIK2/ZPLrclFcoiGakSQgghnOE2b1Mjbr1ys6YKdy14eaL4VUTjW6FgXj4rC2OO3myUKsq7txODLB+idf2J9u1HTI3hRDWdgDGgAtm1g0hrFMTVBv6kNfTnWq2KZAe6oBhAmwael8D3rIGgw3p8T2binmbA62Ienpfy0KYbMLgrqBoFl4wccNEUrKmoHIjxQhKG0Eq3ZO3T+lPT0Bw/Ay4uxFQf5vD7lydRTcaT3jGDSy3zUTwL/s89JnyEk6OyzN00SgUUjEJ5uBf8G5mZBWnpGCt6k1dFx+VHqpDXvC4xlQZbdK9o3343b+vigqJ1K1jf5OUJPl5o/re/XHz64oLRscxslNyCAqD53q4oeQZcklPBwx3Fwx1jbm7BFmMGA6pG4VKkO3p/d1QXBYPOC+8TKXidvkq+lwv6do2IbvS/Pe68PFGy9KCqGCt4EOUZ6/D1YhZRAaMdh+RUZY6MVAkhhBBOIGuq7j7lZ6RKCCGEEOIWKjcL1Vs1fxMXDy9c03JQcvIBULKyWX+6oI5FdOAgDKlpd91QflkT7fc8io83akUfMu/zQ1VAX1FDnpdCvmdBlfSCxefglWwkz0shx1/BRQ+eKSreF/RoL15DddVg8PXE4OlScGMjuOgNaHLy0JxPRg3yR8nSo3p7oGTpyauiwzU1i/g/Jt2yzxbl0YsNOZ/fsvvfLWLuG01eVT9cL2eS1tAfr8RcUmt5oLqA5xUjFdYeBtVY8CKJweCQRdHCOlHevQv2yXN1RVWNKK6u4OVFXjU/8iq4oclXcf83HeNfJwtKjNzsPv/7byLKpw/GrCzzpRYevdAEBoCba8F0I4A+D6POu2DKLyu7oPyBiwa0WlR3V3BxAYMBJScPrmVgvJZRUInd1Q1NRV+yG1Yno6obnlcMqC4KrpkGPC6kA5BTTYdbei4afT6a5KsYK+nQZOgLnuuigYwsjFdSyM3OYLu65rYsVH+00Wu4uthekiPfoGfr4SmyUL0Mkek/IYQQwhlkofpdp9wkVRnVPHBXtXgaVFwUBeXEWfIzs4gOHISanYOam1tklOr/2rvzKMuq8vD7373PdKeqW0PX0NUTBd1AgyAICI1EMNpDGZTo+0NIIxAxJkQc0BB/Ma53aVwGlCRGs4gQMEE08COvy2DIm/Tkq7YiooCiCB3Ghh6rp5rueKa93z9OddFlA0p3dVd39fNZ667ue+6pc8/d99StfZ+99/Ms1ZfilEoApLW6RLGmwOrhrwIw0PtB9LwyYbszkbxT2fFkni4YB2qzNdisvpV1syiW1QpTDNC7R3GrTVxHZ0u9lcK6TjbHwHFIW3K4O/agKlUo5NHNFJMPGJjz4UOW/kCiVL/Z7/z+39C4aDZYqL4lT9hpyG/P0fdAHR0bSO1RlU5hplpT+zowHlkOfHAc7J4h3OERvFxA/ezjaMwrk8stZkX7H038Xu9rqb4UHWSLDky9js7nWV66GpJkfJK6n6VtCPysc6CzqLMOY6znYFuziBVJCsagohSbd7Cuiy25qJyH9jyIImyjCUlK/ldbUXYOxteQWoyvacwvk99axa3FoBTGd0n7u3FHmySd2ee7U2lASxHte7jDLgwdpoYWM84x06kSQgghjigGUAf58+KIIp0qIYQQYhrI6r+Z55jpVKWBwhkzOLUIPVKDlhLr9qnztzx3BctLV09Mil1evAq3axYARob+Dtjy0tWYRhOnVMRGMer4+TSObyO+8ASabTob8tPZcF+jG5KigVIC2kLVBQ3WsSjXMBZpgsEArxIQjLYSjBr8sZRgdwNdC1FJiikEJCf1ZU/e0Uby9PO4XZ04o3XinhacYmF6G+Qos8y7HGvslFz/Sy/4a+gK0HH2nnf/PEHFlsIzOzClPLoZQTOc2H95/krMywzLi0Nvqb6UdeabmGoVrVpQRQ/V0YYdnxyeG6wTtwU0ewvYvpMYWPjnMFph1a7bJo6x76R05XpZfsBiAaL4pSeyNhsObDSzu3ECaQpao3JBNoE9n5uYO6SqDWx7iTTvolIPd6QKnpdNpE8SsJbc0zuoL+5FGYsej+SE3UX84SZxW4BVCqshKZRwwhSnHk9MYneqGirOoW9gMWMdM50qIYQQ4ogiE9VnnGMmT1VhV0qwK8TkPIbP7cWMjLLMX8ky73JWtL4PPW8OynFYqi9lRfka9OweKBbBjH+TEgdEaZ1FGhb0kZy7mLFTO6j0uSR5RW7E4NUtfsVgHWh9HopbNLnnfYIXAqxvsonqiYKGA7EmbjPU5htqc2Bkkabe4xK3BYSzW2kuaMcGDhiLO5pNXHVaW1g1+BXsniHiFo+orzzdTXJUebXl8r+tFad+igt/72bSvIPTSAlGUzp+OUph4yiFJ7djcx56cDcMj0I+xzJ/JQA2iSd+J8XhpRyH5bkrWBvfmy3kaTSg0UQ541GcDc/jVmOsBreeEs3vgK4OBhZ9Yr9jLc9fiTO3D9pasYGfVbcIfNBZLUGsBdfFNsOsJt94fVZbb2QpFADru1hXY8oFrFIkRY+0MJ6KIY6zfbWe2L/w9C6SokNSdEjz2Z+52vwi3lADHaWgFGmgiFtcoraANKcJOwNMwYecf3gaGV7qVB3MTRxRjplOlRBCCCHEoXTMDP8Nn+Ayls/R+auI8lMVdF9vFoFKUkxvB2q0jsrncLRGFQvYvI8aGsNGESaKpvv0j16+l1WFL+RhVhG3aSgNGqxWJHmFWzdYDeUXDMaD+mxN6oN1QNedLBlorFBpdjinqcCCjiAYAa9qssSfjQTrKnQlRMUperiGHR7JvmEDpIZmp8vIud60NcXR6mDnNMU9JZQBbyQkzbu4DYUeHMKMZJEpO7gTgiBbtl8M0MVClhgyn8caA1aWOB126qWoD4BSeu9/0KUi6dAIzvPbyKWziTpzBCMNop4WvD21SXNTgaw2n1ZZFAjA1ZAYlBpf9mYMtloDz8XM7oTeDlQzYfUTWaLepW/6XBaVAvxddVAG46ss/0qSYGp1sDarIwjgZvu2/HyQypm9uHVDmtekgaLZVyLY1cjSsOBgvCwdS7AnxDqasD3AbbTApkPXtJPI8N+Mc8x0qoQQQogjiqRUmHGkUyWEEEJMA0mpMPMcM3OqjAetLxqMr4k684THdWBbi5juNlSUYIeGs5BwXw8UC6hamC39tRanrY3lxatYXrxqul/GUUe5LquH7iDduRv/hT0Ee7Il8802zejxmrHjHMKyJiwrGp0atwpeDdw6oMBpKFDZcCBk2daVgeJ2S+umhPzOELcS4dQj3OE6KoyyoaUdO0nHKhNZztOxCn7FUBjkNb2PeydJL/MuZ5l3+aTHVrS+b9L95fkrWeZdPmMnVi91LnvV17Y8fyUDXdeyPHfFpO1hm0duWwU9UsN7YRfec4OY0TGU65IOj7KmeTc2DEEr9Lbd2DjOhp98b7z+nAzZvpJfvyZ/WwNd177q42ujeyBNWVG+BuWNf/d2HGgpZZPDrcHGCc7WXeSf2olVCnekiQ08VP/cicUGQDZ8qxQqTrGOg8l72Jyb1fJTajybukYpzZpHPoP5+ZMTQ38A7u4qKs6mDFjPweQ8VGJxGym2UsWGIaYZkg6PYivVLD2D1uC5tPxiB3HRodGZfYCkniLNuejYoCODSi1WQZpzidqymoZhl6RdEQdOIlVCCCHEdJA5VTPOsdOpUlCZp3FCTWlrQm53hCn46EaM2j2SfQOLYlStDoU8ds8YpAYVjFcQdxxW75MsVPx2Vg1+Bci++Q70/CnOWEAuNTQ6SrS+YCluCzGupjbbw8XihAq/arAKRpQmKlswkNut0BG4jawOoF+xWW0vz0ElFpsq9FgItRo2Tfer5ajOOZWhkxyMD5zc/1uf/94EhrpUyirZ7+PXr4eZXLNumXf5b5ywbqIIrUvocuuk7cXNNUiyyR+2Xs/qtClFWq2htMoiW46TTYY2Jlu2r3WWzoTxic7iZa2N783q6aXmNV1/e5N0Ls9d8bI1K5c6l6G0yj4TfQ9rx98XpUA72f/TFBuGqCjGiSJsewtEYHMu+pSFE8deG9/LwNyPQM5DWYvRDjigVAqpyW5KYZMkS79QLrPUuQydz6FLRWzvLNzREJtzSVr8LCpWS/AGx0iGR1mX/lu2sOH4BTA0kiUPbTSziJrn4jYMjVkOxa1Nmp0+ac7B3VUHfIynCNtdCttDcrUYLJAexoVJxmZFTw/m58URZVqH/z7zmc+glJp06+3tnbTPhg0beOc730m5XKalpYXzzjuPTZsO19IMIYQQQojfzrRHqk499VS+853vTNx39lnG+9xzz3HBBRfw/ve/n7/6q7+iXC6zYcMGcrncdJyqEEIIMXVk+G/GmfZOleu6+0Wn9vrUpz7F29/+dm6++eaJbccff/wBPU8wBpSy1CZxycEfUbiN8TpTUZxNlO3rhtSidu7BNpoo38c0Gqyp3jVjJx8fTqt23ArAwHEfY9aeKoyMYRb0Yl1N57O7IByv+5bPYQsBxW1FAIyXBVR1kk0uNZ5GR2l2qzazUH+SYpvN7H1znEmZwAe6rqWydBFYaJwQ8czVrSx1LntN+ZdWD3918uTbY8y+Q3rL81e+7FCTU8reL1pKk9pXV5svDfMAptGYGFZd5q/Mhv5cFxtFKCf7wqSKhYmM2mujew7lSzvq7ZsT6rXY+5m2t87fvrTnYuIEGzZRaYqTb4PAxxRz6FoTXJe0UsEplaDcCoGPSgzWdzGBh/U0+vSTGOj50yxTensZtMYqhbIWHcaoMMmyqvseyuxdiWJQvV24uQDay9n+Q2PZKrfAp3lqN07DZPmqxioT15jyfayjoKsd67vo0Sx3FXGCPxKSLPKwWuFXEpJ8NozpVEOMq3BCB+toVJhmOe7M4RxuPtis6NKpOtJM++q/Z555hr6+Pvr7+7n88st5/vnnATDG8F//9V+ceOKJLF++nO7ubs4991y+/e1vv+rxwjBkbGxs0k0IIYQQ4lCb1k7Vueeey9e//nXWrFnDHXfcweDgIOeffz579uxh586dVKtVPv/5z7NixQrWrl3Lu971Lt797nezfv36VzzmTTfdRLlcnrjNmzcPgOFTUkYXp4yebBg9XpEUXZKWgLirRHzKfFShgKo2Wf3EX7Nq123o7lmoUhGlNSta34fT1sZS57LD1TQz2qoX/p70hU3Q1oqKEnQlJOlty5Zs+x44DqbgE3Z4pIHOsqonBh2mOJUm3p4a7u4qek8Fdg9jduwm2b4DM1ZFd7RnWbjJJlcvL11NunAOjQ5N1A4omx3vzMWv+byP6YjJ+ITYFR0fyKILv2ZF+x/B3Nmk/bOxpfzkKGAtqxtn8wHm+LmYC98w8bu0NroHG0Wk1Rqm0cQmSfbN3ZjsOqhUDsvLmwle6+eT09KC09GeRZtehnIc1plvsja6h3RoBKo1dD2cGLJaZ76JjZOXaqOOZ0hXiSEuujRn5xm9cCH1Cxdj21qwnkNacKnPzrNzSQdjp83CFgvge9iONmx3B3hutt+8HtLWXJZ93XWzrOt5H2VApZa0JUe6oGfiXNNqFfM/z6HG6/rFc9oxpTy2lEclBrcJUdlFxVkahdqCEqQp/tYRgpGYsMMjbvUxgQvJYYz+SO2/GWdah/8GBgYm/n/aaaexZMkSTjjhBO666y4uvzzLv3LJJZfwsY99DIAzzjiDBx98kNtuu40LL7zwZY/5yU9+ko9//OMT98fGxiY6VkIIIcQRw1gOaghPVv8dcaZ9TtW+isUip512Gs888wyzZs3CdV1OOeWUSfssXryYBx544BWPEQQBwd40CPvofEyT9DikOcBCktd4VXBGm+hqOJ4wTjHQ+0Gik+fidLXh7B5DdbSB52GHR9DeEdVcRzVdKGRV71OTLXveXcGWi5hiQNQWEHa4eFVD3OLihGbiG6qKEqjWsWMvRTBUMY9TzGdzdqxF5QJWtP8RzpzZ2LYWRk8oolPwKtDZM8pg2MHQ6a2vcnZiXwPH34DqaGNg9nUArKl9HZi8HN/U6jiVGhSDbJ7ivhrNbL5USxEchdOI0e3liXlX+85/W567At3SktVzS5JJ6RRebu6PeMlrrtGodZYyxvP2q9e3pnn3pMjX2ugelpeuRgf+/n/Ijcnec+uCtVhXo4yl3unSbFPEZY2+RtOoBhR/mcOrQRKAandgcTt+pZVGl0dud4yf91BhivV0lvDT1ahcVjPQ5LPPdWUs1lE4j298aZ7jeG1CO7gT3WjF9nYQ9hbxxiJUaghGDbVeFx1bdGxBW6ontlP6n2H8Z3eQBn0YX2MdhQ7j19jyQrxk2udU7SsMQzZs2MDs2bPxfZ9zzjmHp556atI+Tz/9NAsWLJimMxRCCCGmiDUHfxNHlGkNvdxwww284x3vYP78+ezcuZPPfe5zjI2NcfXVVwPw53/+51x22WW8+c1v5i1veQurV6/mP//zP/n+978/nacthBBCHDxJqTDjTGunasuWLfzBH/wBu3fvpquri/POO4+HHnpoIhL1rne9i9tuu42bbrqJj3zkI5x00kl861vf4oILLnjNz2V8hXHBOFmU2niKNOegEi/L7twzj9rcHHFeoRNo21DFtuQhMShjUF2dqHx+vzC5eG0Gej8Irovq68H6Lmq4AtaQdrVR7S8SlRTNjmzCazCiKexK0LHFrWUheVPKoVydFXa3Fjw3m8iqFNQb0FrCzOtC1yPico6ozafWq/DHIGy37NjVCpEmGDUMdF07kVlavDLTUcIELu7WBMKXsk3vm4nbjmexVnGaLZXfh7UG1T2LtDWHs7sC9QamGaJzAcv8ldgknhjWs2lKsmgu7uAI6eYtk44jQ39TLE0xI6OsqX09W9Txa6kyfn04cU31rqwWYFcnuqXE8uJV2DTFVGtoY7MhOFejEoM/GtHo8kgL0H3BNv6fk++md842ABb+zRdxq4qoHUZP1BS3OkStUOvxadmSDfeHbQ65oZRgKMquKUejwxh/SONUQ1StCcUCWqlsgUuaku5d1BBFKGtx6wn12TlyQzFeNaXZrrPpSwp0ZNAhxF1F/HqDYGeNuC1P3OKhksNY+0/mVM0409qpuvfee3/jPtdccw3XXHPNYTgbIYQQQogDd0TNqTqUkgCK2y0dGwydvxpPQugqoo6AXWeX2XlWgaHFmqHTodarSItelsQuN77EtyWf1X6TcOsBW9HxAWx3B9Gi2dRO7KC6sEzlnLmMndVHtb9ItU9T71FEZUiKkBSgMtdlbL7HntOLjJxYYOTkFobe0EnlnHmEi/uIjusinl0mXNBOuLiP5rwylf4Cw6e3UzkuT6PTQcfQ6AZlFIz4tD6r8ccSkj17prtJjnjLc1dgtc4igYU8qpB/2f2UVuDobCFB9FI0a5l3efZtery+G9VatgQ/SbLJ656Lcr2J/fdOTDedLRNL+sWhsXrsTmwUsVRfik1TdKmY1WF8tZ8Z/RdWPfs32CRB+X5WFzCKslQYJgUDJufQ7M6R5BWpDxrLLvPSn5on3nsL+sxRws4UrCJqBacBzS6oztGkgSb1FfUuh6TgUu8vk85qIe4oYN3xa1FryOdRLSVU4KPKraB0lsS5vYyKEqyj8MdSmh0ebiOl85c1ojYHHabo2ODWYpx6gi3k0UMV/MEKwZ5m9hyHyzSkVNi6dSvvfe976ezspFAocMYZZ/Doo4/uc0qWz3zmM/T19ZHP57nooot44oknJh0jDEM+/OEPM2vWLIrFIu985zvZsmVyZHl4eJgrr7xyIr3RlVdeycjIyAE109HkmOlUCSGEEEcUy0F2ql7b0w0PD/OmN70Jz/NYtWoVTz75JH/3d39HW1vbxD4333wzX/ziF7nlllt4+OGH6e3tZenSpVT2yRl3/fXXc99993HvvffywAMPUK1Wufjii0n3Wa27cuVKHnvsMVavXs3q1at57LHHuPLKKw+ywY58x0yOgPanIxzfwXoKHRqso4iLDs1OzdAZKeRSentHGNzUgQlcojYPJ9B4lRhb9DGeg/Vn4bS1TPdLOWop34NmjDdUxx3TmMDD+Jo079KY5WYpLiIwAZS2ZJ8Wqa9ICpD6YDsVsx5PCHaHRG0+OjKo2GByDiqxJAWHJK9JPYXbtDQ6NUk+i3oZdzylwq8UHd/dmJVAacney4HZ15Hu3jNpab/IrGnezcDs6zB9s7KSIcUCAyf+b+yOXawe/ZcskpWmWYoMz0OFESTppPQHynGyKAaMJ/SsogoFqNezKMc+80LWmW8y0HUtdLRh3P0/nl6pRM7hsLx41UQ6iZli7zW/zLscfA/d0sIyf+VvTHRrxqroXIDO57G+D2mKrdaydAddWbmi3LAhKml2rJ/D++Or+Ol4usBg9vNc3H8pD7Ucx+BIK83tBbCgY8XYQkOtT6MM5HYr4qJP66aENOdiXUWcd9FhghPG2JyHij0YT0DqlFvHo6Appi2bF2WC7FhJ3iGoxzhNS9LiEexqZClamhE4irS3HRUlqDjFSWZuSoUvfOELzJs3jzvvvHNi23HHHTfxf2stX/rSl/jUpz7Fu9/9bgDuuusuenp6uOeee/iTP/kTRkdH+ed//me+8Y1v8La3vQ2Af/3Xf2XevHl85zvfYfny5WzYsIHVq1fz0EMPce655wJwxx13sGTJEp566ilOOumkw/eiDzOJVAkhhBDTYYqG/369NFu4t47qr7n//vs5++yzufTSS+nu7ubMM8/kjjvumHh848aNDA4OsmzZsoltQRBw4YUX8uCDDwLw6KOPEsfxpH36+vp43eteN7HPj3/8Y8rl8kSHCuC8886jXC5P7DNTSadKCCGEmA7GHPwNmDdv3qTybDfddNPLPt3zzz/PrbfeyqJFi1izZg3XXnstH/nIR/j617MI7ODgIAA9PT2Tfq6np2fiscHBQXzfp729/VX36e7u3u/5u7u7J/aZqY6Z4T+rFNZTKAPG1zQ6HaKyYnRxyjmnPUczdWn1m+wcaiFucYgLCh0pTOCAsfh76lkF9ZHqdL+Uo9aqwa9Mur88fyVOMY+fy5Ert6AaIYRhNhE1TbOl0uMpE9L2EsqYLE1CR4A/FE4sj3aqMdbVaE/jpSlRq6bWqzEOGB+sAh2DXwF/LIVCHmpZFfvl+SvRrSX0K9Q/E7Bq+z8ycPwNWaLB8fdEFfKsaH0fKgjQvg/lFmwxh6o0II5xOtqzDNylEuQCiLOhFVtuQVWq2Tds181qx1kzabjQWoOq1tD5/SfFm30mwR9u5owTGej5U1btuHXazuFQWRvfm/0utLWi87nfvP/48OAyfyXK91C5AOU42Hodb6iOjnLZcF0hT0Mpdj81izfyl3xp8b2cv+B5fr/tUU4tbGWor8TWhe18Z8uJVCp5/OfyqBTisqXRA96YYtR1cWsuhV0p/uhLdQZVtYltLWBzPipJUHGSdTLiGGe0gfGKWa0/1yEuOTRmldCJRRmLCVyceozN+dnnemKwjoN1NYajL6Hm5s2baW19qUrEy1UVATDGcPbZZ3PjjTcCcOaZZ/LEE09w6623ctVVV03sp9Tk+p7W2v22/bpf3+fl9v9tjnO0k0iVEEIIMR2maPivtbV10u2VOlWzZ89+2dJvmzZtAqC3txdgv2jSzp07J6JXvb29RFHE8PDwq+6zY8eO/Z5/165d+0XBZppjJlIVdrjovINxIM0pRk425OeN8YcLf858fw+PVI+j1W3yRGsvI2UPJ9Ko1IKxeEN1AKzjMLP72IfXvhOOlxevYvWvTQLeW1tuef5KnLQH01EieHr7+JJqlS3Vj2PMyBg6F+C2t4FW+CMtxOWAsM0lbNU4sSVqURgPxha4lH4WolyXtDb+vjZD8FypLfcqzLbtcOpCwq4C+eeyVBSqsz2bJBxGEEaoKM5qv6UpKghQLSWIYsjnoBmiK80sLUlvdxaRrNZwcsFEuoWlzmUorbIIVS6HfZkSHK+5vt0UUg8/iXn9STM2aeze38d9a/79JhMRK+9yAJTvw/ObcYsFaCtTTiw6yeM2NGMjXazc9KdseEc/5y/YyPnA4NY+YizH53bys8oCTjtjC6NJgX958HfAsxjfwToaCzRTTTBkUGGaXXdaYZUCR4F1IAiwwyMQx6jU4FmL6ihiHYVKFfUul9ywJSlogqHs2CgF1vLCO4rEbSnlJx28HRp+PMWN+0oOc0b1N73pTa9a+q2/v5/e3l7WrVvHmWeeCUAURaxfv54vfOELAJx11ll4nse6det4z3veA8D27dv51a9+xc033wzAkiVLGB0d5ac//SlvfOMbAfjJT37C6Ogo559//oG/3qPAMdOpEkIIIY5lH/vYxzj//PO58cYbec973sNPf/pTbr/9dm6//XYgG7K7/vrrufHGG1m0aBGLFi3ixhtvpFAosHJlVry6XC7z/ve/nz/7sz+js7OTjo4ObrjhBk477bSJ1YCLFy9mxYoVfOADH+Cf/umfAPjjP/5jLr744hm98g+kUyWEEEJMj8Ncpuacc87hvvvu45Of/CSf/exn6e/v50tf+hJXXPFS0tdPfOITNBoNPvjBDzI8PMy5557L2rVraWl5KZ3Q3//93+O6Lu95z3toNBq89a1v5Wtf+xqO40zsc/fdd/ORj3xkYpXgO9/5Tm655ZYDf61HCWXtzE4RPjY2Rrlc5vRrbkTlcyQFaHZZ7Lwmf3L6D7mq/At652zjhy8s5BfN+fxk9Hge3z0b9d8dtD0T4Q830SO1LEzsZFPQzKatMy5fzZFsqb4UHeRQxTxKaXA06dBINsyk1X75pZbqS3FP6IdmNuk9ndOZPWAtKjGo57diKpUsv1KQQ7eWsHGCqdZ+Y36eY9EyfyVOXw9mVhkVxqgoHZ9o7mS5q5Ks7p/taM0WDOwcyRYaFPJZBvW21uy9aDSzA5ZbsYGLGquND+NoKBWgGZJu2YYulVClIsQxya7xrPfWHDFDswPzPoqt1Vk9dMdv3vkYtqL9j1BdnaQdRXaf0UJcgLgFvvyHd7C8/8lJ+z6+eS6bkzb2JCXelH+Rx6Me/ub5ZWx5upvCNge3Drk9lrYNVXSUoOohNnAnTTRXcYp5cUuWF833ULkcFPIk3a2kgUNlvk9cUgSjltbn6hhPYz2NDlMqC/LUZiuwYOtNnvzKXzI6Ojpp8vdU2vt36a3tV+Nq/4CPk5iI/2/4rkN6ruK1kUiVEEIIMR2sPbiiyDM7JnJUOmY6VakHFKDZCcaDq173E27oeA7dm1VO73Qa5HRMNQlY1L6bx+Z2kOR9vJpP9wPRxBJewlAqgx9u49Ep5TjQUsIGfrbk3i+iCnkGFn0imyydppCmuN1dMFbJ3idH4+yuZJHGRhPbaIC1OPPmQuBl26M4O16pyPLiVSjHYfXYnb/5vI4By/yVOB1tWd2/xGSLNwCUwnrZRF/ju6ic91Jdtr01Ml0HG8eoRhO0g42yTNWq3iDp7cFNLapWB9eFJIXUZPXkujohirC1GKVVtlQ/TVnqXDatE9X3WrX5y6xofd90n8ZBWV66mjXVuw7pc9g4Bs9l5OQSTmSxjsK68OmnL2F5/+R9T/UK5NQQ3x07lY1hN55OOKtzM1tb2/GedgiGLYWdCWnJwzY1jjFY38W6GpUAJsminsaCQ/Z/FWXpP5IUx1pyww5uU5PkFEkpq+ZAarFaUX62Rssmh2anT1UCPuIgHDOdKiGEEOKIYg9yTpVEqo44x0ynqtkJuggoMG0x13U8gu7dOvH4KfO28szzZ9BMXZqJS1qwmBFFkofmnFb8kRBnaAxbb6B+i+R44sAs81eiS0WwltXDXwVeWka/1LkMJ4pRxUIWzcgFmGKACVyM72TV7fMOVoNxFNYB46ksSqnAbYJXTSk9PQxxgtU6SxjYDEmHRrJI2MnHo0ZrDPR/nFUbvziNLXFkWBvdw0DvBzGBhzIGU/CxXjaXqjYvj1c3BDsaYLPoVLM7T74eoSo1MBbV3obdM4wqt6A62rIUC9YSlT1UnMc1BsKYvX9YdGfHeE23GFuvY41FOaBcDwVHTLTKRtG01iE8WGbv/LaDtKL1fa8a1VVRTHF7TNjmYhxFoWrZuaeF775wEr973EtL+0Mb42Hp9sb4yUg/rV6DkhMRFGLCthxOQxG1OsQFl9xwSj4xKJPNo8JarOvCjm2saXxjYg5mlq7A4KQG8jl0m48fpXg1RZLPagLiKeKcRhmPeo9PMJpS3HYYa/8ZQ3YiB+hl0o6I6SXJP4UQQgghpsAxE6kSQgghjigy/DfjHDORqqg7IeyN8RaNcVL/dtr1/nXFABaWdjO/NILTV6fZYzEujC3wqc8pQC5AtbehfI+BOR9mmb/yML+KmW9vSgNVbpnI0gxZxnWdz6FaStj2FpI5naTlPHF7jmZ3jtqcgHqPR5JXRC2aerem3qOpdysasxRhWzYM6NZN9kFUqWKf34TZvI1VW/6BtdE9rGl8A/XiNogi8DwG+j8+Xc1wRFk1+BXUi9tQUYJ1NWnOpdGbY9vFMamX1RhQYYz1HPJbKtmQahhm9RW1zjKvA7YQZKkT8jl0ZAi7AsK5ZYaXzKa+uJtk7izQCpVkNQZVoYDSChMn2CTOHhvPg7PvtTEd1jTvPqqHXtal/8ZSfelBH2f12J0ve5xl3uWoXIAp5Rnt91GppbA7xTpg9wT80/a30Nj+0mz1Z5OYh8M+nqj2sXGkgx9uPIGROM9ZczbTfv4OqvMgLip0QpYmpeBi9k5UTy26GWHH60KuM9/ERBHWGJTrQhzDyCjBribKWJymwa0bvLGYYE9Ebk/2c8WtISqx+GOHb/jPGnPQN3FkOWY6VUIIIYQQh9IxM/w3//+1NPo99pylGS00GTYNBjfPxcdw0rwsrcKy/ChPNYf4RWUurptSb0uIax5OE+KCpn5iF4WNw0ABrEG3lqb3Rc0wS53LcHu7YW4PUWeR5tlzePMlf0PqKcwlryf1FUmQTUBPc+NBczU+R9rZ+6/K/nXBuNl2JwS3Cl7d4tZiqGVpFVQxj/K8LI2C76MCn3TxAprdOZxGSrCnyTJ/5TGXEHR58SpsnGTX+CmL4IWt4LlQraOKAUnBwToKPexhXEBD2pLDqUVZ5ECpLPFnPL7M3dGkPW3oSpg9bi0oRVzQhGWHPacqils1nRsMbhBAkmZpM4oFVBhmtRkhS9ewl9LTXqvRjEdGjkS/aQI5MGVtt858c79J+7pUyiKNlTrdP0owxYDG7AK5YUNhi8P/9Hdxd+dc/mg2vLBlNvePncXCYAdPDXdTa/okDY8Hnj2Bk+cNcnL7Dh48pUAlaaF1o8VppDj1BB0lmNz4nzCl0PPmMLDoE9jhEZzW8ezfpWJ2LcUJKk7xRyOSgofxFCZwUDZFR9kNa3EaMaF7GCu8yvDfjHPMdKqEEEKII4qxoKRTNZPI8J8QQgghxBQ4ZiJVQyd72DbQLRF5L6JpDXWTI+eEE/vkZ2/kf6WzObfwHB8cXElbd4VKpZ3CoKL1+TruzjEYGYNZ7RAnE5NmxYEbOP4G6ou7GVnkEf7f52F8YJ+5l/t+ibMKUGTRcg2pb0lLJtumLCrUqHQ8dK8tVoGOFaqRZXKu9mmSfIF8Wx9uPcVpJjgjdbSTZQa3bSV2nl1Ex5AbUbgND6+9fNjaYjot1ZdSvfw8tr8JZv3BGeT3GHK7Qv7nvQGLvhHg/Op5Vu3+MsuLV5HjeOpzi7Q+7ZIG4/mlopS06KOb45N8xzOqk/MxgQcGot4WnEaCU22S2zIKlBlb4JG0prDdyd738WzsarSSZcgHsAabgrIWnc+x9PzPoU9bhDNUYZl3+X61Hw+XwzX0uDx3RTYx/jU43BUB1jS+MSlLezo6iuNoqIMa1TjlFoqNGBN4tBRLVNd38Lk9F/Ns839xemE+PxudT73k056vM1QtYFOFGvPZEPfRnO+ycNZunugPmP1jcBrZ0J9VCme4jmnNZ9dMarC+A3N7s/tRAmGMGs+Npkdr2CjArzaxrosNHMLOHDp2xocADcpanDA9fA1nLZM+8A7o58WR5JjpVAkhhBBHEmss9iCG/6x0qo44x0ynKjy7RqG9ycL2IeYURgB4Lu6mz900ab/j524nt7WPE2ft4udPHIe2YBzQYYIt5lAjY5iCj66YbDKvOGDLzvsswxf1MXacIuw02MCgPIP2UtwgJQkd0mZ2iSoFONmkTqUtpx+3ldEwR2wcjFV05OoYFJUoYLhWoNnwMZFDWnWwjkZHkOYUbl2x+zQPt+7RtjGBWTlSrxPrKLAW42QJjlNPEbV5eB1trGh9H2m1Oq2Tog81t2sWAE5niHl3ne2/6sQJC7zpzCf5UW4hJ3xtIQOLPoHK51Bbd5H3HEb7S5S2hsStAVaDPxphch5JS4C3q5ZlYA+8LKpY9ACIWz0avTlKTw0T7G7gd7q4FYfRN4Tkd/sE28kmt4cRNkkgTSfafUX5GlS5lZGTC2ChtK1ALoqnNVp1OLzWKNVeh6O+3772fS6nVMJWayjfx/oeqlZHaY1yNf5YSsF1iDf5PLWwh1PzW5hfGOKFRidzCqM8a7pwh1ycUMGoz8b6bCimdHaP8b01f83fbljOLQ+/hfIjAW3Pxni1BLceQRiiCEAbbJDVorSFYhYI0qCiBNXIFheotAGpobDHJ+5ryz7fHY2KUlR0OCNVhoOLVElKhSONzKkSQgghhJgCx0ykqqXUxPECtlbKNFOXa2uXMqcwysqFP9lv314nS5Uwp383O0daaFaKkFrUrmHSkRH07OxbvanWDutrmCmW+SvRi/p58fJZhJ0pFFK0n+LlEnw3xfcSfCclKWgMCt9J8ZyU/pYhIuOQGIfIOLTnGvg6RY/XzhqLciSpQ2/rGLVcwGg9R9PxSRsuxlckRYjaFMoo3Kqi2eWS3wkqhbADwnaLWwenCVYrlHXQC9rIhzFuW5mB2deR7Ng5IyNWq3bcykDXtRQGF+A/sYeeYpN4bjsv/vwkOrocanMM1ukgaDSx9Qb6f16kZc7JADhhStjuMTariNswFLY1SNvyOGMNdDOC1OACJueRFgKaHZp8ewGnGlJ+qoI/VmDT/6XYMRBinFl0/nAbaEU6Ojq5rbWGOMZtWKpzNH7VJZjVhg7Dl39Rx7g11bt+q9QKB+LV6h4OnPi/UW1lGBkFpVCel839aTRRnotbS3HzmuI2xeM/Woi+wPLsUCcdhTqnt2fpbUzOoiyoRKFDjXFgz+4W/uChP+b/nLeGGxbDk2+Zw3XPXM7Gn80htydP27OG/M4Qd6iGqjYgilG5ABu4WW1AAG88YWiUZkl+kwRv8xCmo4QKU3A11jt8sQYZ/pt5jplOlRBCCHFEkeG/GWfGd6r29uTTejh+X5HYEKUNkYkYGxvb72dMJSWuRST1EFP3sE2HJA3RJiK1MToNUWlMauOX/Xnx6pLxNkybTUwjzUJFSUpqElLXkHoJiU5JTRapSnSKclIiFRHbLFIVGwetLGqfSFUcaZKGSxKHJBGkDTB1g2m6qFiBBZUqlFWkTZXNnYqyp09DME1L2lQQgg4hjSxJEpOYEEwCJiGZwe95YiKSpIk2ERiXJGmSxJY0ckhiQ5LEOCbC2gisJYmbJEmMSi1JnJLEDsSGJGlitcKmISo1kBpMqjBJ+tLxkiY2jbBak8Qa0zAox2RtbkIw0X5tndgIZRRJ3CQNdXZOabbvTH1PDlZiD03bvNpxs/ckzK4TFMo4WaTKGGzqkSQeSZySRhrThLgWkdZDEhsSejGm3sQ0FKqpUInCYDHKgEqIay89b7ViSGohptkkDdX4NRpCGqJMBCaGFGyaYlWKSpNshaDSqDQFM568VWlM6kGaJaVNxrcfjihQQnxQuT8TDl9JHfHbUXaGxw+3bNnCvHnzpvs0hBBCHEU2b97M3LlzD8mxm80m/f39DA4OHvSxent72bhxI7lcbgrOTBysGd+pMsawbds2WlpasvIZU2RsbIx58+axefNmWltbp+y4IiPte+hJGx9a0r6H1qFqX2stlUqFvr4+tD5086uazSbRFJQ68n1fOlRHkBk//Ke1PmTfNgBaW1vlA/MQkvY99KSNDy1p30PrULRvuXzok/7mcjnpDM1AklJBCCGEEGIKSKdKCCGEEGIKSKfqAAVBwKc//WmCIJjuU5mRpH0PPWnjQ0va99CS9hVHohk/UV0IIYQQ4nCQSJUQQgghxBSQTpUQQgghxBSQTpUQQgghxBSQTpUQQgghxBSQTtUB+spXvkJ/fz+5XI6zzjqLH/7wh9N9SkelH/zgB7zjHe+gr68PpRTf/va3Jz1ureUzn/kMfX195PN5LrroIp544onpOdmj0E033cQ555xDS0sL3d3d/P7v/z5PPfXUpH2kjQ/crbfeyumnnz6RgHLJkiWsWrVq4nFp26l10003oZTi+uuvn9gmbSyOJNKpOgD/9m//xvXXX8+nPvUpfv7zn/M7v/M7DAwMsGnTpuk+taNOrVbj9a9/PbfccsvLPn7zzTfzxS9+kVtuuYWHH36Y3t5eli5dSqVSOcxnenRav3491113HQ899BDr1q0jSRKWLVtGrVab2Efa+MDNnTuXz3/+8zzyyCM88sgj/O7v/i6XXHLJxB91adup8/DDD3P77bdz+umnT9oubSyOKFa8Zm984xvttddeO2nbySefbP/iL/5ims5oZgDsfffdN3HfGGN7e3vt5z//+YltzWbTlstle9ttt03DGR79du7caQG7fv16a6208aHQ3t5uv/rVr0rbTqFKpWIXLVpk161bZy+88EL70Y9+1For16848kik6jWKoohHH32UZcuWTdq+bNkyHnzwwWk6q5lp48aNDA4OTmrrIAi48MILpa0P0OjoKAAdHR2AtPFUStOUe++9l1qtxpIlS6Rtp9B1113H7/3e7/G2t71t0nZpY3GkmfEFlafa7t27SdOUnp6eSdt7enoYHBycprOamfa258u19Ysvvjgdp3RUs9by8Y9/nAsuuIDXve51gLTxVHj88cdZsmQJzWaTUqnEfffdxymnnDLxR13a9uDce++9/OxnP+Phhx/e7zG5fsWRRjpVB0gpNem+tXa/bWJqSFtPjQ996EP88pe/5IEHHtjvMWnjA3fSSSfx2GOPMTIywre+9S2uvvpq1q9fP/G4tO2B27x5Mx/96EdZu3YtuVzuFfeTNhZHChn+e41mzZqF4zj7RaV27ty537clcXB6e3sBpK2nwIc//GHuv/9+vve97zF37tyJ7dLGB8/3fRYuXMjZZ5/NTTfdxOtf/3q+/OUvS9tOgUcffZSdO3dy1lln4bouruuyfv16/uEf/gHXdSfaUdpYHCmkU/Ua+b7PWWedxbp16yZtX7duHeeff/40ndXM1N/fT29v76S2jqKI9evXS1v/lqy1fOhDH+Lf//3f+e53v0t/f/+kx6WNp561ljAMpW2nwFvf+lYef/xxHnvssYnb2WefzRVXXMFjjz3G8ccfL20sjigy/HcAPv7xj3PllVdy9tlns2TJEm6//XY2bdrEtddeO92ndtSpVqs8++yzE/c3btzIY489RkdHB/Pnz+f666/nxhtvZNGiRSxatIgbb7yRQqHAypUrp/Gsjx7XXXcd99xzD//xH/9BS0vLxDf6crlMPp+fyPkjbXxg/vIv/5KBgQHmzZtHpVLh3nvv5fvf/z6rV6+Wtp0CLS0tE/P/9ioWi3R2dk5slzYWR5TpW3h4dPvHf/xHu2DBAuv7vn3DG94wsURdvDbf+973LLDf7eqrr7bWZkumP/3pT9ve3l4bBIF985vfbB9//PHpPemjyMu1LWDvvPPOiX2kjQ/cNddcM/E50NXVZd/61rfatWvXTjwubTv19k2pYK20sTiyKGutnab+nBBCCCHEjCFzqoQQQgghpoB0qoQQQgghpoB0qoQQQgghpoB0qoQQQgghpoB0qoQQQgghpoB0qoQQQgghpoB0qoQQQgghpoB0qoSYgS666CKuv/766T4NIYQ4pkinSgghhBBiCkinSgghhBBiCkinSogZbnh4mKuuuor29nYKhQIDAwM888wzE49/7Wtfo62tjTVr1rB48WJKpRIrVqxg+/bt03jWQghx9JFOlRAz3B/+4R/yyCOPcP/99/PjH/8Yay1vf/vbieN4Yp96vc7f/u3f8o1vfIMf/OAHbNq0iRtuuGEaz1oIIY4+7nSfgBDi0HnmmWe4//77+dGPfsT5558PwN133828efP49re/zaWXXgpAHMfcdtttnHDCCQB86EMf4rOf/ey0nbcQQhyNJFIlxAy2YcMGXNfl3HPPndjW2dnJSSedxIYNGya2FQqFiQ4VwOzZs9m5c+dhPVchhDjaSadKiBnMWvuK25VSE/c9z5v0uFLqFX9WCCHEy5NOlRAz2CmnnEKSJPzkJz+Z2LZnzx6efvppFi9ePI1nJoQQM490qoSYwRYtWsQll1zCBz7wAR544AF+8Ytf8N73vpc5c+ZwySWXTPfpCSHEjCKdKiFmuDvvvJOzzjqLiy++mCVLlmCt5b//+7/3G/ITQghxcJSViRNCCCGEEAdNIlVCCCGEEFNAOlVCCCGEEFNAOlVCCCGEEFNAOlVCCCGEEFNAOlVCCCGEEFNAOlVCCCGEEFNAOlVCCCGEEFNAOlVCCCGEEFNAOlVCCCGEEFNAOlVCCCGEEFNAOlVCCCGEEFNAOlVCCCGEEFPg/wdSpLH5K7RQAgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cams_masked.isel(time=0).plot()" ] }, { "cell_type": "markdown", "id": "7744b4e6", "metadata": {}, "source": [ "To better visualize the mask, with the help of `xr.where`, ad-hoc variables can be created. 'xr.where' lets us specify values of 1 for masked and 0 for the unmasked data." ] }, { "cell_type": "code", "execution_count": 49, "id": "d8235875", "metadata": {}, "outputs": [], "source": [ "mask = xr.where((cams_AOI <= 5000) | (cams_AOI >= 20000), 1, 0)" ] }, { "cell_type": "code", "execution_count": 50, "id": "2fc7291e-5c3b-4860-aea0-7a4714889bc7", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAHFCAYAAADVIXIDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfE0lEQVR4nO3deVxUZfs/8M8IMoAKrggoApaauAtmiAZWivtSqeUCiutXDZHUIivUDNTKtEUMNZQ0s3KJTEUsJE3NFZ9KUhMV5IEQF8ANEc7vD38zDwMDzDnMcGb5vF+veSlnzrnnmjNnZq657vvcRyEIggAiIiIiE1BH7gCIiIiIdMXEhYiIiEwGExciIiIyGUxciIiIyGQwcSEiIiKTwcSFiIiITAYTFyIiIjIZTFyIiIjIZDBxISIiIpPBxMUEbdy4EQqFAleuXJE7FBw8eBAKhQIHDx6s9cf+9NNP8dRTT0GpVMLT0xOLFy9GcXGxTtsWFxdj8eLF8PDwgFKpxFNPPYVPP/1Up20nTpwIhUIBhUKBjh071uQpVBAWFqZuu379+pLaOHLkCBYtWoTbt29XuC8gIAABAQE1C9JIXbhwAfPmzYO3tzcaNmyIxo0bw8/PD99//73W9XNzczFx4kQ0bdoU9vb28PX1xc8//6yxTkFBAd5//30EBATA2dkZ9evXR6dOnbB8+XI8ePCgQptvv/02hgwZghYtWkChUGDixIminsO1a9cQFhYGf39/NGzYEAqFAhs3bqywnti4tBGzv3bs2IFXX30VTz75JOzs7ODh4YFx48bh4sWLop4fkT4wcSGT9P7772POnDl48cUXkZiYiJkzZyIqKgqzZs3SafuZM2ciOjoas2bNQmJiIkaOHIk5c+YgKipKp+2dnZ1x9OhRfP311zV5GhXMnTsXR48exaBBgyS3ceTIESxevFhr4rJmzRqsWbOmBhEar/379+Onn37CSy+9hO+++w5btmxBmzZtMGrUKCxZskRj3aKiIjz//PP4+eefsXr1avzwww9o3rw5BgwYgJSUFPV6GRkZWLVqFbp3747Y2FgkJCTg5ZdfxqJFizBkyBCUv2LKxx9/jBs3bmDYsGGwsbER/Rz++ecfbNmyBTY2NlUeA2Lj0kbM/lq+fDnu3buHhQsXYt++fVi6dCnOnDmD7t2746+//hL9PIlqRCCTExcXJwAQLl++LHcoQnJysgBASE5OrrXHzMvLE2xtbYVp06ZpLH///fcFhUIh/PXXX1Vu/+effwoKhUKIiorSWD516lTBzs5OuHHjRpXbBwcHC+7u7pJi11VwcLBQr149Sdt+8MEHRnN81Kbr168LpaWlFZYPHjxYsLe3Fx48eKBe9vnnnwsAhCNHjqiXFRcXC15eXsLTTz+tXnbnzh3hzp07FdpU7eNDhw5pLC8pKVH/v169ekJwcLCo51B2+xMnTggAhLi4uArriY1LGzH7699//62wXlZWllC3bl1h8uTJ1T4WkT6x4mJGDhw4gOeffx4ODg6wt7eHn5+fRul7165dUCgUFcrhABATEwOFQoH//Oc/6mUnT57EsGHD0LhxY9ja2qJbt2749ttva+W5VGXfvn148OABJk2apLF80qRJEAQBu3btqnL7Xbt2QRAErdvfv38f+/btkxybQqHA7NmzERcXh3bt2sHOzg4+Pj44duwYBEHABx98AE9PT9SvXx/PPfcc/vnnH8mPpc2iRYswf/58AICnp6e620nVlVe+q+jKlStQKBT44IMPsHz5cnh4eMDOzg4BAQG4cOECiouL8eabb8LV1RWOjo4YOXIkcnNzKzzutm3b4Ovri3r16qF+/foIDAzEmTNn9PrcqtO0aVMoFIoKy59++mncu3cPN2/eVC/buXMn2rVrB19fX/Uya2trjB8/HsePH0dWVhYAoF69eqhXr57WNgEgMzNTY3mdOjX7SNV1e7FxaSNmfzk5OVVYz9XVFS1bttTpsYj0iYmLmdi8eTP69+8PBwcHbNq0Cd9++y0aN26MwMBAdaIyZMgQODk5IS4ursL2GzduRPfu3dG5c2cAQHJyMvz8/HD79m2sXbsWP/zwA7p27YoxY8Zo7XPXxaNHj3S6CdWUuf/8808AQKdOnTSWu7i4oGnTpur7q9q+WbNmcHZ21liueu7VbV+d3bt3Y/369Vi2bBm2bt2KwsJCDB48GK+//jp+++03fPbZZ4iNjcW5c+fw0ksv6VTW19WUKVPw2muvAXg8LuHo0aM4evQounfvXuV2n3/+OX777Td8/vnnWL9+Pf7++28MHToUkydPxvXr1/Hll19ixYoVOHDgAKZMmaKxbVRUFF599VV4eXnh22+/xVdffYXCwkL06dMH586dqzZmfR0XlUlOTkazZs00vnz//PNP9etdlmpZdd0fv/zyCwCgQ4cOkmIyFH3EpW1/aZOeno6rV68a3T4gCyBnuYekKd9VdPfuXaFx48bC0KFDNdYrKSkRunTpolH6Dg8PF+zs7ITbt2+rl507d04AIHz66afqZU899ZTQrVs3obi4WKPNIUOGCC4uLuqStq5dRZcvXxYA6HSrrq2pU6cKSqVS631t27YV+vfvX+X2/fr1E9q1a6f1PhsbmwpdUOVV1VUEQHB2dtYo4+/atUsAIHTt2lWjNL9q1SoBgPCf//xH62MYoqvI399f8Pf3V/+tel26dOmi0U2him3YsGEa24eFhQkAhPz8fEEQBCEjI0OwtrYWXnvtNY31CgsLBWdnZ2H06NFVxqrP40KbdevWCQCE1atXayyvW7euMH369ArrHzlyRAAgfP3115W2efbsWcHOzk4YOXJklY8tpauorKq6imoSV1Uq21/lFRcXCwEBAYKDg4OQkZEh+fGIpLA2dGJEhnfkyBHcvHkTwcHBePTokcZ9AwYMwIoVK3D37l3Uq1cPISEhWLlyJbZt24Zp06YBAOLi4qBUKjF27FgAjwcI/v333/jwww8BQKPNQYMGYffu3Th//jzat2+vc4yurq44ceKETuu2a9eu2nW0lbh1uU9f21elb9++GmV81X4aOHCgRtuq5VevXq1QPaptgwYN0uimUMU2ePBgjfVUyzMyMtCxY0ckJibi0aNHCAoK0jhObG1t4e/vj+Tk5CofV9/HRVl79+7FrFmz8PLLL6urUGVJOQauXLmCIUOGwM3NDevXrxcVj4ogCCgpKdFYZm1ds4/iquIq/5lgZWWl9flVt79UBEHA5MmTcejQIWzfvh1ubm41ip1ILCYuZuDff/8FALz88suVrnPz5k3Uq1cPHTp0QI8ePRAXF4dp06ahpKQEmzdvxvDhw9G4cWON9ubNm4d58+ZpbS8vL09UjDY2NujatatO61pZWVV5f5MmTfDgwQPcu3cP9vb2GvfdvHkT3t7e1W6fmppaYfndu3fx8OFD9X6Qqvz2qrNLKluu6+mrhiQ1ZtWx0qNHD63tVjdmQ5/HRVmJiYl48cUX0a9fP2zZsqXCF3WTJk1w48aNCtupxnVoOwauXr2Kvn37wtraGj///LPk42TTpk0VxlcJNegurC6uunXravwdFxdX4TTt6vZX2TinTJmCzZs3Y9OmTRg+fLjkuImkYuJiBpo2bQrg8bwmzzzzjNZ1mjdvrv7/pEmTMHPmTKSlpSE9PR3Z2dkaH6Sq9iIiIvDiiy9qbU/sr98rV67A09NTp3WTk5OrnGtEVZ34448/0LNnT/XynJwc5OXlVTu3SqdOnfDNN98gJydHY5zLH3/8AQB6n5vFnKmOle+//x7u7u6it9fncaGSmJiIESNGwN/fH9u3b9d6WnKnTp3Ur3dZlR0DV69eRUBAAARBwMGDB9GyZUudYtZm6NChOleZqqNLXOUfq/z+1mV/Af9LWuLi4rBhwwaMHz9eL8+BSCwmLmbAz88PDRs2xLlz5zB79uxq13/11VcRHh6OjRs3Ij09HS1atED//v3V97dr1w5t2rTB2bNndZ7XpDr67BIYMGAAbG1tsXHjRo3ERTUx34gRI6rcfvjw4Xj77bexadMmvPHGGxrb29nZYcCAATrFaayUSiUA4P79+wZ/rMDAQFhbW+PSpUt46aWXRG+v766i/fv3Y8SIEejduzd27dql3hfljRw5EjNnzsTvv/+uPoYePXqEzZs3o2fPnnB1dVWvm5GRgYCAAJSUlODgwYOSErSymjRpgiZNmtSoDTFx+fj4VNqGrvtLEARMnToVcXFx+OKLLypUjIhqExMXM1C/fn18+umnCA4Oxs2bN/Hyyy/DyckJ169fx9mzZ3H9+nXExMSo12/YsCFGjhyJjRs34vbt25g3b16Fkv4XX3yBgQMHIjAwEBMnTkSLFi1w8+ZNpKWl4fTp0/juu+9ExWhjY1PlB6gYjRs3xttvv4133nkHjRs3Rv/+/XHixAksWrQIU6ZMgZeXl3rd+Ph4hISE4Msvv0RQUBCAx2dcTJ48GZGRkbCyskKPHj2wf/9+xMbGYunSpTXuKjKUiRMnYtOmTbh8+TI8PDwqXU9VkVq9ejWCg4NRt25dtGvXDg0aNNB7TB4eHliyZAkWLlyI9PR0DBgwAI0aNcK///6L48ePo169eli8eHGl2+vzuDh8+DBGjBgBZ2dnvPXWWxW6A728vODg4AAACAkJweeff45Ro0Zh2bJlcHJywpo1a3D+/HkcOHBAvU1ubi769u2L7OxsbNiwAbm5uRqng7ds2VKjypGSkoLr168DAEpKSnD16lX1TLT+/v5o1qxZtc9DtX56ejqAx9MSqGZRVnUHi42rpvsrNDQUGzZsQEhICDp16oRjx46p11MqlejWrVu1z4tIb+QbF0xSVTYBXUpKijB48GChcePGQt26dYUWLVoIgwcPFr777rsKbezfv199tsaFCxe0Ps7Zs2eF0aNHC05OTkLdunUFZ2dn4bnnnhPWrl2rXkeOCehUVq9eLbRt21awsbERWrVqJURGRgoPHz7UWEe1r8qfmfHw4UMhMjJSaNWqlWBjYyO0bdtW+OSTT3R63OrOKpo1a5bGMtWZMx988IHGctW+0/b6aDur6KWXXhLs7OyEW7duVRtjRESE4OrqKtSpU0fj9ansrCJdY1PtzxMnTmgs37Vrl9C3b1/BwcFBUCqVgru7u/Dyyy8LBw4cqDZWfYmMjBR1VlJOTo4QFBQkNG7cWLC1tRWeeeYZISkpSWMd1X6o7BYZGamxvr+/f43Piqrq8aTGVdP95e7uXul6hp6Mkag8hSDocRIJIgswceJEHDx4EP/88w8UCoWoQaPVKS0tRWlpKSZPnozt27fjzp076vucnZ0xYcIEfPDBB3p7PCIiU8MJ6IgkuHr1KurWrYsuXbrotd3w8HDUrVsX8fHxGsv/+usv3Lt3T2NMDhGRJWLFhUikK1euqE8Ht7Oz0+vMoZmZmepTjK2srDh2gIioHCYuREREZDJk7Sry8PBQXwSu7G3WrFkAHp+Ct2jRIri6uqov/MZLqBMREUnz66+/YujQoXB1dYVCoaj2orTA47PlvL29YWtri9atW2Pt2rWGD7QKsiYuJ06cQHZ2tvqWlJQEABg1ahQAYMWKFVi5ciU+++wznDhxAs7OzujXrx8KCwvlDJuIiMgk3b17F126dMFnn32m0/qXL1/GoEGD0KdPH5w5cwZvvfUWQkNDsX37dgNHWjmj6ioKCwvD7t27cfHiRQCPJ6cKCwtTD0gsKipC8+bNsXz5ckyfPl3OUImIiEyaQqHAzp07q5y084033kBCQgLS0tLUy2bMmIGzZ8/i6NGjtRBlRUYzAd3Dhw+xefNmhIeHQ6FQID09HTk5ORozuiqVSvj7++PIkSOVJi5FRUUoKipS/11aWoqbN2+iSZMmNb54HhERmTdBEFBYWAhXV9dqr7VVEw8ePMDDhw9r3I4gCBW+25RKZaWzIIt19OhRje9h4PGM2Rs2bEBxcXGFa2HVBqNJXHbt2oXbt2+rL/6Vk5MDQPMaO6q/r169Wmk70dHRVc7USUREVJ3MzMwaXZOqKg8ePICdnZ1e2qpfv77GfE8AEBkZiUWLFuml/ZycHK3fw48ePUJeXh5cXFz08jhiGE3ismHDBgwcOFDjGiFAxcvLa8suy4qIiEB4eLj67/z8fLRq1Uq/wRIRkVkzxCUyVPRRaVG5c+cOMjMz1ZdnAKC3aouKtu9hbctri1EkLlevXsWBAwewY8cO9TLVVXtzcnI0Mrrc3NwK2V9Z+iyRERGRZaqtL+WaPI4qgXBwcNBIXPTJ2dlZ3QOikpubC2tra71cLFQKo5g5Ny4uDk5OThg8eLB6maenJ5ydndVnGgGPs9SUlBT06tVLjjCJiIj0Rtt0IGJvhubr66vxPQw8vqq4j4+PLONbACNIXEpLSxEXF4fg4GBYW/+vAKRQKBAWFoaoqCjs3LkTf/75JyZOnAh7e3uMHTtWxoiJiIhqTo7E5c6dO0hNTVVfDfzy5ctITU1FRkYGgMfDLYKCgtTrz5gxA1evXkV4eDjS0tLw5ZdfYsOGDZg3b55e9oEkclzZsazExEQBgHD+/PkK95WWlgqRkZGCs7OzoFQqhWeffVb4448/RLWfn59f5RVQeeONN9544638LT8/X19fc5V+L9WpU0ewsrKSfFNd/V1MrJVdWTw4OFgQhMdXpi97BXlBEISDBw8K3bp1E2xsbAQPDw8hJiZGj3tDPKOax8UQCgoK4OjoKHcYRERkQvLz8w02bkT1vWRlZVXjMS4lJSUGjdUYGcXgXCIiIktTW+NUzI3sY1yIiIiIdMWKCxERkQxYcZGGiQsREZEMmLhIw64iIiIiMhmsuBAREcmAFRdpmLgQERHJgImLNOwqIiIiIpPBigsREZEMWHGRhokLERGRDJi4SMPEhYiISAZMXKThGBciIiIyGay4EBERyYAVF2mYuBAREcmAiYs07CoiIiIik8GKCxERkQxYcZGGiQsREZEMmLhIw64iIiIiMhmsuBAREcmAFRdpmLgQERHJgImLNOwqIiIiIpPBigsREZFMalJxEQRBj5GYDiYuREREMqhpV5GldjMxcSEiIpIBExdpOMaFiIiITAYrLkRERDJgxUUaJi5EREQyYOIiDbuKiIiIyGSw4kJERCQDVlykYeJCREQkAyYu0rCriIiIiEwGKy5EREQyYMVFGiYuREREMmDiIg27ioiIiMhksOJCREQkA1ZcpGHiQkREJAMmLtIwcSEiIpIBExdpZB/jkpWVhfHjx6NJkyawt7dH165dcerUKfX9d+7cwezZs9GyZUvY2dmhffv2iImJkTFiIiIikousFZdbt27Bz88Pffv2xd69e+Hk5IRLly6hYcOG6nXmzp2L5ORkbN68GR4eHti/fz9mzpwJV1dXDB8+XL7gicyAIAgALPeXG5GcWHGRRtbEZfny5XBzc0NcXJx6mYeHh8Y6R48eRXBwMAICAgAA06ZNwxdffIGTJ08ycSEiIpPFxEUaWbuKEhIS4OPjg1GjRsHJyQndunXDunXrNNbp3bs3EhISkJWVBUEQkJycjAsXLiAwMFBrm0VFRSgoKNC4ERERkXmQNXFJT09HTEwM2rRpg8TERMyYMQOhoaGIj49Xr/PJJ5/Ay8sLLVu2hI2NDQYMGIA1a9agd+/eWtuMjo6Go6Oj+ubm5lZbT4fI5FjqLzZzIQiC+kamR1VxqcnNEikEGY94Gxsb+Pj44MiRI+ploaGhOHHiBI4ePQoA+PDDD7Fu3Tp8+OGHcHd3x6+//oqIiAjs3LkTL7zwQoU2i4qKUFRUpP67oKCAyQtRFQRBsNgPQFNX9uObr6F+5efnw8HBwSBtFxQUwNHRER4eHqhTR3r9oLS0FFeuXDForMZI1jEuLi4u8PLy0ljWvn17bN++HQBw//59vPXWW9i5cycGDx4MAOjcuTNSU1Px4Ycfak1clEollEql4YMnMgP8pW7aFAoFX0OyOLImLn5+fjh//rzGsgsXLsDd3R0AUFxcjOLi4goZqZWVFUpLS2stTiIiIn3j4FxpZE1c5s6di169eiEqKgqjR4/G8ePHERsbi9jYWACAg4MD/P39MX/+fNjZ2cHd3R0pKSmIj4/HypUr5QydiIioRpi4SCPrGBcA2L17NyIiInDx4kV4enoiPDwcU6dOVd+fk5ODiIgI7N+/Hzdv3oS7uzumTZuGuXPn6vSiqfoSiYiIdFUbY1xat25d4zEu6enpFjfGRfbExdCYuBARkVi1lbhYWVlJbqekpMQiExdeq4iIiEgG7CqShokLERGRDJi4SCP7RRaJiIiIdMWKCxERkQxYcZGGiQsREZEMmLhIw64iIiIiMhmsuBAREcmAFRdpmLgQERHJgImLNOwqIiIiIpPBigsREZEMWHGRhokLERGRDJi4SMOuIiIiIjIZrLgQERHJgBUXaZi4EBERyYCJizRMXIiIiGTAxEUajnEhIiKyIGvWrIGnpydsbW3h7e2NQ4cOVbn+li1b0KVLF9jb28PFxQWTJk3CjRs3ainaipi4EBERyUBVcanJTaxt27YhLCwMCxcuxJkzZ9CnTx8MHDgQGRkZWtc/fPgwgoKCMHnyZPz111/47rvvcOLECUyZMqWmT18yJi5EREQykCNxWblyJSZPnowpU6agffv2WLVqFdzc3BATE6N1/WPHjsHDwwOhoaHw9PRE7969MX36dJw8ebKmT18yJi5EREQmrKCgQONWVFSkdb2HDx/i1KlT6N+/v8by/v3748iRI1q36dWrF65du4Y9e/ZAEAT8+++/+P777zF48GC9Pw9dMXEhIiKSgb4qLm5ubnB0dFTfoqOjtT5eXl4eSkpK0Lx5c43lzZs3R05OjtZtevXqhS1btmDMmDGwsbGBs7MzGjZsiE8//VS/O0MEnlVEREQkA32dVZSZmQkHBwf1cqVSqdN2KoIgVBrHuXPnEBoainfffReBgYHIzs7G/PnzMWPGDGzYsEFy7DXBxIWIiMiEOTg4aCQulWnatCmsrKwqVFdyc3MrVGFUoqOj4efnh/nz5wMAOnfujHr16qFPnz5YunQpXFxcav4ERGJXERERkQxqe3CujY0NvL29kZSUpLE8KSkJvXr10rrNvXv3UKeOZqpgZWUF4HGlRg6suBAREclAjgnowsPDMWHCBPj4+MDX1xexsbHIyMjAjBkzAAARERHIyspCfHw8AGDo0KGYOnUqYmJi1F1FYWFhePrpp+Hq6io59ppg4kJERGQhxowZgxs3bmDJkiXIzs5Gx44dsWfPHri7uwMAsrOzNeZ0mThxIgoLC/HZZ5/h9ddfR8OGDfHcc89h+fLlcj0FKAS5aj21pKCgAI6OjnKHQUREJiQ/P1+ncSNSqL6XvL29YW0tvX7w6NEjnDp1yqCxGiNWXIiIiGTAaxVJw8SFiIhIBkxcpOFZRURERGQyWHEhIiKSASsu0jBxISIikgETF2nYVUREREQmgxUXIiIiGbDiIg0TFyIiIhkwcZGGXUVERERkMlhxISIikgErLtLIXnHJysrC+PHj0aRJE9jb26Nr1644deqUxjppaWkYNmwYHB0d0aBBAzzzzDMa11IgIiIyNbV9dWhzIWvF5datW/Dz80Pfvn2xd+9eODk54dKlS2jYsKF6nUuXLqF3796YPHkyFi9eDEdHR6SlpcHW1la+wImIiEgWsiYuy5cvh5ubG+Li4tTLPDw8NNZZuHAhBg0ahBUrVqiXtW7durZCJCIiMgh2FUkja1dRQkICfHx8MGrUKDg5OaFbt25Yt26d+v7S0lL89NNPaNu2LQIDA+Hk5ISePXti165d8gVNRESkB+wqkkbWxCU9PR0xMTFo06YNEhMTMWPGDISGhiI+Ph4AkJubizt37mDZsmUYMGAA9u/fj5EjR+LFF19ESkqK1jaLiopQUFCgcSMiIjI2TFykkbWrqLS0FD4+PoiKigIAdOvWDX/99RdiYmIQFBSE0tJSAMDw4cMxd+5cAEDXrl1x5MgRrF27Fv7+/hXajI6OxuLFi2vvSRAREVGtkbXi4uLiAi8vL41l7du3V58x1LRpU1hbW1e5TnkRERHIz89X3zIzMw0TPBERUQ2w4iKNrBUXPz8/nD9/XmPZhQsX4O7uDgCwsbFBjx49qlynPKVSCaVSaZiAiYiI9ISDc6WRNXGZO3cuevXqhaioKIwePRrHjx9HbGwsYmNj1evMnz8fY8aMwbPPPou+ffti3759+PHHH3Hw4EH5AiciIiJZyNpV1KNHD+zcuRNbt25Fx44d8d5772HVqlUYN26cep2RI0di7dq1WLFiBTp16oT169dj+/bt6N27t4yRExER1Qy7iqRRCIIgyB2EIRUUFMDR0VHuMIiIyITk5+fDwcHBIG2rvpeee+45WFtL7/h49OgRfvnlF4PGaoxkn/KfiIiISFc6pXrdu3cX1ahCoUBCQgJatGghKSgiIiJzx8G50uiUuKSmpuL1119H/fr1q11XEAQsW7YMRUVFNQ6OiIjIXDFxkUbnzrX58+fDyclJp3U/+ugjyQERERERVUanxOXy5cto1qyZzo2eO3cOrq6ukoMiIiKyBJZaNakJnRKXyiZ7q4ybm5ukYIiIiCwFu4qkkXQe1u3bt3H8+HHk5uaqryekEhQUpJfAiIiIzBkTF2lEJy4//vgjxo0bh7t376JBgwYaO06hUDBxISIiIoMRPY/L66+/jpCQEBQWFuL27du4deuW+nbz5k1DxEhERGR2OHOuNKIrLllZWQgNDYW9vb0h4iEiIrII7CqSRnTFJTAwECdPnjRELERERERV0qnikpCQoP7/4MGDMX/+fJw7dw6dOnVC3bp1NdYdNmyYfiMkIiIyQ6y4SKNT4jJixIgKy5YsWVJhmUKhQElJSY2DIiIiMndMXKTRKXEpf8ozERERkRxEj3GJj4/Xeh2ihw8fIj4+Xi9BERERmTueVSSN6MRl0qRJyM/Pr7C8sLAQkyZN0ktQRERE5o6JizSiExdBELTurGvXrsHR0VEvQRERERFpo/M8Lt26dVNneM8//zysrf+3aUlJCS5fvowBAwYYJEgiIiJzw8G50uicuKjOLEpNTUVgYCDq16+vvs/GxgYeHh546aWX9B4gERGROWLiIo3OiUtkZCRKSkrg7u6OwMBAuLi4GDIuIiIis8bERRpRY1ysrKwwY8YMPHjwwFDxEBEREVVK9ODcTp06IT093RCxEBERWQyeVSSN6MTl/fffx7x587B7925kZ2ejoKBA40ZERETVY+IijeirQ6vOHBo2bJjGTlOdJs0p/4mIiMhQRCcuycnJhoiDiIjIonBwrjSiExd/f39DxEFERGRRmLhIIzpxAYDbt29jw4YNSEtLg0KhgJeXF0JCQjhzLhERERmU6MG5J0+exBNPPIGPP/4YN2/eRF5eHlauXIknnngCp0+fNkSMRERE1RIEQe4QROHgXGlEV1zmzp2LYcOGYd26depp/x89eoQpU6YgLCwMv/76q96DJCIiMjfsKpJGdOJy8uRJjaQFAKytrbFgwQL4+PjoNTgiIiKiskR3FTk4OCAjI6PC8szMTDRo0EAvQREREZk7dhVJIzpxGTNmDCZPnoxt27YhMzMT165dwzfffIMpU6bg1VdfNUSMREREZolJi3iiu4o+/PBDKBQKBAUF4dGjRwCAunXr4v/+7/+wbNkyvQdIRERkjjjGRRrRiYuNjQ1Wr16N6OhoXLp0CYIg4Mknn4S9vb0h4iMiIiJSkzSPCwDY29ujU6dO+oyFiIhIMlOrQLDiIo3oxOXu3btYtmwZfv75Z+Tm5qK0tFTjfl45moiIqHpMXKQRnbhMmTIFKSkpmDBhAlxcXCx2xxEREVHtE5247N27Fz/99BP8/Pz0EkBWVhbeeOMN7N27F/fv30fbtm2xYcMGeHt7V1h3+vTpiI2Nxccff4ywsDC9PD4REZEcWHGRRnTi0qhRIzRu3FgvD37r1i34+fmhb9++2Lt3L5ycnHDp0iU0bNiwwrq7du3C77//DldXV708NhERkZyYuEgjOnF577338O6772LTpk01PpNo+fLlcHNzQ1xcnHqZh4dHhfWysrIwe/ZsJCYmYvDgwTV6TCIiIjJdohOXjz76CJcuXULz5s3h4eGBunXratwv5kKLCQkJCAwMxKhRo5CSkoIWLVpg5syZmDp1qnqd0tJSTJgwAfPnz0eHDh2qbbOoqAhFRUXqvwsKCnSOh4iIqLaw4iKN6MRlxIgRenvw9PR0xMTEIDw8HG+99RaOHz+O0NBQKJVKBAUFAXhclbG2tkZoaKhObUZHR2Px4sV6i5GIiMgQmLhIIzpxiYyM1Gm9rVu3YtiwYahXr16l65SWlsLHxwdRUVEAgG7duuGvv/5CTEwMgoKCcOrUKaxevRqnT5/W+QWKiIhAeHi4+u+CggK4ubnptC0REVFtkStxWbNmDT744ANkZ2ejQ4cOWLVqFfr06VPp+kVFRViyZAk2b96MnJwctGzZEgsXLkRISIhOjxcXF4f69etj1KhRGsu/++473Lt3D8HBwaLiF32tIl1Nnz4d//77b5XruLi4wMvLS2NZ+/bt1RdxPHToEHJzc9GqVStYW1vD2toaV69exeuvv651LAwAKJVKODg4aNyIiIgI2LZtG8LCwrBw4UKcOXMGffr0wcCBA7VePFll9OjR+Pnnn7FhwwacP38eW7duxVNPPaXzYy5btgxNmzatsNzJyUlduBBD8sy51REEodp1/Pz8cP78eY1lFy5cgLu7OwBgwoQJeOGFFzTuDwwMxIQJEzBp0iT9BUtERFTL5Ki4rFy5EpMnT8aUKVMAAKtWrUJiYiJiYmIQHR1dYf19+/YhJSUF6enp6jOKKyscVObq1avw9PSssNzd3b3KhKkyBqu46GLu3Lk4duwYoqKi8M8//+Drr79GbGwsZs2aBQBo0qQJOnbsqHGrW7cunJ2d0a5dOzlDJyIiqpGaXBm6bNJTUFCgcSt7gkpZDx8+xKlTp9C/f3+N5f3798eRI0e0bpOQkAAfHx+sWLECLVq0QNu2bTFv3jzcv39f5+fp5OSE//znPxWWnz17Fk2aNNG5HRVZE5cePXpg586d2Lp1Kzp27Ij33nsPq1atwrhx4+QMi4iIyGS4ubnB0dFRfdNWOQGAvLw8lJSUoHnz5hrLmzdvjpycHK3bpKen4/Dhw/jzzz+xc+dOrFq1Ct9//726wKCLV155BaGhoUhOTkZJSQlKSkrwyy+/YM6cOXjllVd0f6L/n8G6inQ1ZMgQDBkyROf1r1y5YrhgiIiIaom+uooyMzM1xnMqlUqdtlMRBKHSOEpLS6FQKLBlyxY4OjoCeNzd9PLLL+Pzzz+HnZ1dtXEuXboUV69exfPPPw9ra2t1u0FBQcY1xoWIiIgqp6/ERdcTUZo2bQorK6sK1ZXc3NwKVRgVFxcXtGjRQp20AI9PohEEAdeuXUObNm2qfVwbGxts27YN7733Hs6ePQs7Ozt06tRJPZ5VLIN1Fbm7u1eYnI6IiIjkYWNjA29vbyQlJWksT0pKQq9evbRu4+fnh//+97+4c+eOetmFCxdQp04dtGzZUtTjt23bFqNGjcKQIUMkJy2AhIpLZmYmFAqFOuDjx4/j66+/hpeXF6ZNm6Ze788//5QcFBERkbmT46yi8PBwTJgwAT4+PvD19UVsbCwyMjIwY8YMAI/nQsvKykJ8fDwAYOzYsXjvvfcwadIkLF68GHl5eZg/fz5CQkJ06iYCgJKSEmzcuBE///wzcnNzUVpaqnH/L7/8Iuo5iE5cxo4di2nTpmHChAnIyclBv3790KFDB/XENO+++67YJomIiCyOHInLmDFjcOPGDSxZsgTZ2dno2LEj9uzZo66AZGdna5yiXL9+fSQlJeG1116Dj48PmjRpgtGjR2Pp0qU6P+acOXOwceNGDB48GB07dqzxjL8KQZcJV8po1KgRjh07hnbt2uGTTz7Btm3b8Ntvv2H//v2YMWMG0tPTaxSQvhUUFGj0zREREVUnPz/fYBOYqr6XpkyZAhsbG8ntPHz4EOvXrzdorPrQtGlTxMfHY9CgQXppT3TFpbi4WD1i+cCBAxg2bBgA4KmnnkJ2drZegiIqr6pR72Sc+JoRVc1SrlVkY2ODJ598Um/tiR6c26FDB6xduxaHDh1CUlISBgwYAAD473//K2kiGSIiIkukrwnojN3rr7+O1atX6zSjvi5EV1yWL1+OkSNH4oMPPkBwcDC6dOkC4PHsek8//bRegiIiIjJ3llJxOXz4MJKTk7F371506NChwhnHO3bsENWe6MQlICAAeXl5KCgoQKNGjdTLp02bBnt7e7HNEenEVN6g9D98zYgIABo2bIiRI0fqrT1JE9AJgoBTp07h0qVLGDt2LBo0aAAbGxsmLkRERCJYQoIfFxen1/ZEJy5Xr17FgAEDkJGRgaKiIvTr1w8NGjTAihUr8ODBA6xdu1avARKR6eHAXKLqWUpXkcr169dx/vx5KBQKtG3bFs2aNZPUjujBuXPmzIGPjw9u3bqlMfnMyJEj8fPPP0sKgoiIiMzT3bt3ERISAhcXFzz77LPo06cPXF1dMXnyZNy7d090e6ITl8OHD+Ptt9+ucO65u7s7srKyRAdAROZFX2cOEJk7SzmrKDw8HCkpKfjxxx9x+/Zt3L59Gz/88ANSUlLw+uuvi25PdFdRaWkpSkpKKiy/du0aGjRoIDoAIiIiS2QpXUXbt2/H999/j4CAAPWyQYMGwc7ODqNHj0ZMTIyo9kRXXPr164dVq1ap/1YoFLhz5w4iIyP1NiseERERmYd79+5pvfq0k5NT7XQVffzxx0hJSYGXlxcePHiAsWPHwsPDA1lZWVi+fLnoAIjI9AmCoL6VX05E2llKV5Gvry8iIyPx4MED9bL79+9j8eLF8PX1Fd2e6K4iV1dXpKamYuvWrTh9+jRKS0sxefJkjBs3TucrRRIREVk6S+kqWr16NQYMGICWLVuiS5cuUCgUSE1Nha2tLRITE0W3J2keFzs7O4SEhCAkJETK5kRkAVTVlrJVF1P5oCUi/enYsSMuXryIzZs34++//4YgCHjllVckFzwkJS5fffUVvvjiC6Snp+Po0aNwd3fHxx9/jNatW2P48OFSmiQiIrIollJxAR4XPKZOnaqXtkSPcYmJiUF4eDgGDhyIW7duqc8watSokcagXSKyHKbW505kDCxljEt0dDS+/PLLCsu//PJLSWNjRScun376KdatW4eFCxfC2vp/BRsfHx/88ccfogMgIiKyRJaSuHzxxRd46qmnKizv0KGDpNn2RSculy9fRrdu3SosVyqVuHv3rugAiIiIyHzl5OTAxcWlwvJmzZohOztbdHuiExdPT0+kpqZWWL537154eXmJDoCIzEtlvwJN5dchUW2xlIqLm5sbfvvttwrLf/vtN7i6uopuT/Tg3Pnz52PWrFl48OABBEHA8ePHsXXrVkRHR2P9+vWiAyAiIrJEljI4d8qUKQgLC0NxcTGee+45AMDPP/+MBQsW1M6U/5MmTcKjR4+wYMEC3Lt3D2PHjkWLFi2wevVqvPLKK6IDICLzojr9WaFQaPyfiCzTggULcPPmTcycORMPHz4EANja2uKNN95ARESE6PZEJS6PHj3Cli1bMHToUEydOhV5eXkoLS2Fk5OT6AcmIiKyZJZScVEoFFi+fDneeecdpKWlwc7ODm3atIFSqdRY79q1a3B1dUWdOlWPYhGVuFhbW+P//u//kJaWBgBo2rSpyPCJiIgIsJzERaV+/fro0aNHpfd7eXkhNTUVrVu3rrId0YNze/bsiTNnzojdjIgshCkNGiQi46Hrtc1Ej3GZOXMmXn/9dVy7dg3e3t6oV6+exv2dO3cW2yQREZHFsbSKi76ITlzGjBkDAAgNDVUvUw3CUygU6pl0iajmVO8rY6NrXMYYO5GxYOIijejE5fLly4aIg4iIiKhaohMXd3d3Q8RBROWUvbqyMf2yMrZ4iEwVKy6adH0+ohOXhISESh/Q1tYWTz75JDw9PcU2S0REZFGYuGgy2ODcESNGaEwspVJ2nEvv3r2xa9cuNGrUSGzzREREFoGJi6Zz587pdAkA0adDJyUloUePHkhKSkJ+fj7y8/ORlJSEp59+Grt378avv/6KGzduYN68eZICJ6LHjPW0YmOMiYiMj2qWXJVLly4hLCwMgwcPxpQpU3Dq1CmN+93c3GBlZVVtu6IrLnPmzEFsbCx69eqlXvb888/D1tYW06ZNw19//YVVq1YhJCREbNNEREQWxZx/CNjZ2SE7OxtOTk5ITU2Fn58f2rZtix49eiA1NRW9evXCoUOH8PTTT4tqV3TicunSJTg4OFRY7uDggPT0dABAmzZtkJeXJ7ZpItLCnD/YiCyZuXcVlR1S8s4772DQoEH49ttv1XGHhIQgMjISe/fuFdWu6K4ib29vzJ8/H9evX1cvu379OhYsWKCeyvfixYto2bKlTu1lZWVh/PjxaNKkCezt7dG1a1d1+ai4uBhvvPEGOnXqhHr16sHV1RVBQUH473//KzZsIiIikklqairCwsI0kq05c+ZImolfdMVlw4YNGD58OFq2bAk3NzcoFApkZGSgdevW+OGHHwAAd+7cwTvvvFNtW7du3YKfnx/69u2LvXv3wsnJCZcuXULDhg0BAPfu3cPp06fxzjvvoEuXLrh16xbCwsIwbNgwnDx5UmzoRERERsPcKy5ln5+VlVWF3hoHBwfk5+eLbld04tKuXTukpaUhMTERFy5cgCAIeOqpp9CvXz/1FR1HjBihU1vLly+Hm5sb4uLi1Ms8PDzU/3d0dERSUpLGNp9++imefvppZGRkoFWrVmLDJyIiMgrmnrgIgoC2bdtCoVDgzp07+OOPP9CpUyf1/RcvXoSzs7PodkUnLsDjnTVgwAAEBARAqVRK3nkJCQkIDAzEqFGjkJKSghYtWmDmzJmYOnVqpdvk5+dDoVCoqzLlFRUVoaioSP13QUGBpNiIiIhIurJFCQB44oknNP4+duwYRo4cKbpd0YlLaWkp3n//faxduxb//vsvLly4gNatW+Odd96Bh4cHJk+erHNb6enpiImJQXh4ON566y0cP34coaGhUCqVCAoKqrD+gwcP8Oabb2Ls2LFaBwgDQHR0NBYvXiz2aREREdUqc6+4BAcHV3n/u+++K6ld0YNzly5dio0bN2LFihWwsbFRL+/UqRPWr18vqq3S0lJ0794dUVFR6NatG6ZPn46pU6ciJiamwrrFxcV45ZVXUFpaijVr1lTaZkREhHp+mfz8fGRmZoqKiYiIqDaoEpea3ExJbm4uDh06hMOHDyM3N1dyO6ITl/j4eMTGxmLcuHEaE8V07twZf//9t6i2XFxc4OXlpbGsffv2yMjI0FhWXFyM0aNH4/Lly0hKSqq02gIASqUSDg4OGjciYyEIgs7TWhMRmYOCggJMmDABLVq0gL+/P5599lm0aNEC48ePlzQ4V3TikpWVhSeffLLC8tLSUhQXF4tqy8/PD+fPn9dYduHCBY0LOaqSlosXL+LAgQNo0qSJ2JCJiIiMjqVUXKZMmYLff/8du3fvxu3bt5Gfn4/du3fj5MmTVY5prYzoMS4dOnTAoUOHKlwl+rvvvkO3bt1EtTV37lz06tULUVFRGD16NI4fP47Y2FjExsYCAB49eoSXX34Zp0+fxu7du1FSUoKcnBwAQOPGjTW6qoiIiEyJuY9xUfnpp5+QmJiI3r17q5cFBgZi3bp1GDBggOj2RCcukZGRmDBhArKyslBaWoodO3bg/PnziI+Px+7du0W11aNHD+zcuRMRERFYsmQJPD09sWrVKowbNw4AcO3aNfXVqLt27aqxbXJyMgICAsSGT2aibHeLqbx5AdOKlYgMy1ISlyZNmsDR0bHCckdHR0kXYxaduAwdOhTbtm1DVFQUFAoF3n33XXTv3h0//vgj+vXrJzqAIUOGYMiQIVrv8/Dw4HgAIiIiE/b2228jPDwc8fHxcHFxAQDk5ORg/vz5Ok1WW56keVwCAwMRGBgoZVOiKqkS1ep+SSgUCvW6giCYzC8PIiIVS6m4xMTE4J9//oG7u7t64tiMjAwolUpcv34dX3zxhXrd06dPV9uepMSFiIiIasZSEhddZ9PXlU6JS6NGjXTeQTdv3qxRQGTZVJUUXaoorLoQERm/yMhIvbanU+KyatUq9f9v3LiBpUuXIjAwEL6+vgCAo0ePIjExUVJfFRERkSWylIqLvumUuJSdtvell17CkiVLMHv2bPWy0NBQfPbZZzhw4ADmzp2r/yiJiIjMjCUkLj/99BN27tyJxo0bY9KkSWjfvr36vlu3buGll17CL7/8IqpN0RPQJSYmaj3vOjAwEAcOHBDbHFEFqjezLmeUmcIbl4jIEn399dcYPnw4cnJycPToUXTv3h1btmxR3//w4UOkpKSIbld04tKkSRPs3LmzwvJdu3ZxVlsiIiIdmfvMuR9++CE+/vhj7N69G4cOHcJXX32FGTNmYMOGDTVqV/RZRYsXL8bkyZNx8OBB9RiXY8eOYd++faIvskhUHTGDbjlAl4hMibl3FV24cEFjnraXX34ZTZs2xbBhw1BcXIyRI0dKald04jJx4kS0b98en3zyCXbs2AFBEODl5YXffvsNPXv2lBQEERERmRcHBwf8+++/8PT0VC8LCAjAjz/+iCFDhuDatWuS2pU0j0vPnj01+qmIiIhIHHOvuDz99NPYu3cvnnnmGY3l/v7+6uRFCp3GuBQUFIhqtLCwUFIwRNqo5nWp7L6q/iYiMlbmPsZl7ty5sLW11XpfQEAAdu/ejaCgINHt6jwBXXZ2NpycnHRqtEWLFkhNTUXr1q1FB0RERGQJzL3i4u/vD39//0rvDwgIkHSxZJ0SF0EQsH79etSvX1+nRouLi0UHQlRe+VOiVYNvq6qqGPsb2RxwEDQRSZGbm4vc3FyUlpZqLO/cubOodnRKXFq1aoV169bp3KizszPq1q0rKhAiIiJLYwk/Ak6dOoXg4GCkpaVpXEhX9SOopKREVHs6JS5XrlwRHShRTWmrrHAMi/zKftCy+kIknbl3FalMmjQJbdu2xYYNG9C8efMax82rQxMREZHBXL58GTt27MCTTz6pl/ZEz5xLRERENWfuZxWpPP/88zh79qze2mPFhWRXts+TiMhSWEpX0fr16xEcHIw///wTHTt2rDAGdtiwYaLaY+JCREREBnPkyBEcPnwYe/furXCflMG57Coi2al+NVQ10RwZh/Kvj6n84iMyRpbSVRQaGooJEyYgOzsbpaWlGjexSQsgMXE5dOgQxo8fD19fX2RlZQEAvvrqKxw+fFhKc0RERBZHrsRlzZo18PT0hK2tLby9vXHo0CGdtvvtt99gbW2Nrl27inq8GzduYO7cuWjevLmEaCsSnbhs374dgYGBsLOzw5kzZ1BUVATg8TT/UVFRegmKzFdlVZWyb0KplRdT+fVBRCSXbdu2ISwsDAsXLsSZM2fQp08fDBw4EBkZGVVul5+fj6CgIDz//POiH/PFF19EcnKy1JArED3GZenSpVi7di2CgoLwzTffqJf36tULS5Ys0VtgRERE5kyOwbkrV67E5MmTMWXKFADAqlWrkJiYiJiYGERHR1e63fTp0zF27FhYWVlh165doh6zbdu2iIiIwOHDh9GpU6cKg3NDQ0NFtSc6cTl//jyeffbZCssdHBxw+/Ztsc0RERFZJH0lLuUvhKxUKqFUKius//DhQ5w6dQpvvvmmxvL+/fvjyJEjlT5OXFwcLl26hM2bN2Pp0qWi41RdMiglJQUpKSkVnoPBExcXFxf8888/8PDw0Fh++PBhXlSRqlXdm7Rsd5E+25VD2ecgNj5jPUXc2OIhMmX6Slzc3Nw0lkdGRmLRokUV1s/Ly0NJSUmFsSbNmzdHTk6O1se4ePEi3nzzTRw6dAjW1tJORL58+bL6//r4bBM9xmX69OmYM2cOfv/9dygUCvz3v//Fli1bMG/ePMycOVNyIERERCReZmYm8vPz1beIiIgq1y+fNFR26Y6SkhKMHTsWixcvRtu2bWsU44YNG9CxY0fY2trC1tYWHTt2xPr16yW1JTp9WrBgAfLz89G3b188ePAAzz77LJRKJebNm4fZs2dLCoKoPKmVF2NR07iruwo2EZk+fVVcHBwc4ODgUO36TZs2hZWVVYXqSm5urtYzfgoLC3Hy5EmcOXNG/f1eWloKQRBgbW2N/fv347nnnqv2cd955x18/PHHeO211+Dr6wsAOHr0KObOnYsrV66I7n5SCBI/He/du4dz586htLQUXl5eqF+/vpRmDK6goACOjo5yh0ES6Xp4GlsXhj7mO+EFDInkk5+fr1MyIIXqe+nTTz+FnZ2d5Hbu37+P1157TVSsPXv2hLe3N9asWaNe5uXlheHDh1cYnFtaWopz585pLFuzZg1++eUXfP/99/D09ES9evWqfcymTZvi008/xauvvqqxfOvWrXjttdeQl5enU+wqkmfOtbe3h4+Pj9TNiYiIqJaFh4djwoQJ8PHxga+vL2JjY5GRkYEZM2YAACIiIpCVlYX4+HjUqVMHHTt21NjeyclJ3dWjq5KSEq35gre3Nx49eiT6OeiUuLz44os6N7hjxw7RQRBVxpK7TFhtITJvcpwOPWbMGNy4cQNLlixBdnY2OnbsiD179sDd3R0AkJ2dXe2cLmKNHz8eMTExWLlypcby2NhYjBs3TnR7OnUVTZo0Sf1/QRCwc+dOODo6qjOoU6dO4fbt23jxxRcRFxcnOghDYleR6dMlcTG2L3lOjU9k2mqjq+jzzz+vcVfRrFmzDBqrPrz22muIj4+Hm5sbnnnmGQDAsWPHkJmZiaCgII15XconN9roVHEpm4y88cYbGD16NNauXQsrKysAj8tAM2fONOodR6bLFKsupj64mIhIX/788090794dAHDp0iUAQLNmzdCsWTP8+eef6vV0/YEneozLl19+icOHD6uTFgCwsrJCeHg4evXqhQ8++EBsk0RERBZHjq4iOehzun9Awjwujx49QlpaWoXlaWlpKC0t1UtQRGXpUrUw1sqGKV3BlYhql6VcHVrfRFdcJk2ahJCQEPzzzz8afVXLli3TGAtDREREpG+iE5cPP/wQzs7O+Pjjj5GdnQ3g8WUAFixYgNdff13vARIREZkjS+kq0jfRXUV16tTBggULkJWVhdu3b+P27dvIysrCggULNMa96CorKwvjx49HkyZNYG9vj65du+LUqVPq+wVBwKJFi+Dq6go7OzsEBATgr7/+Ev04ZHoEQTDaLiAioppiV5E0ohOXsnSdZrgyt27dgp+fH+rWrYu9e/fi3Llz+Oijj9CwYUP1OitWrMDKlSvx2Wef4cSJE3B2dka/fv1QWFhYk9CJiIhkxcRFGtFdRZ6enlXurPT0dJ3bWr58Odzc3DROty571WlBELBq1SosXLhQPQnepk2b0Lx5c3z99deYPn262PDJRJjD1aGJiEj/RCcuYWFhGn8XFxfjzJkz2LdvH+bPny+qrYSEBAQGBmLUqFFISUlBixYtMHPmTEydOhXA40th5+TkoH///uptlEol/P39ceTIESYuRERk0vijSzzRicucOXO0Lv/8889x8uRJUW2lp6cjJiYG4eHheOutt3D8+HGEhoZCqVQiKChIfQXL8letbN68Oa5evaq1zaKiIhQVFan/LigoEBUTERFRbeDgXGlqNMalrIEDB2L79u2itiktLUX37t0RFRWFbt26Yfr06Zg6dSpiYmI01iv/4lR11dzo6Gg4Ojqqb25ubuKeCJkcU3jz1nSQMQcpmzYONCfSH70lLt9//z0aN24sahsXFxd4eXlpLGvfvr36Ak/Ozs4AoK68qOTm5laowqhEREQgPz9ffcvMzBQVExERUW3g4FxpRHcVdevWTWNnCYKAnJwcXL9+HWvWrBHVlp+fH86fP6+x7MKFC+qrVHp6esLZ2RlJSUno1q0bAODhw4dISUnB8uXLtbapVCqhVCpFxUHGq6pr/pjSm1YfsVZVaSTTwNeQymJXkTSiE5fhw4dr7Kw6deqgWbNmCAgIwFNPPSWqrblz56JXr16IiorC6NGjcfz4ccTGxiI2NhbA4xclLCwMUVFRaNOmDdq0aYOoqCjY29tj7NixYkMnIiIiEyc6cVm0aJHeHrxHjx7YuXMnIiIisGTJEnh6emLVqlUYN26cep0FCxbg/v37mDlzJm7duoWePXti//79aNCggd7iIOPFcQGa+4C/2E2f6vXk60isuEijEER+M1hZWSE7OxtOTk4ay2/cuAEnJyeUlJToNcCaKigogKOjo9xhkEi6HJaW8qYtvy8s5XmbE1Pv6rRE+fn5NZpgtSqq76W4uDjY29tLbufevXuYNGmSQWM1RqIH51b2hVJUVAQbG5saB0RERERUGZ27ij755BMAj38lrF+/HvXr11ffV1JSgl9//VX0GBeisiypW6iyKkrZ5fxFbj4UCoVFHd+kG3YVSaNz4vLxxx8DePzBunbtWo0LKtrY2MDDwwNr167Vf4RERERmiImLNDonLpcvXwYA9O3bFzt27ECjRo0MFhRZDqm/Qk3tDavL8yy/TmXbcHCnaSpfdZFjoDUHdxsXJi7SiD6rKDk52RBxEBEREVVLp8QlPDwc7733HurVq4fw8PAq1125cqVeAiPLUdmvhqqqFKbyy7Gm4xo4NsK8SKm6mMqxTuKx4iKNTonLmTNnUFxcDAA4ffq0xe4sIiIifWHiIo1OiUvZ7qGDBw8aKhYiIiKiKomexyUkJASFhYUVlt+9exchISF6CYqoKsb8K0N1FWCxVwOubiBuVY9Fpqu2j2Vjfu9YIl5kURrRicumTZtw//79Csvv37+P+Ph4vQRFRERk7pi4SKPzWUUFBQXqX3iFhYWwtbVV31dSUoI9e/ZUuAwAkS5Ugw91GYSour/sIEdjePOy8kFEVDt0TlwaNmyozvDatm1b4X6FQoHFixfrNTgiIiJzxcG50uicuCQnJ0MQBDz33HPYvn07GjdurL7PxsYG7u7ucHV1NUiQRERE5oaJizQ6Jy7+/v4AHs+g6+bmhjp1RA+PIapA1eWj6mqprLtI12Vyqcl8K5yrxbJY8uutz2txcX4byyV65lx3d3cAjy+nnZGRgYcPH2rc37lzZ/1ERkREZMZYcZFGdOJy/fp1TJo0CXv37tV6f0lJSY2DotpjDL9atM0mWvY+U1E+Vl1/Vdfk17cp7R/6H0uuuuiLORz7TFykEd3fExYWhlu3buHYsWOws7PDvn37sGnTJrRp0wYJCQmGiJGIiMjs8HRoaURXXH755Rf88MMP6NGjB+rUqQN3d3f069cPDg4OiI6OxuDBgw0RJxlAdeNKapO2X6Byx1RTZePnr2sqT8zxbQzvUX0wh+dA8hNdcbl79656vpbGjRvj+vXrAIBOnTrh9OnT+o2OiIjITLHiIo3oxKVdu3Y4f/48AKBr16744osvkJWVhbVr18LFxUXvARIREZkrJi3iie4qCgsLQ3Z2NgAgMjISgYGB2LJlC2xsbLBx40Z9x0cGZMwDBC35TVmZ8q8X9xGZInPp9iL5iE5cxo0bp/5/t27dcOXKFfz9999o1aoVmjZtqtfgiIiIzBXPKpJGdOJSnr29Pbp3766PWEgGlnrg15aaVrTKvz58vcgcsOryGBMXaXRKXMLDw3VucOXKlZKDISIiIqqKTonLmTNndGrMUrM/IiIisVhxkUanxCU5OdnQcRAZDbnL2Jb6YUSVUw3MNqdjw9yejxRMXKThlRKJiIjIZNR4cC6RodX2LzN9PJaUQbmW+uuJ/ne8VHYVdDHvAWOuZJR/XxhzrLWBFRdpmLgQERHJgImLNExcyOgY25tR7K9dKYztOZM8KjvWxB5/VVVwyHgwcZGGY1yIiIjIZLDiQkREJANWXKRh4kImQc5BfGIeV7WumC4jS/3wof+pyXXDqtpO9b4xlkGwxnx9NDkwcZGGXUVERERkMlhxIaNS1S8IY/nVqAttcZb/pWkqz4Vqhy7ViPLvgerWV61rTMda+edpSu9rfWPFRRomLkRERDJg4iINu4pI7wRBMNgEbObSP26pHzhUteqOC6nHjbG9b8o/D2OLj4ybrInLokWL1Bmn6ubs7Ky+/86dO5g9ezZatmwJOzs7tG/fHjExMTJGTEREpB/lv/+k3CyR7F1FHTp0wIEDB9R/W1lZqf8/d+5cJCcnY/PmzfDw8MD+/fsxc+ZMuLq6Yvjw4XKES0REpBfsKpJG9q4ia2trODs7q2/NmjVT33f06FEEBwcjICAAHh4emDZtGrp06YKTJ0/KGDFVpTZm7DS2srKu8Vj6rySSR9nZdI3pvaOtu6jsjagysicuFy9ehKurKzw9PfHKK68gPT1dfV/v3r2RkJCArKwsCIKA5ORkXLhwAYGBgZW2V1RUhIKCAo0bERGRsWFXkTSyJi49e/ZEfHw8EhMTsW7dOuTk5KBXr164ceMGAOCTTz6Bl5cXWrZsCRsbGwwYMABr1qxB7969K20zOjoajo6O6pubm1ttPR2LZ4hqi6n88jKVOMmyaDsujelYtdQvXhUmLtLImrgMHDgQL730Ejp16oQXXngBP/30EwBg06ZNAB4nLseOHUNCQgJOnTqFjz76CDNnztQYE1NeREQE8vPz1bfMzMxaeS5ERERiMHGRRvbBuWXVq1cPnTp1wsWLF3H//n289dZb2LlzJwYPHgwA6Ny5M1JTU/Hhhx/ihRde0NqGUqmEUqmszbCJiIiolsg+xqWsoqIipKWlwcXFBcXFxSguLkadOpohWllZobS0VHTb+fn5FQZ+lR8Mpu1GVSu7r/T9C6C6a7AQWary7zmx77vKupCM6X1lTLEYCisu0shacZk3bx6GDh2KVq1aITc3F0uXLkVBQQGCg4Ph4OAAf39/zJ8/H3Z2dnB3d0dKSgri4+OxcuVKOcMmIiLSC0tNPmpC1sTl2rVrePXVV5GXl4dmzZrhmWeewbFjx+Du7g4A+OabbxAREYFx48bh5s2bcHd3x/vvv48ZM2bU+LEry+Z5EIkj5/4qe40Tua53Ygm/Csn4aDvWdbnWUVnl3zNyvZerilvb+1rMSQC1MT0D1T5ZE5dvvvmmyvudnZ0RFxdXS9EQERHVHrkmoFuzZg0++OADZGdno0OHDli1ahX69Omjdd0dO3YgJiYGqampKCoqQocOHbBo0aIqpyUxNKMa4yInS+4vNGXlxyzVNh43JKfqrjhe3bFpbONatKns/S22umSM5Bjjsm3bNoSFhWHhwoU4c+YM+vTpg4EDByIjI0Pr+r/++iv69euHPXv24NSpU+jbty+GDh2KM2fO1PTpS6YQjPUV1ZOCggI4OjoiPz8fDg4Ola7HLx/jY6gLNRqCXF1VZNmq6koBdO8+kvvYrS5G1fMo/3x0Scx0Xbe86r4zakL1vZScnIz69etLbufOnTvo27evqFh79uyJ7t27a1z3r3379hgxYgSio6N1aqNDhw4YM2YM3n33XUlx1xQrLkRERDLQV8Wl/GzxRUVFWh/v4cOHOHXqFPr376+xvH///jhy5IhOMZeWlqKwsBCNGzeu2ZOvASYukP/XBtVM2TexXAVEHkMkB9Uxr62yIOaYlLPLSJfHraq7qKrtjf19qa/Exc3NTWPG+MoqJ3l5eSgpKUHz5s01ljdv3hw5OTk6xfzRRx/h7t27GD16dM2efA0Y1QR0REREJE5mZqZGV1F1k7Bq617UJcnbunUrFi1ahB9++AFOTk7SgtUDJi7g+ARjpK0/m4gq0lZ1AaofuKttnao+C435c7Ls54W2AcplJ+yravvapq+zihwcHHQa49K0aVNYWVlVqK7k5uZWqMKUt23bNkyePBnfffddpTPX1xZ2FREREcmgts8qsrGxgbe3N5KSkjSWJyUloVevXpVut3XrVkycOBFff/21+hI8cmLFhYiISAZyzOMSHh6OCRMmwMfHB76+voiNjUVGRoZ6YteIiAhkZWUhPj4ewOOkJSgoCKtXr8YzzzyjrtbY2dnB0dFRcuw1YdGJS9muCM6waBzKlq517Saq7ddO7MydPKbI0Mp+lqmON21/VzbPi7b3ndg5YaTSV5dwdYN0q+ousqT36JgxY3Djxg0sWbIE2dnZ6NixI/bs2aOesT47O1tjTpcvvvgCjx49wqxZszBr1iz18uDgYGzcuLG2wwdg4fO4aHvDWNIBbIxqcjhW1setb0xcyBhJSVzKb1tWbR63+vwaqu456vq8amMel99++63G87j4+fkZNFZjZNEVl/LXuin7L79s5FGTX1/lB/Qaw2toDDGQZaiuQlLVsVjZ+86Y3ku60hZz+YqSsTwfObqKzAEH5xIREZHJsOiKCyB/iZQ01bRkXJu/rIzplxvJwxQrEpWRq/psqNEKZd+f5StKxvK6seIijcUnLkRERHJg4iINu4qIiIjIZLDiUo6lZrByq41ysb6UP42ex4zlsoTZnct2q+j7eDf0vpNypezaxIqLNExciIiIZMDERRp2Ff1/NT2ASLra/NWlL5WdaknSqSYI4/40TpVdobmm7dUWbdUiHm+miRUXIiIiGbDiIg0TF1T89WypB0NtkeMXDse6GLfKJj8zhX1qCjGKoctYEF1fG6mnHRtqPEplbcp1ejQTF2mYuBAREcmAiYs0HONCREREJsPiKy6VXZCMDEPOgXCG6i4yZPvmSJdjgF1wxk/Xz0wp1w+T63NCEAT1BRBrAysu0lh84kJERCQXS00+asLiE5fyExRVdp+2+0m88hWu2mbIX/A8Pqqny+vO/Sg/Me/Tyt5TVV1tmqgmLD5xISIikgO7iqRh4kJERCQDJi7SWHTiUn5gZdmSJ7uJ9IOlYdOmz0HrYo8FDpiXj9guVW2vFV83MhSLTlyIiIjkwoqLNBaduHDwWO2Q+6qscj++KdPHvpNSaeFp5vJT7Xcxr19l1wMi7Zi4SMMJ6IiIiMhkWHTFhWoHf3GZNjl+1fGYMV36qpDJPXVCbWDFRRomLkRERDJg4iINExciIiIZMHGRhmNcdKQ6XZrEk/PNpeuMnpUpe82c8ttp+9ucj5PqnpvU52+pH776IPVYq267mnbTSN1O9bg8JqgqrLgQERHJgBUXaZi4iGCpB0lNlP0FVduVCH0OENTlPnM+Pgx5SrK5Vqhqg5QrL5ddV8x1hsRStS3mvV+2wqkrU57ugImLNLJ2FS1atEj9wqluzs7OGuukpaVh2LBhcHR0RIMGDfDMM88gIyNDpoiJiIhITrJXXDp06IADBw6o/7ayslL//9KlS+jduzcmT56MxYsXw9HREWlpabC1tZUjVCIiIr1hxUUa2RMXa2vrClUWlYULF2LQoEFYsWKFelnr1q1rKzQ1Uy5FGpPanJeh/Myr5Ynt+uAx8D+67Lvq1hFzLFjqh7OupO6fst0yptoNaOrHBhMXaWQ/q+jixYtwdXWFp6cnXnnlFaSnpwMASktL8dNPP6Ft27YIDAyEk5MTevbsiV27dlXZXlFREQoKCjRuREREZB5kTVx69uyJ+Ph4JCYmYt26dcjJyUGvXr1w48YN5Obm4s6dO1i2bBkGDBiA/fv3Y+TIkXjxxReRkpJSaZvR0dFwdHRU39zc3ETFpC0DljJgjCpXW78S9H1qsqX+uimrsv0p9mrqvPKz/hni86mqigBfu5orP8ZTys0SKQQj+ja+e/cunnjiCSxYsACvvPIKWrRogVdffRVff/21ep1hw4ahXr162Lp1q9Y2ioqKUFRUpP67oKAAbm5uyM/Ph4ODQ7UxVFfCttQDRd9qo4Ss61wVVL3yF9yr7kJ61XXVlV2Hr5N+iO3yKbvfK3s9q3qNjKH71BDdzwUFBXB0dNT5O6Mmj3Hx4kU0aNBAcjuFhYVo06aNQWM1RrKPcSmrXr166NSpEy5evIimTZvC2toaXl5eGuu0b98ehw8frrQNpVIJpVIpOQa534ikH3wd9ad8xbG6U2nFtFv+V2N1E9wxiamcPl6Lsm2VT2yM8T1ljDGR4ck+xqWsoqIipKWlwcXFBTY2NujRowfOnz+vsc6FCxfg7u4uU4RERET6wa4iaWStuMybNw9Dhw5Fq1atkJubi6VLl6KgoADBwcEAgPnz52PMmDF49tln0bdvX+zbtw8//vgjDh48KGfYRERENcaziqSRNXG5du0aXn31VeTl5aFZs2Z45plncOzYMXVFZeTIkVi7di2io6MRGhqKdu3aYfv27ejdu7dsMbNcXTPGVNrla1kz+th3Ygbp8rUyDFU3kLbuIm3rqUi9JpUxfQbIjYmLNLImLt98802164SEhCAkJKQWoiEiIiJjZ1SDc8m88ZeW6anpa1bT7S31F2VtKFtpUdHnxIFUPVZcpGHiQkREJBNLTT5qwqjOKiKSg74nqjMnlV05uOwp0pVdUkFfj6ePdvXBHI+RqibcNORjEtUEKy5EREQyYFeRNExciIiIZMDERRp2FVGtMcaJk8yx/K9vlb1W1e07MfvWVF4HU4lTLLHvRynvYXbJkr6w4kJERCQDVlykYeJCsil/jRptgwRr8xopnJBOXrq8zsbw+pjrcSLlVGcp25Tdf5ZegWHiIg27ioiIiMhksOJCREQkA1ZcpGHiAvGXbDfXUrGctO1PXfdxbc9DYWmMZe4Uud9zZbs3zPkzQMrzqmy+H123s9T3LBMXaZi4EBERyYCJizQWP8bFUl94c6L6BayP0y15yqYmY9oXxhKLOXxmGMu+JJKCFRciIiIZsOIijUUnLmVf9No87ZYqp21Mgxz94OY8hkEMY3tfGNPrYkyxyEXqPjDUvjO247U6TFyksfiuIiIiIjIdFl1xISIikgsrLtIwcZFIVY601APHUMqWemtrhs3yM/iW/T9fX+Msv8v92hjjPhFDFX9N92Fl7eiyb9hdxMRFKnYVERERkcmw6IoLqybGRduvpNr45VTVY8j9y14OpvJr1RJfG13psm/0te9qWr3R5/FmKseuCisu0lh04kJERCQXJi7SsKuIiIiITAYrLmWY0qAuc8H9bRx0va6MMbxexjKAurYeV8pzrO19IrW7yBiOJzmx4iINExciIiIZMHGRhl1F5VjqgSAHU/m1xesXPSbXPqjuw93cXxtjGPSqi9r47DS3z2fVsV2TmxRr1qyBp6cnbG1t4e3tjUOHDlW5fkpKCry9vWFra4vWrVtj7dq1kh5XX5i4EBERWYht27YhLCwMCxcuxJkzZ9CnTx8MHDgQGRkZWte/fPkyBg0ahD59+uDMmTN46623EBoaiu3bt9dy5P+jEMz850pBQQEcHR2Rn58PBweHCvdry1jF7BJz+wVQG0z9kDPX19wYX5fKJgesaj36H0ONAaqqXUMfR4aelLK67wx9Psbt27dr9BgFBQVo2LChqFh79uyJ7t27IyYmRr2sffv2GDFiBKKjoyus/8YbbyAhIQFpaWnqZTNmzMDZs2dx9OhRybHXBCsuREREMqjtrqKHDx/i1KlT6N+/v8by/v3748iRI1q3OXr0aIX1AwMDcfLkSRQXF4t7wnpi9oNzVVl5QUGBztuIWZfE4/41Tsb+uhh7fMbIUPusqnZr63Uy9HOrjQpkTZ+Davvy7SiVSiiVygrr5+XloaSkBM2bN9dY3rx5c+Tk5Gh9jJycHK3rP3r0CHl5eXBxcanJU5DE7BOXwsJCAICbm5vO2zg6OhoqHAL3r7Ey9tfF2OMzRobaZ1W1W1uvk6Efp7Cw0GCPYWNjA2dnZ1HfS5WpX79+hXYiIyOxaNGiSrfRdm2pqqo3lV2LSq4uWrNPXFxdXZGZmYkGDRrodScXFBTAzc0NmZmZBusHtWTcv4bHfWxY3L+GZaj9KwgCCgsL4erqqrc2y7O1tcXly5fx8OHDGrelLenQVm0BgKZNm8LKyqpCdSU3N7dCVUXF2dlZ6/rW1tZo0qRJDSKXzuwTlzp16qBly5YGa9/BwYEfSgbE/Wt43MeGxf1rWIbYv7VRNbK1tYWtra3BH6csGxsbeHt7IykpCSNHjlQvT0pKwvDhw7Vu4+vrix9//FFj2f79++Hj44O6desaNN7KcHAuERGRhQgPD8f69evx5ZdfIi0tDXPnzkVGRgZmzJgBAIiIiEBQUJB6/RkzZuDq1asIDw9HWloavvzyS2zYsAHz5s2T6ymYf8WFiIiIHhszZgxu3LiBJUuWIDs7Gx07dsSePXvg7u4OAMjOztaY08XT0xN79uzB3Llz8fnnn8PV1RWffPIJXnrpJbmeAhMXqZRKJSIjIyvtS6Sa4f41PO5jw+L+NSzuX+lmzpyJmTNnar1v48aNFZb5+/vj9OnTBo5Kd2Y/AR0RERGZD45xISIiIpPBxIWIiIhMBhMXIiIiMhlMXIiIiMhkMHGRaM2aNfD09IStrS28vb1x6NAhuUMySb/++iuGDh0KV1dXKBQK7Nq1S+N+QRCwaNEiuLq6ws7ODgEBAfjrr7/kCdYERUdHo0ePHmjQoAGcnJwwYsQInD9/XmMd7mPpYmJi0LlzZ/UkaL6+vti7d6/6fu5b/YqOjoZCoUBYWJh6Gfex5WHiIsG2bdsQFhaGhQsX4syZM+jTpw8GDhyoce476ebu3bvo0qULPvvsM633r1ixAitXrsRnn32GEydOwNnZGf369VNfg4qqlpKSglmzZuHYsWNISkrCo0eP0L9/f9y9e1e9DvexdC1btsSyZctw8uRJnDx5Es899xyGDx+u/uLkvtWfEydOIDY2Fp07d9ZYzn1sgQQS7emnnxZmzJihseypp54S3nzzTZkiMg8AhJ07d6r/Li0tFZydnYVly5aplz148EBwdHQU1q5dK0OEpi83N1cAIKSkpAiCwH1sCI0aNRLWr1/PfatHhYWFQps2bYSkpCTB399fmDNnjiAIPH4tFSsuIj18+BCnTp1C//79NZb3798fR44ckSkq83T58mXk5ORo7GulUgl/f3/ua4ny8/MBAI0bNwbAfaxPJSUl+Oabb3D37l34+vpy3+rRrFmzMHjwYLzwwgsay7mPLRNnzhUpLy8PJSUlFa6k2bx58wpX0KSaUe1Pbfv66tWrcoRk0gRBQHh4OHr37o2OHTsC4D7Whz/++AO+vr548OAB6tevj507d8LLy0v9xcl9WzPffPMNTp8+jRMnTlS4j8evZWLiIlH5y4gLWi4tTvrBfa0fs2fPxn/+8x8cPny4wn3cx9K1a9cOqampuH37NrZv347g4GCkpKSo7+e+lS4zMxNz5szB/v37q7ySMvexZWFXkUhNmzaFlZVVhepKbm5uhayfasbZ2RkAuK/14LXXXkNCQgKSk5PRsmVL9XLu45qzsbHBk08+CR8fH0RHR6NLly5YvXo1960enDp1Crm5ufD29oa1tTWsra2RkpKCTz75BNbW1ur9yH1sWZi4iGRjYwNvb28kJSVpLE9KSkKvXr1kiso8eXp6wtnZWWNfP3z4ECkpKdzXOhIEAbNnz8aOHTvwyy+/wNPTU+N+7mP9EwQBRUVF3Ld68Pzzz+OPP/5Aamqq+ubj44Nx48YhNTUVrVu35j62QOwqkiA8PBwTJkyAj48PfH19ERsbi4yMDMyYMUPu0EzOnTt38M8//6j/vnz5MlJTU9G4cWO0atUKYWFhiIqKQps2bdCmTRtERUXB3t4eY8eOlTFq0zFr1ix8/fXX+OGHH9CgQQP1L1NHR0fY2dmp58TgPpbmrbfewsCBA+Hm5obCwkJ88803OHjwIPbt28d9qwcNGjRQj8dSqVevHpo0aaJezn1sgeQ7ocm0ff7554K7u7tgY2MjdO/eXX16KYmTnJwsAKhwCw4OFgTh8emOkZGRgrOzs6BUKoVnn31W+OOPP+QN2oRo27cAhLi4OPU63MfShYSEqD8HmjVrJjz//PPC/v371fdz3+pf2dOhBYH72BIpBEEQZMqZiIiIiEThGBciIiIyGUxciIiIyGQwcSEiIiKTwcSFiIiITAYTFyIiIjIZTFyIiIjIZDBxISIiIpPBxIXIDAUEBCAsLEzuMIiI9I6JCxEREZkMJi5ERERkMpi4EJm5W7duISgoCI0aNYK9vT0GDhyIixcvqu/fuHEjGjZsiMTERLRv3x7169fHgAEDkJ2dLWPURETaMXEhMnMTJ07EyZMnkZCQgKNHj0IQBAwaNAjFxcXqde7du4cPP/wQX331FX799VdkZGRg3rx5MkZNRKSdtdwBEJHhXLx4EQkJCfjtt9/Qq1cvAMCWLVvg5uaGXbt2YdSoUQCA4uJirF27Fk888QQAYPbs2ViyZIlscRMRVYYVFyIzlpaWBmtra/Ts2VO9rEmTJmjXrh3S0tLUy+zt7dVJCwC4uLggNze3VmMlItIFExciMyYIQqXLFQqF+u+6detq3K9QKCrdlohITkxciMyYl5cXHj16hN9//1297MaNG7hw4QLat28vY2RERNIwcSEyY23atMHw4cMxdepUHD58GGfPnsX48ePRokULDB8+XO7wiIhEY+JCZObi4uLg7e2NIUOGwNfXF4IgYM+ePRW6h4iITIFCYEc2ERERmQhWXIiIiMhkMHEhIiIik8HEhYiIiEwGExciIiIyGUxciIiIyGQwcSEiIiKTwcSFiIiITAYTFyIiIjIZTFyIiIjIZDBxISIiIpPBxIWIiIhMBhMXIiIiMhn/D0luIdCkiSFvAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mask.isel(time=0).plot(cmap=\"binary\")" ] }, { "cell_type": "markdown", "id": "27c60e8d-9695-48dc-b3a1-95a8c33435c0", "metadata": {}, "source": [ "Plot a single point (defined by its latitude and longitude) over the time dimension." ] }, { "cell_type": "code", "execution_count": 51, "id": "24b735b1-6503-4afa-b210-c6fa1a7249d5", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAHFCAYAAAAjaPebAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1sklEQVR4nOzdd1zU9R/A8dexh3BsEEXEPQD3ttTciWaWO8w0rUxNc1dq08rKlg1tWZbacmWGe0TugYp7oAwZKnAsmff9/YHczxNknMAx3s/H4x7F9z7f7/d9yHFvPuP9USmKoiCEEEIIIcqcibEDEEIIIYSoLiTxEkIIIYQoJ5J4CSGEEEKUE0m8hBBCCCHKiSReQgghhBDlRBIvIYQQQohyIomXEEIIIUQ5kcRLCCGEEKKcSOIlhBBCCFFOJPESZWLFihWoVCquXr1a4nP37dvH66+/TmJiYqnHVVzBwcE8+uijODo6Ym1tTcOGDXnrrbfytTt27Bi9evWiRo0aODg4MGTIEK5cuVLs+2zfvp1OnTphY2ODi4sLY8eOJS4uTq/N1atXUalUBT7WrFlT5D3Gjh2ra+/r61usuFQqFa+//nqxX4coXWlpabz++uvs3r0733Ovv/46KpWKmzdvFnmdli1b6v7tAwICDIpl7Nix1K1b16BzS1veay9vKSkpTJs2DU9PT6ysrGjZsmWx3nt54uLiGDt2LC4uLtjY2NCpUyd27NhRrHPr1q2r+zecPHmyoS+hQFXt56OykMRLVDj79u3jjTfeMFritWrVKrp164Zareann35i8+bNzJkzh3t31zp37hzdu3cnMzOT3377je+//54LFy7w0EMPcePGjSLvs2fPHvr374+7uzsbNmzg008/Zfv27fTs2ZOMjIx87adMmcL+/fv1Hr179y7Wa/Lw8GD//v2sWrWqeN8EYVRpaWm88cYbBSZeJbFy5Ur279+Ph4dH6QRWTQ0ZMoQff/yRhQsX8s8//9CuXTtGjhxZrPdTRkYGPXv2ZMeOHXz66ads2LABd3d3+vXrx549e4p1/0cffZT9+/czc+bMB30peuTnwzjMjB2AEBVJVFQUEydO5LnnnuPLL7/UHe/Ro0e+tgsWLMDS0pJNmzZhb28PQJs2bWjYsCEffvgh77//fqH3mjVrFo0aNeKPP/7AzCz3rejj40OXLl34/vvveeGFF/Ta16lTh44dOxr0uiwtLQ0+tzylpaVhY2Nj7DCMRlEU0tPTS+16fn5+QO6/vzDM5s2b2bZtG6tWrWLkyJFA7u+Da9euMWvWLIYPH46pqel9z//uu+8IDQ1l3759dOrUSXd+ixYtmD17NgcPHiwyBldX1zJ5/8rPh3FIj5coN9u2beOxxx6jdu3aWFlZ0aBBA5577jm9IZPXX3+dWbNmAblJSF43+IP+5V9c3377LampqcyZM6fQdtnZ2WzatIknnnhCl3QBeHt706NHD9atW1fo+VFRURw+fJjAwEBd0gXQuXNnGjVqVOT5pSUpKYkJEybg7OxMjRo16NevHxcuXCiw7cWLFxk1ahRubm5YWlrStGlTvvjii3ztTp8+TZ8+fbCxscHV1ZUXX3yRv//+O9+/Y/fu3fH19WXv3r107twZGxsbxo0bp4tr5syZ+Pj4YGFhQa1atZg2bRqpqal691IUhS+//JKWLVtibW2No6MjTz75ZL7h3uPHjxMQEKCL3dPTkwEDBhAZGVns79XYsWOpUaMGly5d4tFHH6VGjRp4eXkxY8aMfD2U8fHxTJo0iVq1amFhYUG9evV49dVX87XLGz76+uuvadq0KZaWlvz444+4uroC8MYbb+jeA2PHjtU7NzY2lpEjR6JWq3F3d2fcuHFoNJpiv54HUZzv+7Rp07C1tSUpKSnf+cOHD8fd3Z2srCzdsV9//ZVOnTpha2tLjRo16Nu3L8ePHy+X11OYdevWUaNGDYYOHap3/JlnnuH69etFJk7r1q2jcePGuqQLwMzMjKeeeopDhw4RFRVlUFy7d+9GpVKxatUq5syZQ82aNalRowYDBw4kNjaW5ORkJk6ciIuLCy4uLjzzzDOkpKQYdC9RuiTxEuXm8uXLdOrUia+++oqtW7eyYMECDh48SNeuXXW/gJ999lmmTJkCwNq1a3VDaq1bt77vdRVFITs7u1iPouzduxcnJyfOnTtHy5YtMTMzw83Njeeff17vA+Ty5cvcvn0bf3//fNfw9/fn0qVLhfZchIaG6toWdH7e83d77733sLCwwMbGhq5du7Jx48YiX09hFEVh8ODBrFy5khkzZrBu3To6duxI//7987U9c+YM7dq1IzQ0lI8++ohNmzYxYMAApk6dyhtvvKFrFx0dTbdu3Th//jxfffUVP/30E8nJyfedmxIdHc1TTz3FqFGj2Lx5M5MmTSItLY1u3brx448/MnXqVP755x/mzJnDihUrGDRokN6Q73PPPce0adPo1asX69ev58svv+T06dN07tyZ2NhYAFJTU+nduzexsbF88cUXbNu2jU8++YQ6deqQnJxcou9ZVlYWgwYNomfPnmzYsIFx48bx8ccf6/Vupqen06NHD3766Sdefvll/v77b5566ikWL17MkCFD8l1z/fr1fPXVVyxYsIAtW7bQqVMngoKCABg/frzuPTB//ny985544gkaNWrEn3/+ydy5c1m1ahXTp08v0esxVHG+7+PGjSMtLY3ffvtN79zExEQ2bNjAU089hbm5OQCLFi1i5MiRNGvWjN9++42VK1eSnJzMQw89xJkzZ0ocX2n+TggNDaVp06Z6fyDB/9+7Bb1X7z3/fu9zyP1D5UG88sorxMXFsWLFCj766CN2797NyJEjeeKJJ1Cr1axevZrZs2ezcuVKXnnllQe6lyglihBl4IcfflAAJSwsrMDntVqtkpWVpVy7dk0BlA0bNuie++CDDwo99373Ks6jKI0bN1asrKwUOzs7ZdGiRcquXbuUxYsXK9bW1kqXLl0UrVarKIqi/PfffwqgrF69Ot81Fi1apADK9evX73ufX375RQGU/fv353tu4sSJioWFhe7r69evKxMmTFB+++035d9//1V++eUXpWPHjgqgfPPNN0W+pqefflrx9vbOd/yff/5RAOXTTz/VO/7OO+8ogLJw4ULdsb59+yq1a9dWNBqNXtvJkycrVlZWSnx8vKIoijJr1ixFpVIpp0+f1mvXt29fBVB27dqlO9atWzcFUHbs2KHX9t1331VMTEyUw4cP6x3/448/FEDZvHmzoiiKsn//fgVQPvroI712ERERirW1tTJ79mxFURTlyJEjCqCsX7/+Pt+h4nn66acVQPntt9/0jj/66KNK48aNdV9//fXXBbZ7//33FUDZunWr7higqNVq3fcvz40bN/L9G+RZuHChAiiLFy/WOz5p0iTFyspK9zN6N29vb2XAgAHFfq13u/fnp7jfd0VRlNatWyudO3fWa/fll18qgHLq1ClFURQlPDxcMTMzU6ZMmaLXLjk5WfHw8FCGDRumO5b32otSmr8TGjZsqPTt2zff8evXryuAsmjRokLPNzc3V5577rl8x/ft26cAyqpVqwo939vbW3n66afzHd+1a5cCKAMHDtQ7Pm3aNAVQpk6dqnd88ODBipOT033vUVo/H6JoMsdLlJu4uDgWLFjA33//zfXr19Fqtbrnzp49y6BBgwy67sCBAzl8+HCpxKjVaklPT2fhwoXMnTsXyB0Ss7CwYNq0aezYsYNevXrp2he2wqo4q6/u1+bu4zVr1mT58uV6zw8dOpQOHTowd+5cxo4dm++v8eLYtWsXAKNHj9Y7PmrUKF599VXd1+np6ezYsYMXXngBGxsbvV6CRx99lKVLl3LgwAH69+/Pnj178PX1pVmzZnrXHDlyJFu2bMkXg6OjI4888ojesU2bNuHr60vLli317tW3b1/dcGX//v3ZtGkTKpWKp556Sq+dh4cHLVq00A1rNmjQAEdHR+bMmUN0dDQPP/xwvviKS6VSMXDgQL1j/v7+7Ny5U/f1zp07sbW15cknn9RrN3bsWObMmcOOHTv0FkU88sgjODo6ljiWe98v/v7+pKenExcXh7u7e4mvV1zF/b5D7nDclClTOH/+PI0bNwbghx9+oF27droVtlu2bCE7O5sxY8boXc/Kyopu3brpfk5LojR/J0DZvc+Le35h7l2N2LRpUwAGDBiQ7/j69etJSUmhRo0aD3RP8WAk8RLlQqvV0qdPH65fv878+fPx8/PD1tYWrVZLx44duX37tsHXdnJyQq1Wl0qczs7OXLx4kb59++od79+/P9OmTdOVj3B2dgbg1q1b+a4RHx+PSqXCwcGh0PsUdr6Tk1OhcZqbmzN8+HDmzp3LxYsXdb9sS+LWrVuYmZnpYslz7wqnW7dukZ2dzeeff87nn39e4LXy5undunULHx+ffM/fLxGoWbNmvmOxsbFcunRJNwx1v3vFxsaiKMp9r12vXj0A1Go1e/bs4Z133uGVV14hISGBmjVrMmHCBF577bX73qcgNjY2WFlZ6R2ztLTUG1a+desWHh4e+T5Q3dzcMDMzy/dvXtD3oDju/XfLmyD9IO+l4iju9x1yk/qZM2eyYsUK3n33Xc6cOcPhw4f1Fq7kDU22a9euwOuZmJR8Rkxp/0643/s0715leX5R7j3fwsKi0OPp6emSeBmZJF6iXISGhnLixAlWrFjB008/rTt+6dKlB772jz/+yDPPPFOstso9JSHu5e/vz4EDB+57Xt6HQP369bG2tubUqVP52p46dYoGDRrk+4C+W95f+6dOneLRRx/Nd35x6m3dG1NJOTs7k52dza1bt/Q+xGNiYvTaOTo6YmpqSmBgIC+++GKB18pLtpydnXUfpHe795p5Cvpr38XFBWtra77//vsCz3FxcdH9V6VS8e+//xa4KuvuY35+fqxZswZFUTh58iQrVqzgzTffxNraWtezWVqcnZ05ePAgiqLovb64uDiys7N18ecxRl2qB1GS77ujoyOPPfYYP/30E2+//TY//PADVlZWutWBedcD+OOPP/D29i6VGEvzd4Kfnx+rV68mOztbr2c5771f1HvVz8/vvr8ninO+qHok8RLlIu/D5d5f1MuWLcvXtqR/uZfmsMITTzzB8uXL+eeff2jVqpXu+ObNmwF0S7rNzMwYOHAga9euZfHixdjZ2QEQHh7Orl27ipzkXKtWLdq3b8/PP//MzJkzdcvRDxw4wPnz55k2bVqh52dlZfHrr7/i4uJCgwYNDHqtPXr0YPHixfzyyy9MnTpVd/ze2kQ2Njb06NGD48eP4+/vr/vLuSDdunXjww8/5MyZM3rDeSUpNhkQEMCiRYtwdnYusPfs7nbvvfceUVFRDBs2rFjXVqlUtGjRgo8//pgVK1Zw7NixYsdVXD179uS3335j/fr1PP7447rjP/30k+75opRX75UhSvp9f+aZZ/jtt9/YvHkzP//8M48//rheb3Dfvn0xMzPj8uXLPPHEE6USY2n+Tnj88cf55ptv+PPPPxk+fLju+I8//oinpycdOnQo8vxJkyZx8OBBXdvs7Gx+/vlnOnTogKenZ6nEKSoPSbxEuWjSpAn169dn7ty5KIqCk5MTf/31F9u2bcvXNq+2zKeffsrTTz+Nubk5jRs31iU393J2ds437GKoPn36MHDgQN58803dMOiRI0d44403CAgIoGvXrrq2b7zxBu3atSMgIIC5c+eSnp7OggULcHFxYcaMGXrXNTMzo1u3bnrVqt9//3169+7N0KFDmTRpEnFxccydOxdfX1+9v9ZffvllsrKy6NKlCx4eHkRERPD5558TEhLCDz/8UGgNoaJe68MPP8zs2bNJTU2lbdu2/Pfff6xcuTJf208//ZSuXbvy0EMP8cILL1C3bl2Sk5O5dOkSf/31l26O07Rp0/j+++/p378/b775Ju7u7qxatYpz584BxeudmzZtGn/++ScPP/ww06dPx9/fH61WS3h4OFu3bmXGjBl06NCBLl26MHHiRJ555hmOHDnCww8/jK2tLdHR0QQHB+Pn58cLL7zApk2b+PLLLxk8eDD16tVDURTWrl1LYmJisQvQlsSYMWP44osvePrpp7l69Sp+fn4EBwezaNEiHn30Ub05gvdjZ2eHt7c3GzZsoGfPnjg5OeHi4lKqFcLzrlXS3SWK+33P06dPH2rXrs2kSZOIiYnJ1xNVt25d3nzzTV599VWuXLlCv379cHR0JDY2lkOHDmFra6u3crY4SvN3Qv/+/enduzcvvPACSUlJNGjQgNWrVxMUFMTPP/+s9/4bP348P/74I5cvX9b13o0bN44vvviCoUOH8t577+Hm5saXX37J+fPn2b59e6nEWBYM/fmA3D8u9uzZozdn78033+TNN99kx44ddOvWDcgtIt2zZ08WLFjAggULSiPsysFYs/pF1VbQqsYzZ84ovXv3Vuzs7BRHR0dl6NChSnh4eIGrt+bNm6d4enoqJiYm+VbDlbW0tDRlzpw5ipeXl2JmZqbUqVNHmTdvnpKenp6v7ZEjR5SePXsqNjY2ir29vTJ48GDl0qVL+doBSrdu3fId37p1q9KxY0fFyspKcXJyUsaMGaPExsbqtfnuu++U9u3bK05OToqZmZni6Oio9O3bV9myZUuxXk9hq44SExOVcePGKQ4ODoqNjY3Su3dv5dy5cwX+m4SFhSnjxo1TatWqpZibmyuurq5K586dlbfffluvXWhoqNKrVy/daxo/frzy448/KoBy4sQJXbtu3bopzZs3LzCulJQU5bXXXlMaN26sWFhYKGq1WvHz81OmT5+uxMTE6LX9/vvvlQ4dOii2traKtbW1Ur9+fWXMmDHKkSNHFEVRlHPnzikjR45U6tevr1hbWytqtVpp3769smLFimJ9/+7+Ptra2uY7XtBKu1u3binPP/+8UrNmTcXMzEzx9vYu8GcIUF588cUC77d9+3alVatWiqWlpQLoVrbl3e/GjRt67QtbSVzQqjUXFxelY8eORb3s+/78FPV9v9srr7yiAIqXl5eSk5NT4H3Wr1+v9OjRQ7G3t1csLS0Vb29v5cknn1S2b9+ua1PcVY2lLTk5WZk6dari4eGhWFhYKP7+/gWuaM5b+Xrvv0FMTIwyZswYxcnJSbGyslI6duyobNu2rVj3LmpV4++//653PO/n4N5Vwff7ucm7R2n+fOStWC7o/nf/Ls97DQWt3q3KVIpSxAC3EKJSGzt2LLt37+bSpUuoVCqDe8gexMSJE1m9ejW3bt0qdKhSlK6cnBwURaFBgwb4+vqyadMmILcuW/PmzXX12ETFVbduXbp168Z3332HiYmJwXM6CyI/H8YhBVSFqAauXbuGubk5LVq0KPN7vfnmm3z77bfs3LmTjRs3MnHiRL799lumT58uSVc5a9OmDebm5ly7dk3v+K5du+jUqZN8qFYSP/30E+bm5npzMUuD/HwYh/R4CVHFXb16VVeCwdramubNm5fp/d59911WrFhBZGQk2dnZNGzYkGeffZaXXnqpQq7g02q1ejXlCmJInbSK4MyZM6SlpQHg4OBg8EIMYTynTp3SbTXl5uZGnTp1Su3a8vNhHJJ4CSGqtbFjx/Ljjz8W2kZ+TQohSoskXkKIau3uHsH7adu2bTlFI4So6iTxEkIIIYQoJzK5XgghhBCinFTOGaNVlFar5fr169jZ2VXISchCCCGEyE9RFJKTk/H09Cyy5IckXhXI9evX8fLyMnYYQgghhDBAREQEtWvXLrSNJF4VSN6WOBEREdjb2xs5GiGEEEIUR1JSEl5eXvfd2u5uknhVIHnDi/b29pJ4CSGEEJVMcaYJyeR6IYQQQohyIomXEEIIIUQ5kcRLCCGEEKKcSOIlhBBCCFFOJPESQgghhCgnkngJIYQQQpQTSbyEEEIIIcpJpU683n33Xdq1a4ednR1ubm4MHjyY8+fP67VRFIXXX38dT09PrK2t6d69O6dPn9Zrk5GRwZQpU3BxccHW1pZBgwYRGRmp1yYhIYHAwEDUajVqtZrAwEASExP12oSHhzNw4EBsbW1xcXFh6tSpZGZmlslrF0IIIUTlU6kTrz179vDiiy9y4MABtm3bRnZ2Nn369CE1NVXXZvHixSxZsoSlS5dy+PBhPDw86N27N8nJybo206ZNY926daxZs4bg4GBSUlIICAggJydH12bUqFGEhIQQFBREUFAQISEhBAYG6p7PyclhwIABpKamEhwczJo1a/jzzz+ZMWNG+XwzhBBCCFHxKVVIXFycAih79uxRFEVRtFqt4uHhobz33nu6Nunp6YparVa+/vprRVEUJTExUTE3N1fWrFmjaxMVFaWYmJgoQUFBiqIoypkzZxRAOXDggK7N/v37FUA5d+6coiiKsnnzZsXExESJiorStVm9erViaWmpaDSaYsWv0WgUoNjthRBCCGF8Jfn8rtQ9XvfSaDQAODk5ARAWFkZMTAx9+vTRtbG0tKRbt27s27cPgKNHj5KVlaXXxtPTE19fX12b/fv3o1ar6dChg65Nx44dUavVem18fX3x9PTUtenbty8ZGRkcPXq0jF6xEEIIISqTKrNXo6IovPzyy3Tt2hVfX18AYmJiAHB3d9dr6+7uzrVr13RtLCwscHR0zNcm7/yYmBjc3Nzy3dPNzU2vzb33cXR0xMLCQtfmXhkZGWRkZOi+TkpKKvbrFUIIIUTlU2V6vCZPnszJkydZvXp1vufu3bRSUZQiN7K8t01B7Q1pc7d3331XN1lfrVbj5eVVaExCCFGRnI9J5lZKRtENhRA6VSLxmjJlChs3bmTXrl3Url1bd9zDwwMgX49TXFycrnfKw8ODzMxMEhISCm0TGxub7743btzQa3PvfRISEsjKysrXE5Zn3rx5aDQa3SMiIqIkL1sIIYxq9h8naPP2draeLrhXXwiRX6VOvBRFYfLkyaxdu5adO3fi4+Oj97yPjw8eHh5s27ZNdywzM5M9e/bQuXNnANq0aYO5ublem+joaEJDQ3VtOnXqhEaj4dChQ7o2Bw8eRKPR6LUJDQ0lOjpa12br1q1YWlrSpk2bAuO3tLTE3t5e7yGEEJVBSkY2oddzp0f41VYbORohKo9KPcfrxRdfZNWqVWzYsAE7Oztdj5Narcba2hqVSsW0adNYtGgRDRs2pGHDhixatAgbGxtGjRqlazt+/HhmzJiBs7MzTk5OzJw5Ez8/P3r16gVA06ZN6devHxMmTGDZsmUATJw4kYCAABo3bgxAnz59aNasGYGBgXzwwQfEx8czc+ZMJkyYIAmVEKLKOXI1nhytQh0nG2qqrY0djhCVRqVOvL766isAunfvrnf8hx9+YOzYsQDMnj2b27dvM2nSJBISEujQoQNbt27Fzs5O1/7jjz/GzMyMYcOGcfv2bXr27MmKFSswNTXVtfnll1+YOnWqbvXjoEGDWLp0qe55U1NT/v77byZNmkSXLl2wtrZm1KhRfPjhh2X06oUQwngOXIkHoIOPk5EjEaJyUSmKohg7CJErKSkJtVqNRqORXjIhRIX2+Jf/cTw8kQ+HtuDJNrWLPkGIKqwkn9+Veo6XEEKI8peWmc2pyNy6idLjJUTJSOIlhBCiRI5eSyBbq1DLwRovJxtjhyNEpSKJlxBCiBI5mDe/q570dglRUpJ4CSGEKJEDV24B0NHH2ciRCFH5SOIlhBCi2G5n5nAiMhGQHi8hDCGJlxBCiGI7Hp5AVo6Ch70VdWR+lxAlJomXEEKIYjsQlju/q2M9pyL3vBVC5CeJlxBCiGI7eGd+V4d6Mr9LCENI4iWEEKJY0rNyOB6RCEj9LiEMJYmXEEKIYgmJSCQzW4urnSU+LrbGDkeISkkSLyGEEMVy8K79GWV+lxCGkcRLCCFEsRwMk/ldQjwoSbyEEEIUKSM7h2PhCQB0kvpdQhhMEi8hhBBFOhmpIT1Li0sNC+q71jB2OEJUWpJ4CSGEKFJeGYn2Mr9LiAciiZcQQogiHQzLm1gv87uEeBCSeAkhhChUVo6Wo9dy53fJ/oxCPBhJvIQQQhTqVJSGtMwcHGzMaeRmZ+xwhKjUJPESQghRqLvrd5mYyPwuIR6EJF5CCCEKdSBvf0aZ3yXEA5PESwghxH1l52g5cvVOj5fM7xLigUniJYQQ4r5OX08iNTMHeyszmnjYGzscISo9SbyEEELcV942Qe19nDCV+V1CPDBJvIQQQtxX3sT6jrI/oxClQhIvIYQQBcrRKhySwqlClCpJvIQQQhTobHQSyRnZ2Fma0cxT5ncJURok8RJCCFGgvDISbes6yvwuIUqJJF5CCCEKpNufUeZ3CVFqJPESQgiRj1ZvfpfU7xKitEjiJYQQIp9zMclobmdha2GKby21scMhO0dr7BCEKBWSeAkhhMgnr35Xm7pOmJsa96MiNimdgUv/Y0NIlFHjEKI0SOIlhBAin7s3xja2Xw9HcDY6iZm/nyD44k1jhyPEA5HESwghhB5FUTh0Na9wqvETr8k9GhDgX5OsHIXnVh4hNEpj7JCEMJgkXkIIIfRcjEshPjUTK3MT/Go5GDscTExUfDSsBZ3qOZOamcPYHw4TfivN2GEJYRBJvIQQQujJq9/VxtsRC7OK8TFhaWbKsjFtaFrTnpspGYz5/iC3UjKMHZYQJVYx3lFCCCEqDN3+jBVsmyB7K3N+fKYdtRysuXorjXErDpOakW3ssIQokUqfeO3du5eBAwfi6emJSqVi/fr1es+npKQwefJkateujbW1NU2bNuWrr77Sa5ORkcGUKVNwcXHB1taWQYMGERkZqdcmISGBwMBA1Go1arWawMBAEhMT9dqEh4czcOBAbG1tcXFxYerUqWRmZpbFyxZCiDKhKIpuRWNFLJzqZm/FT+Pb42hjzolIDS+uOkaWlJoQlUilT7xSU1Np0aIFS5cuLfD56dOnExQUxM8//8zZs2eZPn06U6ZMYcOGDbo206ZNY926daxZs4bg4GBSUlIICAggJydH12bUqFGEhIQQFBREUFAQISEhBAYG6p7PyclhwIABpKamEhwczJo1a/jzzz+ZMWNG2b14IYQoZZdvpHIzJRNLMxNaeBm/fldB6rvW4Lux7bAyN2H3+RvMW3sKRVGMHZYQxaNUIYCybt06vWPNmzdX3nzzTb1jrVu3Vl577TVFURQlMTFRMTc3V9asWaN7PioqSjExMVGCgoIURVGUM2fOKIBy4MABXZv9+/crgHLu3DlFURRl8+bNiomJiRIVFaVrs3r1asXS0lLRaDTFil+j0ShAsdsLIURp+/nAVcV7ziZl+LJ9xg6lSNvPxCj15v2teM/ZpCwOOmvscEQ1VpLP70rf41WUrl27snHjRqKiolAUhV27dnHhwgX69u0LwNGjR8nKyqJPnz66czw9PfH19WXfvn0A7N+/H7VaTYcOHXRtOnbsiFqt1mvj6+uLp6enrk3fvn3JyMjg6NGj5fFShRDigR3Q1e+qeMOM9+rZ1J13H/cD4Itdl/lx31XjBiREMZgZO4Cy9tlnnzFhwgRq166NmZkZJiYmfPvtt3Tt2hWAmJgYLCwscHR01DvP3d2dmJgYXRs3N7d813Zzc9Nr4+7urve8o6MjFhYWujb3ysjIICPj/6tykpKSDH+hQgjxgBRF4eCdFY0dK+D8roIMa+dFbFI6H227wOt/ncbVzpJH/WoaOywh7qvK93h99tlnHDhwgI0bN3L06FE++ugjJk2axPbt2ws9T1EUVCqV7uu7//9B2tzt3Xff1U3WV6vVeHl5FfdlCSFEqbt6K4245AwsTE1oVcfB2OEU2+RHGvBUxzooCkz7NUSXPApREVXpxOv27du88sorLFmyhIEDB+Lv78/kyZMZPnw4H374IQAeHh5kZmaSkJCgd25cXJyuB8vDw4PY2Nh8179x44Zem3t7thISEsjKysrXE5Zn3rx5aDQa3SMiIuKBX7MQQhgqL2Fp6eWAlbmpkaMpPpVKxRuDfOnb3J3MbC3P/nSEczEygiAqpiqdeGVlZZGVlYWJif7LNDU1RavNXX7cpk0bzM3N2bZtm+756OhoQkND6dy5MwCdOnVCo9Fw6NAhXZuDBw+i0Wj02oSGhhIdHa1rs3XrViwtLWnTpk2B8VlaWmJvb6/3EEIIYzkYdmd+VwXYJqikTE1UfDqiFe3qOpKcns3Y7w9zPfG2scMSIp9KP8crJSWFS5cu6b4OCwsjJCQEJycn6tSpQ7du3Zg1axbW1tZ4e3uzZ88efvrpJ5YsWQKAWq1m/PjxzJgxA2dnZ5ycnJg5cyZ+fn706tULgKZNm9KvXz8mTJjAsmXLAJg4cSIBAQE0btwYgD59+tCsWTMCAwP54IMPiI+PZ+bMmUyYMEESKiFEhacoiq5ifWWYWF8QK3NTvh3TjqHL9nEhNoUx3x/ij+c74WBjYezQhPi/B11CmZycrGg0Gr1Hedq1a5cC5Hs8/fTTiqIoSnR0tDJ27FjF09NTsbKyUho3bqx89NFHilar1V3j9u3byuTJkxUnJyfF2tpaCQgIUMLDw/Xuc+vWLWX06NGKnZ2dYmdnp4wePVpJSEjQa3Pt2jVlwIABirW1teLk5KRMnjxZSU9PL/ZrkXISQghjuXYzVfGes0mpP+9vJTUjy9jhPJCohDSlwzvbFe85m5ShX+9TcnK0RZ8kxAMoyee3SlFKXnUuLCyMyZMns3v3btLT0+9O4lCpVHqFR0XxJSUloVar0Wg00ksmhChXvx2JYPYfJ2nj7cifL3Q2djgP7EJsMkO+3EdKRjaLn/RnWFtZvCTKTkk+vw0aahw9ejQA33//Pe7u7vddtSeEEKJyOKir31X55ncVpJG7HS/1bMg7m8/ywZbzPOpXkxqWlX52jagCDPopPHnyJEePHtXNbxJCCFG5VeT9GQ31dOe6rDoUTtjNVL7YdYk5/ZoYOyQhDFvV2K5dOyl9IIQQVURU4m0iE25jaqKijbdj0SdUEhZmJrz6aFMAvvs3jPBbaUaOSAgDe7y+/fZbnn/+eaKiovD19cXc3FzveX9//1IJTgghRNnLq9/lW0td5YbjejZ146GGLvx78SaLNp/l68CCy/sIUV4MeofduHGDy5cv88wzz+iOqVQqmVwvhBCVUN78ro5VZH7X3VQqFfMDmtH/038JOh3D/su36FS/6gynisrHoKHGcePG0apVK/bv38+VK1cICwvT+68QQojK4//zu6pe4gW5E+1Hd6gDwJubzpCjLfFifiFKjUE9XteuXWPjxo00aNCgtOMRQghRjmKT0rl6Kw2VCtp4V83EC2B6r0ZsCLnO2egkfj0cwag7iZgQ5c2gHq9HHnmEEydOlHYsQgghylneNkHNatqjtjYvonXl5WhrwbReDQH4aOt5ktKzjByRqK4M6vEaOHAg06dP59SpU/j5+eWbXD9o0KBSCU4IIUTZOljJtwkqiac6evPLwXAuxaXw+Y6LvDqgmbFDEtWQQZXr7910Wu+CMrneYFK5XghR3nov2cPFuBS+fqoN/Xw9jB1Omdt9Po6xPxzG3FTF1und8HGxNXZIogooyee3QUONWq32vg9JuoQQonK4lZLBxbgUANpXwRWNBene2I0ejV3JylF45+8zxg5HVEMGJV5CCCEqv0N35nc1drfDydbCyNGUn9cCmmFmomL72Tj+vXjD2OGIasbgSnmpqans2bOH8PBwMjMz9Z6bOnXqAwcmhBCibOVNrK8uvV156rvWYEynunz/XxhvbTrD5qkPYWYq/RCifBiUeB0/fpxHH32UtLQ0UlNTcXJy4ubNm9jY2ODm5iaJlxBCVAJ5iVdVrd9VmJd6NmTd8UguxKaw6lA4YzrVNXZIopowKMWfPn06AwcOJD4+Hmtraw4cOMC1a9do06YNH374YWnHKIQQopRp0rI4F5MEVL8eLwC1jTkv924EwJJtF0hMyyziDCFKh0GJV0hICDNmzMDU1BRTU1MyMjLw8vJi8eLFvPLKK6UdoxBCiFJ2+Go8igL1XG1xs7MydjhGMbJ9HRq725GYlsUn2y8aOxxRTRiUeJmbm6NSqQBwd3cnPDwcALVarft/IYQQFZdum6Bq2NuVx8zUhPkBubW8Vh64xsXYZCNHJKoDgxKvVq1aceTIEQB69OjBggUL+OWXX5g2bRp+fn6lGqAQQojSp5vfVQ0Kpxama0MXejV1J0er8NbfZzGgtKUQJWJQ4rVo0SJq1qwJwFtvvYWzszMvvPACcXFxLF++vFQDFEIIUbqS07MIjdIA1XN+171eHdAUc1MVey/cYNf5OGOHI6o4g1Y1tm3bVvf/rq6ubN68ucB2//33H23btsXS0tKw6IQQQpS6o9cS0Crg5WSNp4O1scMxOh8XW57p4sPyvVd4e9NZujZwxcJMykuIsmFwHa/i6N+/PyEhITz55JMlOk+lUrFx40Zq1apVRpEJIUT1JcOM+U1+pAF/Ho3kys1Uftp/lWcfqmfskEQVVaaJV95Yed4qyBo1ahTrnPfee4+MjIyyDE0IIaqt/2+MLcOMeeytzJnZtzHz1p7i0x0XGdyqFi41ZLRGlL4yTbzuNmvWLNzc3IrV9qOPPirjaIQQonq6nZnDycjc+V0d60mP192GtfXi5wPXOH09iYUbTvPF6NbGDklUQeUyiB0WFoarq2ux2585cwZvb+8yjEgIIaqnY+EJZGsVaqqtqO0o87vuZmqi4v0n/DE1UfH3qWg2nbxu7JBEFVQuiZe3t7eu7ldxeHl5YWpqWoYRCSFE9XT3MGNJfi9XF7611LzYowEA89eHciNZpr2I0lWmiVdBb+qcnBy9rw8ePMjevXvJysoqy1CEEEJw9/6MMsx4P5N7NKBpTXsS0rKYvz5UanuJUlWmidfdP6zR0dF07doVS0tLunXrRkJCAgEBAXTq1Inu3bvj6+tLdHR0WYYjhBDVWnpWDscjEgGp31UYCzMTPhzqj5mJiqDTMfx1Uj6bROkp08QrOTmZevVyl+TOmTMHRVFYt24dNWvWJCAggKSkJCIiIrh27Rru7u688847ZRmOEEJUayciEsnM1uJSw5J6LrbGDqdCa+6pZvIjuUOOCzaEEpecbuSIRFVRosTrwoULer1YwcHBDB48mObNm9OrVy82bNhw33O3b9/ORx99xMCBA/nyyy/Zv38/CxcupFatWnh5efHGG2/wzz//GP5KhBBCFOqQbphR5ncVx4s9GtCspj2JaVm8uk6GHEXpKFHi1bRpU27cuAHA7t276datG1qtltGjR+Pg4MCQIUPYsmVLgecmJCToCqI6OTlhY2Ojt3Kxfv36MtQohBBlKG9+V0cZZiwWc1MTPhrWAnNTFdvOxLIhRFY5igdXosTr7mz/7bff5vnnn2fjxo288sor/PHHH8yePZtFixYVeK6bm5teYjV58mScnP7/5k9ISMDWVrq+hRCiLGTlaDl6LQGA9lKxvtia1rRn6iMNAVi48TRxSTLkKB6MwXO8zpw5w5gxY/SOBQYGcvr06QLbt2zZkv379+u+fu+99/QSr+DgYPz9/Q0NRwghRCFORmq4nZWDo405Dd2K3kVE/N/z3evjW8seze0sXll3SoYcxQMpceX65ORkrKyssLa2zrf5tYWFBbdv3y7wvMLmfwG0b9+ebt26lTQcIYQQxZA3v6u9jxMmJjK/qyTMTU34aGhLAj7/l+1n41h3PIohrWsbOyxRSZW4x6tRo0Y4OjoSFhbG0aNH9Z47ffq0wRtbt2vXDl9fX4POFUIIUbiDYbmFU2WY0TCNPeyY1qsRAK9vPE2sDDkKA5Wox2vXrl16X9esWVPv66tXrzJhwoQirxMVFcV///1HXFwcWq1W77mpU6eWJCQhhBBFyM7RcuRq7vwu2RjbcM89XI8tp2M4Galh3tpTfPd0W1kdKkpMpZTzYPUPP/zA888/j4WFBc7Ozno/tCqViitXrpRnOBVKUlISarUajUaDvb29scMRQlQRpyI1DFwajJ2VGSEL+mAqQ40GuxibzIDPgsnM0fLBk/4Mbetl7JBEBVCSz+8Sz/G625EjRzh79iwqlYomTZrQtm3bIs9ZsGABCxYsYN68eZiYlMtWkUIIUa3lDTO2q+skSdcDauhux/TejXg/6BxvbjpD14Yu1FTLZuOi+AzKfCIjI3nooYdo3749L730ElOnTqV9+/Z07dqViIiIQs9NS0tjxIgRpZZ07d27l4EDB+Lp6YlKpWL9+vX52pw9e5ZBgwahVquxs7OjY8eOhIeH657PyMhgypQpuLi4YGtry6BBg4iMjNS7RkJCAoGBgajVatRqNYGBgSQmJuq1CQ8PZ+DAgdja2uLi4sLUqVPJzMwsldcphBCGOnDlTuFUGWYsFRMe8qGllwPJ6dnM/VNWOYqSMSj7GTduHFlZWZw9e5b4+Hji4+M5e/YsiqIwfvz4Qs8dP348v//+u0HBFiQ1NZUWLVqwdOnSAp+/fPkyXbt2pUmTJuzevZsTJ04wf/58rKysdG2mTZvGunXrWLNmDcHBwaSkpBAQEKC3ofeoUaMICQkhKCiIoKAgQkJCCAwM1D2fk5PDgAEDSE1NJTg4mDVr1vDnn38yY8aMUnutQghRUlqtwuGrsjF2aTIzNeHDoS2wMDNhz4Ub/H4ksuiThLjDoDle1tbW7Nu3j1atWukdP3bsGF26dLlvSQnITVACAgK4ffs2fn5+mJub6z2/ZMmSkoajo1KpWLduHYMHD9YdGzFiBObm5qxcubLAczQaDa6urqxcuZLhw4cDcP36dby8vNi8eTN9+/bl7NmzNGvWjAMHDtChQwcADhw4QKdOnTh37hyNGzfmn3/+ISAggIiICDw9PQFYs2YNY8eOJS4urlhztmSOlxCitJ2NTqL/p/9iY2HKyYV9MDOVKR6lZfneyyzafA47SzO2TH8YTwcZcqyuSvL5bdA7sE6dOmRlZeU7np2dXWQ5iUWLFrFlyxZiY2M5deoUx48f1z1CQkIMCee+tFotf//9N40aNaJv3764ubnRoUMHveHIo0ePkpWVRZ8+fXTHPD098fX1Zd++fQDs378ftVqtS7oAOnbsiFqt1mvj6+urS7oA+vbtS0ZGRr6yG3kyMjJISkrSewghRGk6eCV3flcbb0dJukrZ+K71aF3HgeSMbOb8eVKGHEWxGPQuXLx4MVOmTOHIkSO6H7QjR47w0ksv8eGHHxZ67pIlS/j+++85e/Ysu3fvZteuXbrHzp07DQnnvuLi4khJSeG9996jX79+bN26lccff5whQ4awZ88eAGJiYrCwsMDR0VHvXHd3d2JiYnRt3Nzc8l3fzc1Nr427u7ve846OjlhYWOja3Ovdd9/VzRlTq9V4ecnqGCFE6Tp0Z5ixowwzljpTExUfDG2BpZkJ/168ya+HC5/jLAQYmHiNHTuWkJAQOnTogJWVFZaWlnTo0IFjx44xbtw4nJycdI97WVpa0qVLlwcOvDjyaoQ99thjTJ8+nZYtWzJ37lwCAgL4+uuvCz1XUZR8pS5Ko83d5s2bh0aj0T2KWpgghBAloSiKrmK9TKwvG/VdazCrb2MA3tl8VvZyFEUyqJzEJ598YvANX3rpJT7//HM+++wzg69RXC4uLpiZmdGsWTO9402bNiU4OBgADw8PMjMzSUhI0Ov1iouLo3Pnzro2sbGx+a5/48YNXS+Xh4cHBw8e1Hs+ISGBrKysfD1heSwtLfNtuySEEKXl8o0UbqZkYmlmgl9ttbHDqbKe6eLDxhPXORmp4fW/TvPl6DbGDklUYAYlXk8//bTBNzx06BA7d+5k06ZNNG/ePN/k+rVr1xp87XtZWFjQrl07zp8/r3f8woULeHt7A9CmTRvMzc3Ztm0bw4YNAyA6OprQ0FAWL14MQKdOndBoNBw6dIj27dsDcPDgQTQajS4569SpE++88w7R0dG6iv5bt27F0tKSNm3kTSiEKH95ZSRa13HE0szUyNFUXaYmKt4b4s/ApcFsPhXDtjOx9G5W8B/cQjxQAVVDODg4MGTIkFK7XkpKCpcuXdJ9HRYWRkhICE5OTtSpU4dZs2YxfPhwHn74YXr06EFQUBB//fUXu3fvBkCtVjN+/HhmzJiBs7MzTk5OzJw5Ez8/P3r16gXk9pD169ePCRMmsGzZMgAmTpxIQEAAjRvndjH36dOHZs2aERgYyAcffEB8fDwzZ85kwoQJskJRCGEUumHGejLMWNaaedoz4aF6fL3nMvPXh9KxnhN2VuZFnyiqH6WEvvjiC6Vnz57K0KFDlR07dug9d+PGDcXHx6fA85KTk0t6q2LZtWuXAuR7PP3007o23333ndKgQQPFyspKadGihbJ+/Xq9a9y+fVuZPHmy4uTkpFhbWysBAQFKeHi4Xptbt24po0ePVuzs7BQ7Oztl9OjRSkJCgl6ba9euKQMGDFCsra0VJycnZfLkyUp6enqxX4tGo1EARaPRlPj7IIQQd9NqtUr7d7Yp3nM2Kfsu3TR2ONXC7cxs5eHFOxXvOZuU+etPGTscUY5K8vldojpen332GfPmzeOZZ55Bo9Hw+++/s3DhQubNmwdAbGwsnp6eeoVH81hZWdGjRw8GDRrEY489pld2QeSSOl5CiNJy9WYq3T/cjYWpCSdf74OVuQw1lof/Lt1k9LcHUangj+c708bbseiTRKVXZnW8li1bxjfffMPSpUtZuXIlu3bt4pNPPmHBggVFnnv+/HkeffRR/vzzT3x8fGjXrh1vvfUWJ0+eLEkIQgghiiFvmLGFl1qSrnLUpYELT7apjaLAvLUnyczWGjskUcGUKPEKCwvTTSaH3AnlO3fuZPny5bper/vx9vZmypQpbN++nbi4OF5++WVOnz7Nww8/jI+PDy+99BI7d+4ssLdMCCFEyRy4szF2Bx+p31XeXn20Kc62FlyITeHrPZeNHY6oYEqUeLm4uOSrNdW8eXN27tzJDz/8wKxZs4p1HbVazciRI1mzZg03b95k2bJlaLVannnmGVxdXfnll19KEpYQQpRYfGom7/1zjvbvbGfBhlBSM7KNHVKpOnhnRWN7qd9V7hxtLVgwMLeM0dKdl7gUl2LkiERFUqI5XqNGjcLNza3AOl6nT5+mR48e3Lp164F6rY4dO0ZOTg7t2rUz+BqVlczxEqLsadKy+Db4Ct8Hh5Ga+f/fVXWcbPjgSf8qsZF0ZEIaXd/fhamJipML+2BrWe4L2Ks9RVF4ZsVhdp+/Qfu6TqyZ2BETk4KLaYvKrySf3yV6N86dO/e++w42b96cXbt28ccffxR6jfvN6VKpVFhZWdG8eXMpKiqEKHVJ6Vl8HxzGd/+GkXynd6u5pz1PtqnNt/+GER6fxohvDjCuiw+z+jau1POi8uZ3+dVSS9JlJCqVircH+9Ln470cuhrPmsMRjOpQx9hhiQqgRD1epcHExOS+W+gAmJubM3z4cJYtW4aVlVU5RmZ80uMlROlLycjmx31XWb73CprbWQA08bBjWq9G9G3ujkqlIjk9i7c3neXXI7lTKeq52vLR0Ba0qlM5V6TN+eMkvx6J4LmH6zHv0abGDqda+y44jLc2ncHOyowdL3fDzb56fa5VFyX5/DY48UpPT+fkyZPExcXp9kSE3Cx/4MCB9z1vw4YNzJkzh1mzZtG+fXsUReHw4cN89NFHLFy4kOzsbObOncvw4cOL3HC7qpHES4jSk5aZzU/7r7Fsz2US0nITrgZuNZjeqxH9fT0KHPbZeS6WuX+eIi45AxMVPNetPtN6Nax0Vd+7f7CLq7fS+H5sWx5pIhXUjSlHqzDky/84Eamhv68HXz0lO5lURWWeeAUFBTFmzBhu3ryZ/4IqVaFzvNq3b89bb71F37599Y5v2bKF+fPnc+jQIdavX8+MGTO4fLl6rQaRxEuIB5eelcPPB67x9Z7L3EzJBKCeiy0v9WpIgL8npkXMs0lMy+T1jadZH3IdgMbudnw0rAW+tSrHXoexSel0WLQDExWELOyDvVRPN7oz15MYuDSYHK3CssA29G3uYeyQRCkrszpeeSZPnszQoUOJjo5Gq9XqPYqaWH/q1CndPol38/b25tSpUwC0bNmS6OhoQ0ITQlRTSelZ/LjvKg8v3sXbf5/lZkomdZxs+HBoC7ZOf5jHWtYqMukCcLCx4JMRrfj6qTY421pwPjaZwV/8xyfbL5CVU/FrMq0/HgXkbmEjSVfF0MzTnokP1wNgwYZQktKzjByRMCaDZl3m1eFydy95F3aTJk147733WL58ORYWFgBkZWXx3nvv0aRJEwCioqIMurYQonpQFIXIhNscuRbPkasJHL2WwPnYZPL672s5WDO1ZwOGtK6NualBf1/Sz9eDdnUdeW19KP+ExvDJ9otsPxvLR0Nb0tjDrhRfTek5ei2eD7acB2BEO5nIXZG81LMh/5yK5uqtNBYHnePtwX7GDkkYiUGJ15NPPsnu3bupX79+ic/94osvGDRoELVr18bf3x+VSsXJkyfJyclh06ZNAFy5coVJkyYZEpoQogrKytFy5noSR64lcPROshWXnJGvXT0XW8Z19WFYWy8szAxLuO7mXMOSL0e35q+T0SzYEEpoVBIDPw9mWu+GTHyoHmYGJnVl4WZKBpN+OUa2ViHAvyajZQVdhWJlbsqiIX6M+uYgPx8IZ3DLWrStKzXWqiOD5nilpaUxdOhQXF1d8fPzw9xcvzt76tSphZ6fkpLCzz//zIULF1AUhSZNmjBq1Cjs7CrmX5HlReZ4iepMURQysrWkZmSTmpHD5ZspHL2awJFr8ZyI0HA7S38ag7mpiuaeatp6O9K2riOtvR1xsyu7FWNxSenMW3uKHefiAHi4kSs/jG1XrOHLspadoyXwu0Psv3KLBm412PBiFykjUUHN/uMEvx2JpIFbDf6e2rXSLdwQBSvzyfXffvstzz//PNbW1jg7O+uVh1CpVFy5cqXkUQtJvESVo9UqbDxxnUtxKaRkZOcmVZnZpGTkkJKeRWpGTu7xzNznsnLu/+tIbW1OG29H2ng70tbbkRZeDuVea0tRFP44GsmCDae5nZXDrL6NebFHg3KNoSDvB53jq92XsbEwZePkLjRwq95/xFZkiWmZ9Fqyh5spmUzr1ZBpvRoZOyRRCso88fLw8GDq1KnMnTsXE5OSd7VfuHCB3bt35ytFARRrw+2qShIvUZXczsxh+q8hBJ2OKfG5NhamuNtb0bpObm9WW29H6rvWqDCVv38/EsGsP05iZqJi7aTO+Nd2MFosW0/HMHFlbmHrz0e2YmALT6PFIornrxPXmbL6OBamJmx+qaskylVAmSdeTk5OHD582KA5Xt988w0vvPACLi4ueHh45OstO3bsWImvWVVI4iWqirikdJ796QgnIzVYmJrwRJvaONqYY2tpRo07D1vdf02xs8r92tbSDFsLswoxfFcYRVF4cdUxNp+KoZ6LLZumdsXGovyH9q7eTGXg0mCS07N5pktdFg5sXu4xiJJTFIXxPx5h57k4ujVy5cdx7Y0dknhAZZ54TZ8+HVdXV1555ZUSB+ft7c2kSZOYM2dOic+t6iTxElXBmetJPPvjYa5r0nG0MWdZYNsquVFzYlom/T75l5ikdEZ1qMOix8t3ldrtzBwe//I/zsUk09bbkdUTOxq8glOUv6s3U+n+4W5UKjg4r6dUtK/kymyvxjw5OTksXryYLVu24O/vn29y/ZIlS+57bkJCAkOHDjXktkKICm7nuVimrDpOamYO9Vxs+X5sO+q62Bo7rDLhYGPBR8NaMPrbg6w6GE6Pxm70blY+ZXAUReHV9ac4F5OMSw0Llo5qLUlXJVPXxZY23o4cvZbAXyejGd/Vx9ghiXJi0Dv11KlTtGrVChMTE0JDQzl+/LjuERISUui5Q4cOZevWrYbcVghRga34L4xnfzxCamYOneo5s25SlyqbdOXp0sCFCQ/lfmDO+fMkccnp5XLf1YciWHssChMVfDayFR5q6S2pjB5rmTsfb2NIlJEjEeXJoB6vXbt2GXzDBg0aMH/+fA4cOGBQKQohRMWSnaPlzU1n+Gn/NQCGt/XircG+pVJHqzKY2bcxwZducTY6iVm/n2TFM+305q6WthMRiby+8TQAs/s1oXN9lzK7lyhbj/rV5I2/znAiUkPYzVR8qvgfKiKXwZtk54mIiEClUlG7du1itffxuX93anUvRSFzvERlk5yexeRVx9lz4QYqFczp14TnHq5XpolHRXQhNpmBnweTka3ljUHNebpz3TK5T0JqJgGfBxOVeJs+zdxZFtim2n2vq5qnvz/Engs3mN6rES/1amjscISBynyvxuzsbObPn49araZu3bp4e3ujVqt57bXXyMoqfA+qsLCw+z6qc9IlRGUTmZDGk1/tZ8+FG1iZm/DV6DY8361+tUwEGrnbMa9/7pZnizaf5WJscqnfI0er8NKvIUQl3qausw0fDmtRLb/XVU3ecOOGE1E8YD+IqCQM3iR7+fLlLF68WDe3a/HixXz33XdMmTKltGMUQlQwx8MTGPzFf5yPTcbNzpLfnutEP18PY4dlVE93rku3Rq5kZGuZuiaEjOycok8qgc93XmRvXpL7VBvZALuK6NPcA0szE67cSOX09SRjhyPKgUGJ1+rVq1mxYgXPPfcc/v7++Pv789xzz/H999+zevXqfO1ffvllUlNTi339efPmER8fb0hoQogytunkdUYsP8DNlEya1rRn/YtdjFpAtKJQqVR8MNQfJ1sLzkYn8dHWC6V27d3n4/h0x0UAFj3uR9OaMhWhqqhhaUavO6thN8gk+2rBoMTLysqKunXr5jtet25dLCws8h3/9NNPSUtLK/b1v/jiCxITEw0JTQhRRhRF4Ytdl5i86jgZ2VoeaeLG7893wtPB2tihVRhudla8/4Q/AN/8e4V9l24+8DUj4tOY9msIigKjO9RhSOvizacVlcdjd3Yb2HjiOjlaGW6s6gxKvF588UXeeustMjIydMcyMjJ45513mDx5cr72iqLQqFEjnJycivUoSe+YEKJ8/HzgGh9sOQ/AuC4+fDOmLTVkI+Z8ejdzZ2T7OigKvPzbCRLTMg2+VnpWDpN+OUZiWhYtaqtZMLBZKUYqKopujV2xtzIjNimDQ2Ey2lPVGfRb8/jx4+zYsYPatWvTokULAE6cOEFmZiY9e/ZkyJAhurZr167lhx9+KPE93N3LpxChEKJo6Vk5fL7zEgAzejdiSk9ZfVWY+QFNOXjlFldupvLqulCWjmpVoonwEfFprD0WxdrjkVy7lYajjTlfPtUGS7Py3RRclA9LM1Me9avJmsMRbDwRRaf6zsYOSZQhgxIvBwcHnnjiCb1jXl5e923/9NNPG3IbIUQF8duRCOKSM/BUWzGxWz1jh1Ph2ViY8cmIlgz5ch9/n4qmxzE3nmxT+BBhUnoWm09Gs/ZYFIeu/r/Xw87SjM9HtqaWDOlWaYNaerLmcASbT8Xw+qDmkmRXYQYlXsXtwfrvv//IyMjA0tLSkNsIISqAjOwcvtp9GYAXuteXD4Ri8q/twPTejfhgy3kWbgilfV0n6jjb6LXJztHy76WbrD0WxdbTMWRkawFQqaBrAxeGtK5F3+YeRtmAW5SvDj7OuNtbEpuUwd4LN8tt+ylR/sr03dy/f39CQkKoV0/+QhaisvrjaCTRmnTc7S0Z2vb+Pdsiv+e71WfP+RscuhrPtF+P89tznTAzNeHM9STWHotkfch1bqb8f65sA7caPNG6NoNbeVJTLT1c1YmpiYqB/p58GxzGhpAoSbyqsDJNvKQYnBCVW1aOli935fZ2Pd+tPlbm0ttVEqYmKpYMb0H/T/7lWHgik1cd5+qtVM7F/L/AqpOtBYNaePJE69r41rKXoqjV2GMta/FtcBjbz8aSkpEti1eqKPlXFULc17pjUUQl3salhiUj29cxdjiVUm1HG94a7Mu0X0MIOh0DgIWpCb2auTGkVW26NXbF3LR67GspCudby556LrZcuZnKtjMxPN5KSodUReWaeGVnZ2NlZUVISAi+vr7leWshRAll52hZuit3JePz3epJb9cDGNyqFhfjkgmJSKS/b00C/GviYJO/5qGo3lQqFYNaevLJ9otsCLkuiVcVVa6Jl5mZGd7e3uTklO5WGkKI0rch5Drh8Wk421owqoP0dj2oWX2bGDsEUQkMapGbeP178Sa3UjJwriGL06qaMu3fLmiuwmuvvSZbAglRweVoFV1v14SH68mqOiHKST3XGvjVUpOjVdh8KtrY4YgyUOzfphs3bqR///6Ymxd/Y9aCJtd/9tlnXLp0CU9PT7y9vbG1tdV7/tixY8W+vhCibGw6eZ2wm6k42pgT2NHb2OEIUa081tKTU1EaNoRcJ7BTXWOHI0pZsROvxx9/nJiYGFxdXTE1NSU6Oho3N7dCz0lOTs53bPDgwSUOUghRfnK0iq5K/bMP1cNWVlYJUa4C/D15Z/NZjlxLICI+DS8nm6JPEpVGsYcaXV1dOXDgAJDbk2XokueFCxcW+iipvXv3MnDgQDw9PVGpVKxfv/6+bZ977jlUKhWffPKJ3vGMjAymTJmCi4sLtra2DBo0iMjISL02CQkJBAYGolarUavVBAYG5tvIOzw8nIEDB2Jra4uLiwtTp04lM9PwfdqEMIZ/QqO5FJeCvZUZYzpJb5cQ5c1DbUVHn9xtg/46ed3I0YjSVuzE6/nnn+exxx7D1NQUlUqFh4cHpqamBT7KU2pqKi1atGDp0qWFtlu/fj0HDx7E09Mz33PTpk1j3bp1rFmzhuDgYFJSUggICNBbBDBq1ChCQkIICgoiKCiIkJAQAgMDdc/n5OQwYMAAUlNTCQ4OZs2aNfz555/MmDGj9F6sEGVMq1X4fEdub9f4rvWwsyr+1AIhROl5rGXuZ9XGEEm8qppijyG8/vrrjBgxgkuXLjFo0CB++OEHHBwcinWuk5MTFy5cwMXFBUdHx0J7y0o66b5///7079+/0DZRUVFMnjyZLVu2MGDAAL3nNBoN3333HStXrqRXr14A/Pzzz3h5ebF9+3b69u3L2bNnCQoK4sCBA3To0AGAb775hk6dOnH+/HkaN27M1q1bOXPmDBEREbrk7qOPPmLs2LG888472Nvbl+h1CWEMW8/EcD42GTtLM8Z2qWvscISotvr71mT+hlDOxSRzLiaJJh7yGVJVlGjyRpMmTWjSpAkLFy5k6NCh2NgUb9z5448/xs7ODiDfMF9Z02q1BAYGMmvWLJo3b57v+aNHj5KVlUWfPn10xzw9PfH19WXfvn307duX/fv3o1ardUkXQMeOHVGr1ezbt4/GjRuzf/9+fH199XrU+vbtS0ZGBkePHqVHjx757p2RkUFGxv+3C0lKSiqtly1EiSmKwqd3erue6VIXtbX0dglhLGobc7o3dmPbmVg2hlynST9JvKoKg2bN5s3FunHjBufPn0elUtGoUSNcXV0LbP/0008X+P/l4f3338fMzIypU6cW+HxMTAwWFhY4OjrqHXd3dycmJkbXpqCFBG5ubnpt3N3199ZydHTEwsJC1+Ze7777Lm+88UaJX5MQZWH72TjORidha2HKuK4+xg5HiGrvsZaebDsTy4aQ68zq21i2k6oiDKrjlZaWxrhx4/D09OThhx/moYcewtPTk/Hjx5OWllbs69y+fZukpCS9R2k6evQon376KStWrCjxD+y9CwgKOt+QNnebN28eGo1G94iIiChRjEKUFkVR+GzHRQDGdK4rVdWFqAB6NnHH1sKUqMTbHAtPMHY4opQYlHhNnz6dPXv2sHHjRhITE0lMTGTDhg3s2bOnyMnkqampTJ48GTc3N2rUqIGjo6PeozT9+++/xMXFUadOHczMzDAzM+PatWvMmDGDunXrAuDh4UFmZiYJCfo/1HFxcboeLA8PD2JjY/Nd/8aNG3pt7u3ZSkhIICsrK19PWB5LS0vs7e31HkIYw+7zNzgVpcHa3JRnpbdLiArB2sKUvs09gNydJETVYFDi9eeff/Ldd9/Rv39/XcLw6KOP8s033/DHH38Ueu7s2bPZuXMnX375JZaWlnz77be88cYbeHp68tNPPxn0Iu4nMDCQkydPEhISont4enoya9YstmzZAkCbNm0wNzdn27ZtuvOio6MJDQ2lc+fOAHTq1AmNRsOhQ4d0bQ4ePIhGo9FrExoaSnT0/ysNb926FUtLS9q0aVOqr0uI0pQ7tyu3tyuwk7dsUSJEBTLozurGv09Gk5WjNXI0ojQYNMcrLS2twF4cNze3Ioca//rrL3766Se6d+/OuHHjeOihh2jQoAHe3t788ssvjB49ukSxpKSkcOnSJd3XYWFhhISE4OTkRJ06dXB2dtZrb25ujoeHB40bNwZArVYzfvx4ZsyYgbOzM05OTsycORM/Pz/dKsemTZvSr18/JkyYwLJlywCYOHEiAQEBuuv06dOHZs2aERgYyAcffEB8fDwzZ85kwoQJ0pMlKrR/L94kJCIRSzMTJjxUz9jhCCHu0qWBC862FtxKzeS/Szfp3rjwwuWi4jOox6tTp04sXLiQ9PR03bHbt2/zxhtv0KlTp0LPjY+Px8cndyjD3t5eVz6ia9eu7N27t8SxHDlyhFatWtGqVSsAXn75ZVq1asWCBQuKfY2PP/6YwYMHM2zYMLp06YKNjQ1//fWXXk2yX375BT8/P/r06UOfPn3w9/dn5cqVuudNTU35+++/sbKyokuXLgwbNozBgwfz4Ycflvg1CVFe7p7bNbqDN6520tslREVibmrCAP+agNT0qipUSkEbKhYhNDSUfv36kZ6eTosWLVCpVISEhGBlZcWWLVsKLNuQx9/fn88//5xu3brpEpgPP/yQzz77jMWLF+erGF+dJCUloVar0Wg00ksmysW+yzcZ9c1BLMxM+Hd2D9ztrYwdkhDiHkevxfPEV/uxtTDlyGu9sbYo30Llomgl+fw2aKjR19eXixcv8vPPP3Pu3DkURWHEiBGMHj0aa2vrQs995plnOHHiBN26dWPevHkMGDCAzz//nOzsbJYsWWJIOEIIA+X1do1s5yVJlxAVVOs6jtR2tCYy4TY7zsUS4J9/BxZReRjU41VcAwYM4Ntvv6VmzZr3bRMeHs6RI0eoX78+LVq0KKtQKgXp8RLl6eCVWwxffgALUxP2zO5OTXXhfzQJIYxncdA5vtx9md7N3PlmTFtjhyPuUZLPb4PmeBXX3r17uX37dqFt6tSpw5AhQ/IlXX5+flLXSogy9PnO3EUpQ9vWlqRLiArusZa1ANh9Pg5NWpaRoxEPokwTrwdx9epVsrLkh0uIsnD0WjzBl25iZqLihe71jR2OEKIIjT3saOJhR1aOQtDp6KJPEBVWhU28hBBlQ1EUPtxyAYAn29SmtmPx9lwVQhhXXk0vKaZauUniJUQ189fJaPZfuYWlmQkv9mhg7HCEEMU08M6k+v1XbpGYlmnkaIShJPESohpJTs/i7U1nAHixRwO8nKS3S4jKwsvJhrrONigKhEQkGjscYSBJvISoRj7ZfpG45AzqOtsw8WGpUi9EZdOqTu6expJ4VV5lmni98sorODk5leUthBDFdC4miRX7rgLwxmO+WJlLEUYhKpuWXg6AJF6VmUEFVAEuXLjA7t27iYuLQ6vV37gzb7ueefPmGRzYsmXLCtwPUghRcoqiMH99KDlahf6+HnRr5GrskIQQBrg78VIUBZVKZdyARIkZlHh98803vPDCC7i4uODh4aH3D69SqYrcJ3HHjh3s2LGjwKTt+++/B2DUqFGGhCaEKMCfx6I4fDUBGwtT5gc0M3Y4QggDNa1pj4WZCYlpWVy9lYaPi62xQxIlZFDi9fbbb/POO+8wZ86cEp/7xhtv8Oabb9K2bVtq1qwp2boQZUyTlsW7m88CMLVnQzwdpFiqEJWVhZkJvp72HAtPJCQiQRKvSsigxCshIYGhQ4cadMOvv/6aFStWEBgYaND5QoiS+XDreW6lZtLArQbjuvgYOxwhxANq6eWYm3iFJ/J4q9rGDkeUkEGT64cOHcrWrVsNumFmZiadO3c26FwhRMmcitTw88FrALz1mC8WZrKQWYjKrmUdB0Am2FdWBvV4NWjQgPnz53PgwAH8/PwwNzfXe37q1Kn3PffZZ59l1apVzJ8/35BbCyGKSatVeG1DKIoCj7X0pFN9Z2OHJIQoBa3uTLA/E51EelaOrFCuZAxKvJYvX06NGjXYs2cPe/bs0XtOpVIVmnilp6ezfPlytm/fjr+/f76kbcmSJYaEJIS4x5rDEZyISMTO0oxXH21q7HCEEKWktqM1LjUsuJmSyenrSbTxdjR2SKIEDEq8wsLCDL7hyZMnadmyJQChoaF6z8lEeyFKR3xqJou3nANgeu9GuNlbGTkiIURpUalUtPRyYPvZOEIiEiXxqmQMruOVR1EUoPhJ065dux70lkKIIiwOOkdiWhZNa9ozppO3scMRQpSyuxMvUbkYPNP2p59+ws/PD2tra6ytrfH392flypWlGZsQwgDHwhNYczgCgLcHN8fMVCbUC1HVtPTK7eU6Hp5g5EhESRnU47VkyRLmz5/P5MmT6dKlC4qi8N9///H8889z8+ZNpk+frtd+yJAhrFixAnt7e4YMGVLotdeuXWtISEIIIEebW6EeYGib2rTxli27hKiK/L3UqFQQmXCbmykZuNSwNHZIopgMSrw+//xzvvrqK8aMGaM79thjj9G8eXNef/31fImXWq3WDUWq1eoHCFcIUZifD1zj9PUk1NbmzO3fxNjhCCHKiL2VOQ1ca3AxLoWQ8ER6NZMt9ioLgxKv6OjoAmtxde7cmejo6HzHf/jhhwL/vzD//fcfbdu2xdJSsnghiuNGcgYfbj0PwKy+jXGWv4CFqNJaejnkJl4RknhVJgZN/mjQoAG//fZbvuO//vorDRs2fOCgAPr3709UVFSpXEuI6uDdzWdJTs/Gv7aake3rGDscIUQZyyukejxC5nlVJgb1eL3xxhsMHz6cvXv30qVLF1QqFcHBwezYsaPAhMwQeaslhRBFO3jlFmuPR6FS5VaoNzWR0ixCVHUt7xRSPRmhQatVMJH3faVgUI/XE088wcGDB3FxcWH9+vWsXbsWFxcXDh06xOOPP17aMQohCpGVo2X+htwJ9SPb16HFnV/GQoiqrbG7HdbmpiRnZHP5RoqxwxHFZHAdrzZt2vDzzz+XZixCCAOs+O8qF2JTcLK1YHbfxsYORwhRTsxMTfCrreZQWDzHIxJp6G5n7JBEMRS7xyspKUnv/wt7CCHKR0pGNp/uuAjA3H5NcLCxMHJEQojylLdv4/HwRKPGIYqv2D1ejo6OREdH4+bmhoODQ4GV6hVFQaVSkZOT88CByfZBQhRtY8h1UjKyqedqy5Ntahs7HCFEOcub5yUV7CuPYideO3fuxMkptxhjeWz7I5PrhSja6kPhAIxqX0cm1gpRDbWqk1vB/nxMEmmZ2dhYPPBOgKKMFftfqFu3brr/9/HxwcvLK1+vlKIoRERElEpgycnJpXIdIaqq0CgNp6I0WJiaMKS19HYJUR15qK3wsLciJimdU5EaOtRzNnZIoggGpcY+Pj66Yce7xcfH4+Pjk2+osVWrVsUeOjx27JghIQlR7eT1dvX19cDJVuZ2CVFdtfRyIOh0DMcjEiXxqgQMSrzy5nLdKyUlBSsrq3zHBw8ebMhthBD3kZqRzYaQ6wCMbO9l5GiEEMbUsk5u4hUiE+wrhRIlXi+//DKQO/F9/vz52NjY6J7Lycnh4MGDtGzZMt95CxcufLAohRB6Np3MnVRf19mGTvIXrhDVWiuZYF+plCjxOn78OJDb43Xq1CksLP4/vGFhYUGLFi2YOXNmsa519OhRzp49i0qlolmzZrRq1aokoQhRra0+lDuXckT7OrICWIhqzq+2GlMTFTFJ6cRo0vFQ5x95EhVHiRKvvNWMzzzzDJ9++in29vYlvmFcXBwjRoxg9+7dODg4oCgKGo2GHj16sGbNGlxdXUt8TSGqkzPXkwiJSMTcVCUlJIQQ2FiY0cjdjrPRSYREJNBPXdPYIYlCGLRl0A8//GBQ0gUwZcoUkpKSOH36NPHx8SQkJBAaGkpSUhJTp0416JpCVCdrDudOqu/TzAOXGpZGjkYIURG0lEKqlYZBiRfA4cOHmT17NiNGjGDIkCF6j8IEBQXx1Vdf0bRpU92xZs2a8cUXX/DPP/+UOI69e/cycOBAPD09UalUrF+/XvdcVlYWc+bMwc/PD1tbWzw9PRkzZgzXr1/Xu0ZGRgZTpkzBxcUFW1tbBg0aRGRkpF6bhIQEAgMDUavVqNVqAgMDSUxM1GsTHh7OwIEDsbW1xcXFhalTp5KZmVni1yTE/dzOzGHd8SgARsikeiHEHa3qOABwXOZ5VXgGJV5r1qyhS5cunDlzhnXr1pGVlcWZM2fYuXMnarW60HO1Wi3m5ub5jpubm6PVakscS2pqKi1atGDp0qX5nktLS+PYsWPMnz+fY8eOsXbtWi5cuMCgQYP02k2bNo1169axZs0agoODSUlJISAgQK8sxqhRowgJCSEoKIigoCBCQkIIDAzUPZ+Tk8OAAQNITU0lODiYNWvW8OeffzJjxowSvyYh7ufvU9Ekp2fj5WRNl/ouxg5HCFFB5E2wPxWpITun5J+lohwpBvDz81OWLl2qKIqi1KhRQ7l8+bKi1WqVCRMmKAsWLCj03EGDBikPP/ywEhUVpTsWGRmpdOvWTRk8eLAh4egAyrp16wptc+jQIQVQrl27piiKoiQmJirm5ubKmjVrdG2ioqIUExMTJSgoSFEURTlz5owCKAcOHNC12b9/vwIo586dUxRFUTZv3qyYmJjova7Vq1crlpaWikajKVb8Go1GAYrdXlQ/Q778T/Ges0lZuvOisUMRQlQgOTlaxXdBkOI9Z5NyOko+Q8pbST6/Derxunz5MgMGDADA0tKS1NRUVCoV06dPZ/ny5YWeu3TpUpKTk6lbty7169enQYMG+Pj4kJyczOeff25IOCWi0WhQqVQ4ODgAuasrs7Ky6NOnj66Np6cnvr6+7Nu3D4D9+/ejVqvp0KGDrk3Hjh1Rq9V6bXx9ffH09NS16du3LxkZGRw9erTAWDIyMmSDcVFsF2KTOXotAVMTFUNlUr0Q4i4mJir8vXJHnI5HJBg5GlEYgwqoOjk56bb0qVWrFqGhofj5+ZGYmEhaWlqh53p5eXHs2DG2bdvGuXPnUBSFZs2a0atXL0NCKZH09HTmzp3LqFGjdIsDYmJisLCwwNHRUa+tu7s7MTExujb3VukHcHNz02vj7u6u97yjoyMWFha6Nvd69913eeONNx74dYnqIa9Sfa+mbrjZy3JxIYS+Vl6O/HfpFiHhiYzu4G3scMR9GJR4PfTQQ2zbtg0/Pz+GDRvGSy+9xM6dO9m2bRs9e/Ys1jV69+5N7969AfJNUi8LWVlZjBgxAq1Wy5dffllke+We6vwF1UoypM3d5s2bpytKC5CUlISXl0yYFvmlZ+Ww9ljupPqR7esYORohREXUUgqpVgoGDTUuXbqUESNGALnJw8yZM4mNjWXIkCF89913hZ77/vvv8+uvv+q+HjZsGM7OztSqVYsTJ04YEk6RsrKyGDZsGGFhYWzbtk2vFIaHhweZmZkkJOh3zcbFxel6sDw8PIiNjc133Rs3bui1ubdnKyEhgaysrHw9YXksLS2xt7fXewhRkH9Co9HczqKWgzUPNZRad0KI/FreWdl46UYKSelZxg1G3FeJE6/s7Gz++usvTExyTzUxMWH27Nls3LiRJUuW5Buyu9eyZct0vTrbtm1j27Zt/PPPP/Tv359Zs2YZ8BIKl5d0Xbx4ke3bt+PsrL+9Sps2bTA3N2fbtm26Y9HR0YSGhtK5c2cAOnXqhEaj4dChQ7o2Bw8eRKPR6LUJDQ0lOjpa12br1q1YWlrSpk2bUn9donrJq1Q/vJ0XpiZSqV4IkZ9LDUtqO1qjKHAyQmPscMR9lHio0czMjBdeeIGzZ88adMPo6Ghd4rVp0yaGDRtGnz59qFu3rt7k9eJKSUnh0qVLuq/DwsIICQnByckJT09PnnzySY4dO8amTZvIycnR9Uo5OTlhYWGBWq1m/PjxzJgxA2dnZ5ycnJg5cyZ+fn66eWdNmzalX79+TJgwgWXLlgEwceJEAgICaNy4MQB9+vShWbNmBAYG8sEHHxAfH8/MmTOZMGGC9GSJB3IpLoVDYfGYqGBYWxmKFkLcX6s6jkQm3CYkIoGuDaXkTEVk0FBjhw4ddPs2lpSjoyMREbl/vQcFBemSG0VR9OpmFdeRI0do1aqVbq/Hl19+mVatWrFgwQIiIyPZuHEjkZGRtGzZkpo1a+oeeasRAT7++GMGDx7MsGHD6NKlCzY2Nvz111+Ymprq2vzyyy/4+fnRp08f+vTpg7+/PytXrtQ9b2pqyt9//42VlRVdunRh2LBhDB48mA8//NCg75MQedbcmVT/SBN32YNNCFEomedV8Rk0uX7SpEnMmDGDyMhI2rRpg62trd7z/v7+9z13yJAhjBo1ioYNG3Lr1i369+8PQEhICA0aNChxLN27d0dRlPs+X9hzeaysrPj8888LLWfh5OTEzz//XOh16tSpw6ZNm4q8nxDFlZGdw5/HcndRGCmV6oUQRbg78SpscZcwHoMSr+HDhwPo7a2oUql0/8iF9Vx9/PHH1K1bl4iICBYvXkyNGjWA3CHISZMmGRKOEFXWltOxJKRlUVNtRbdGMqleCFG45p72mJuquJmSSWTCbbycbIwdkriHQYlXWFiYwTc0Nzdn5syZ+Y5PmzbN4GsKUVWtPpg7zDisrRdmpgZvrSqEqCaszE1pVtOeE5EajkckSuJVARmUeF27do3OnTtjZqZ/enZ2Nvv27cPbu/DCbZcvX+aTTz7h7NmzqFQqmjZtyrRp06hXr54h4QhRJYXdTGX/lVuoVDCsnQwzCiGKp6WXAyciNYSEJzKohWfRJ4hyZdCf0D169CA+Pj7fcY1GQ48ePQo9d8uWLTRr1oxDhw7h7++Pr68vBw8epFmzZnolHYSo7tYczu3t6t7IlVoO1kaORghRWeTV8wqRrYMqJIN6vO43Ye/WrVv5Jtrfa+7cuUyfPp333nsv3/E5c+boqtkLUZ1lZmv540jepHqpVC+EKL6WXrn1NEOvJ5GZrcXCTKYpVCQlSryGDBkC5E6kHzt2LJaWlrrncnJyOHnypK6g6P2cPXuW3377Ld/xcePG8cknn5QkHCGqrO1nY7mVmombnSWPNMm/T6gQQtxPXWcbHGzMSUzL4mx0Ei3urHQUFUOJ0mC1Wo1arUZRFOzs7HRfq9VqPDw8mDhxYpElF1xdXQkJCcl3PCQkpMCNqIWojvI2xJZJ9UKIklKpVFLPqwIrUY/XDz/8AEDdunWZOXNmkcOKBZkwYQITJ07kypUrdO7cGZVKRXBwMO+//z4zZswo8fWEqGrCb6Xx78WbqFS5WwQJIURJtfRyYPf5G4REJPK0sYMRegya47Vw4UKDbzh//nzs7Oz46KOPmDdvHgCenp68/vrrenXBhKiufj2S29vVtYGLLAUXQhgkr8freLhMsK9oDBrDiI2NJTAwEE9PT8zMzDA1NdV73E92djY//fQTI0eOJDIyEo1Gg0ajITIykpdeekkq7IpqLytHy293JtWPkkn1QggD5SVeV2+lkZCaadxghB6DerzGjh1LeHg48+fPp2bNmsVOmO7dYNvOzs6Q2wtRZe04G8eN5AxcaljSq5m7scMRQlRSDjYW1HOx5crNVEIiE+nRWOZQVxQGJV7BwcH8+++/tGzZssTn5m2wXVSRVSGqo7xJ9U+2qY25TKoXQjyAll4OuYlXuCReFYlBiZeXl1exNp8uyINssC1EVRaVeJu9F28AMEIm1QshHlDLOg6sPR7FcVnZWKEYlHh98sknzJ07l2XLllG3bt0SnfsgG2wLUZVtCY1BUaC9jxN1XUq+YlgIIe7W6k4h1RMRifctfC7Kn0GJ1/Dhw0lLS6N+/frY2Nhgbm6u93xB2wnleZANtoWoynaeiwOgj8ztEkKUgiY17bA0M0FzO4uwm6nUc61h7JAED9DjZSiZ2yVEfsnpWRwMuwVAz6aSeAkhHpy5qQm+tdQcvZZASESiJF4VhEGJ19NPP1g5tpUrV/L1118TFhbG/v378fb25pNPPsHHx4fHHnvsga4tRGX078WbZOUo1HOxxUeGGYUQpaSllwNHryVwPDyRIa1rGzscgYF1vAAuX77Ma6+9xsiRI4mLyx0iCQoK4vTp04We99VXX/Hyyy/z6KOPkpiYqJvT5eDgIHs1imprx9nc95DsyyiEKE2t6jgAsnVQRWJQ4rVnzx78/Pw4ePAga9euJSUlBYCTJ08WWdX+888/55tvvuHVV1/VK7batm1bTp06ZUg4QlRqOVqF3efvJF5NJfESQpSevEKqZ6OTSM+SxWsVgUGJ19y5c3n77bfZtm0bFhYWuuM9evRg//79hZ4bFhZGq1at8h23tLQkNTXVkHCEqNRORCZyKzUTOysz2tV1MnY4QogqpJaDNS41LMnWKoRGaYwdjsDAxOvUqVM8/vjj+Y67urpy69atQs/18fEhJCQk3/F//vmHZs2aGRKOEJXajrOxAHRr5CpFU4UQpUqlUtH6znDjkWuyb2NFYNBveQcHB6Kjo/MdP378OLVq1Sr03FmzZvHiiy/y66+/oigKhw4d4p133uGVV15h1qxZhoQjRKWWN7+rpwwzCiHKQHuf3J70w2H3L/Ukyo9BqxpHjRrFnDlz+P3331GpVGi1Wv777z9mzpzJmDFjCj33mWeeITs7m9mzZ5OWlsaoUaOoVasWn376KSNGjDDoRQhRWUUl3uZcTDImKujeSBIvIUTpy5vCcORaAlqtgomJFFI1JoMSr3feeYexY8dSq1YtFEWhWbNm5OTkMGrUKF577bUiz58wYQITJkzg5s2baLVa3NzkA0dUT3lFU9t4O+Joa1FEayGEKLnmnvbYWJiiuZ3FhbhkmnjYGzukas2gxMvc3JxffvmFt956i2PHjqHVamnVqhUNGzYs0XVcXFwMub0QVUbe/K5HmkjRVCFE2TAzNaF1HUeCL93kcFi8JF5GZlDiladevXrUq1evxOf98ccf/Pbbb4SHh5OZman33LFjxx4kJCEqjbTMbPZdzqtWL72+Qoiy066uE8GXbnLoagKBneoaO5xqzaDJ9U8++STvvfdevuMffPABQ4cOLfTczz77jGeeeQY3NzeOHz9O+/btcXZ25sqVK/Tv39+QcISolP67dIvMbC21Ha1p6CZbeQghyk47n9wNsw+HxaMoipGjqd4MLqA6YMCAfMf79evH3r17Cz33yy+/ZPny5SxduhQLCwtmz57Ntm3bmDp1KhqN1BgR1cfOc7nDjL2auqNSyWRXIUTZaeXliLmpipikdCLibxs7nGrNoMQrJSVFr3BqHnNzc5KSkgo9Nzw8nM6dOwNgbW1NcnIyAIGBgaxevdqQcISodLRaRbYJEkKUG2sLU/xqqQE4dFXKShiTQYmXr68vv/76a77ja9asKbIIqoeHh67Iqre3NwcOHAByK9pL96eoLk5fTyIuOQMbC1M61JNq9UKIstdO6nlVCAZNrp8/fz5PPPEEly9f5pFHHgFgx44drF69mt9//73Qcx955BH++usvWrduzfjx45k+fTp//PEHR44cYciQIYaEI0Sls+POMONDDV2wNDMtorUQQjy49nWdWLbnCoelx8uoDEq8Bg0axPr161m0aBF//PEH1tbW+Pv7s337drp161boucuXL0er1QLw/PPP4+TkRHBwMAMHDuT55583JBwhKp28+l09m0oZCSFE+Wjr7YRKBVdupnIjOQNXO0tjh1QtqZQKOr43adIk3nzzzWpV6yspKQm1Wo1Go8HeXuqsVFWxSel0WLQDgMOv9pJffkKIctPvk72ci0nmq9Gt6e9X09jhVBkl+fx+oB15MzMziYyMJDw8XO9RGn7++eciJ+oLURntutPb1cLLQZIuIUS5yts+SCbYG49BQ40XL15k3Lhx7Nu3T++4oiioVCpycnIeOLAK2hEnxAPbkTfMKKsZhRDlrJ2PEysPXJN5XkZkUOI1duxYzMzM2LRpEzVr1pQaREIUU3pWDsEXbwJSrV4IUf7a3+nxOnM9ieT0LOyszI0cUfVj0FBjSEgIy5Yto3///rRs2ZIWLVroPcrT3r17GThwIJ6enqhUKtavX6/3vKIovP7663h6emJtbU337t05ffq0XpuMjAymTJmCi4sLtra2DBo0iMjISL02CQkJBAYGolarUavVBAYGkpiYqNcmPDycgQMHYmtri4uLC1OnTs23JZKo3vZfucXtrBw87K1oVlPm8QkhypeH2oo6TjZoFTh6LcHY4VRLBiVezZo14+bNm6Udi0FSU1Np0aIFS5cuLfD5xYsXs2TJEpYuXcrhw4fx8PCgd+/eusKtANOmTWPdunWsWbOG4OBgUlJSCAgI0BsyHTVqFCEhIQQFBREUFERISAiBgYG653NychgwYACpqakEBwezZs0a/vzzT2bMmFF2L15UOjvziqY2dZOeYiGEUeTN85LhRiNRDLBjxw6lU6dOyq5du5SbN28qGo1G71EaatSooVy+fLlE5wDKunXrdF9rtVrFw8NDee+993TH0tPTFbVarXz99deKoihKYmKiYm5urqxZs0bXJioqSjExMVGCgoIURVGUM2fOKIBy4MABXZv9+/crgHLu3DlFURRl8+bNiomJiRIVFaVrs3r1asXS0rLY3xONRqMApfY9FBWLVqtVOr+7Q/Ges0nZfibG2OEIIaqpNYeuKd5zNilDv9pn7FCqjJJ8fhvU49WrVy8OHDhAz549cXNzw9HREUdHRxwcHHB0dCz03PDw8AInziuKorci8qmnnnrgkgphYWHExMTQp08f3TFLS0u6deumWxhw9OhRsrKy9Np4enri6+ura7N//37UajUdOnTQtenYsSNqtVqvja+vL56enro2ffv2JSMjg6NHjz7Q6xBVw/nYZKISb2NlbkKXBtWnTIoQomLJ6/EKiUwkI/vBF8OJkjFocv2uXbsMvqGPjw/R0dG4uelPLI6Pj8fHx0c3vPfVV18ZfI88MTExALi76xepdHd359q1a7o2FhYW+RJGd3d33fkxMTH54gVwc3PTa3PvfRwdHbGwsNC1uVdGRgYZGRm6r6V8RtWWtzdjl/ouWJlLtXohhHH4uNjiUsOCmymZnIzU6BIxUT4MSryKqk5fGOVOyYl7paSkYGVlZfB1C3Pv/e4XQ2FtCmpvSJu7vfvuu7zxxhuFxiGqjh1nc7cJekRWMwohjEilUtGurhP/hMZwKCxeEq9yZlDiBZCYmMh3333H2bNnUalUNGvWjHHjxqFWqwts//LLLwO5/+Dz58/HxsZG91xOTg4HDx6kZcuWhoZTIA8PDyC3N6pmzf9X6I2Li9P1Tnl4eJCZmUlCQoJer1dcXBydO3fWtYmNjc13/Rs3buhd5+DBg3rPJyQkkJWVla8nLM+8efN03xfI7fHy8vIy5KWKCu5WSgbHIxIBeETqdwkhjOzuxOvFHsaOpnoxaI7XkSNHqF+/Ph9//DHx8fHcvHmTJUuWUL9+fY4dO1bgOcePH+f48eMoisKpU6d0Xx8/fpxz587RokULVqxY8SCvJR8fHx88PDzYtm2b7lhmZiZ79uzRJVVt2rTB3Nxcr010dDShoaG6Np06dUKj0XDo0CFdm4MHD6LRaPTahIaGEh0drWuzdetWLC0tadOmTYHxWVpaYm9vr/cQVdPu8zdQFGjuaU9NtbWxwxFCVHPtfXJ7uY5dSyBHKwXLy5NBPV7Tp09n0KBBfPPNN5iZ5V4iOzubZ599lmnTprF379585+TNC3vmmWf49NNPSy3JSElJ4dKlS7qvw8LCCAkJwcnJiTp16jBt2jQWLVpEw4YNadiwIYsWLcLGxoZRo0YBoFarGT9+PDNmzMDZ2RknJydmzpyJn58fvXr1AqBp06b069ePCRMmsGzZMgAmTpxIQEAAjRs3BqBPnz40a9aMwMBAPvjgA+Lj45k5cyYTJkyotAmV5nYWpiYqalga3DEq7thxLrfHVKrVCyEqgqY17bGzNCM5I5uz0Un41ip4tEqUAUOWTVpZWSlnz57Nd/z06dOKtbW1IZc02K5duxQg3+Ppp59WFCV3Cf/ChQsVDw8PxdLSUnn44YeVU6dO6V3j9u3byuTJkxUnJyfF2tpaCQgIUMLDw/Xa3Lp1Sxk9erRiZ2en2NnZKaNHj1YSEhL02ly7dk0ZMGCAYm1trTg5OSmTJ09W0tPTi/1aKlI5iYTUDKXNW1uVHh/sUjKzc4wdTqWWkZWjNF8QpHjP2aQcD08wdjhCCKEoiqKM+e6g4j1nk/J98BVjh1LpleTzW6UoJd8U0d3dnZUrV+qVYADYsmULY8aMKXA+VJ7U1FTee+89duzYQVxcHFqtVu/5K1eulDScKqMku5uXtZ8PXOO19aEAfP1Ua/r5yi72hvrv0k1Gf3sQlxqWHHqlJyYmUjhVCGF8X+y6xAdbzvOonwdfji54SowonpJ8fhs0hjR8+HDGjx/Phx9+SOfOnVGpVAQHBzNr1ixGjhxZ6LnPPvsse/bsITAwUPZ5rMDWH4/S/f/qQxGSeD2AvDISjzRxlaRLCFFh5K1mPBSWUKzV/qJ0GJR4ffjhh6hUKsaMGUN2djYA5ubmvPDCC7z33nuFnvvPP//w999/06VLF0NuLcpB+K00jlxLQKUCRYG9F28QmZBGbUebok8WehRF0c3veqRJwatbhRDCGPxrq7EwNeFmSgZXb6Xh42Jr7JCqBYNWNVpYWPDpp5+SkJBASEgIx48fJz4+no8//hhLS8tCz3V0dMTJSWqGVGQbQnJ7u7o2cKFTPWcUBX47ElnEWaIgl2+kcu1WGhamJnRtKNXqhRAVh5W5KS28cifVHw6TfRvLi0GJl0ajIT4+HhsbG/z8/PD398fGxob4+Pgiq6+/9dZbLFiwgLS0NIMCFmVLURTW3Um8BresxYj2uXXFfj8SIUuODbDzTm9Xh3pOsjpUCFHh5A03HpTEq9wYlHiNGDGCNWvW5Dv+22+/MWLEiELP/eijj9iyZQvu7u74+fnRunVrvYcwrlNRGq7cSMXK3IS+vh70be6Bg4050Zp09lyIM3Z4lU7e/K5eTWWYUQhR8eTV8zp8VRKv8mLQn+AHDx5kyZIl+Y53796dV199tdBzBw8ebMgtRTlZd2dSfZ9mHroemiGtavP9f2GsORQh85RKQJOWxZFrCYBUqxdCVExtvB0xUUF4fBqxSem425fN1n3i/wxKvDIyMnST6u+WlZXF7du3Cz134cKFhtxSlIPsHC1/nbgOwOOtaumOj2zvxff/hbHjXBxxSem4yRuzWHZfiCNHq9DIvQZeTrIwQQhR8dhZmdO0pj2nrydxKCyegS08jR1SlWfQUGO7du1Yvnx5vuNff/31fbfHuVtiYiLffvst8+bNIz4+t3vz2LFjREVFFXGmKEv/XrrJzZRMnG0t9CaCN3S3o423Izlahd+PyiT74tp5Lq+MhPQSCiEqrrx5XjLcWD4M6vF655136NWrFydOnKBnz54A7Nixg8OHD7N169ZCzz158iS9evVCrVZz9epVJkyYgJOTE+vWrePatWv89NNPhoQkSkFe7a6BLTwxN9XPyUe08+LotQR+PRzBC93qSz2qImTnaNl9/gYAvZrKMKMQouJq7+PEin1XOSQT7MuFQT1eXbp0Yf/+/Xh5efHbb7/x119/0aBBA06ePMlDDz1U6Lkvv/wyY8eO5eLFi1hZ/X/Iqn///gXu8SjKR0pGNltOxwAw+K5hxjwD/GtiZ2lGeHwa+6/cKu/wKp2j1xLQ3M7CwcacVnUcjR2OEELcV16P1/nYZDS3s4wcTdVnUOIF0LJlS3755RdOnz7NkSNH+P7772nYsKFem/fee4/ExES9Y4cPH+a5557Ld71atWoRExNjaDjiAW09HUN6lhYfF1ta1M6/WaqNhRmPtcod+199KLy8w6t0tp7JLSPRvZErptI7KISowFztLPFxsUVR4Og16fUqawYnXsWxaNEi3RyuPFZWVgXW+jp//jyurq5lGY4oRN5qxsdb1brvthEj2tUBYOvpWOJTM8sttsomR6uw8c4ihQH+MlFVCFHxtZd6XuWmTBOvgvbffuyxx3jzzTfJysrtzlSpVISHhzN37lyeeOKJsgxH3EdcUjr/XboJ5BZNvR/fWmp8a9mTmaNl7TGZZH8/+y7f5EZyBo425nRrJH9MCCEqvnZ59bwk8SpzZZp4FeTDDz/kxo0buLm5cfv2bbp160aDBg2ws7PjnXfeKe9wBLDxxHW0Sm49lzrOhZc9yOv1Wn0ovMDEWsC6Y7m9hwH+nliYlftbTAghSiyvx+tUlIb0rBwjR1O1lfseJvb29gQHB7Nz506OHTuGVquldevW9OrVq7xDEXfkDTMWNKn+Xo+19OSdv89y+UYqR68l0Lau7Lt5t7TMbIIKWaQghBAVkZeTNe72lsQmZXA8PJFO9Z2NHVKVZbTN4x555BEeeeQRY91e3HEhNpnT15MwM1ER4FezyPZ2VuYE+Nfk96ORrD4UIYnXPbadiSUtM4c6Tja0ruNg7HCEEKJYVCoV7eo6selkNIevxkviVYbKJfH67LPPmDhxIlZWVnz22WeFtp06dWp5hCTuyKvd1b2xG462FsU6Z0T7Ovx+NJK/T11nwcBmqK3NyzLESuXu3sP7LVIQQoiKqL3P/xMvUXbKNPF66KGHsLa25uOPP2b06NFYWVnx8ccf37e9SqWSxKscabUKG0LybxFUlNZ1HGjkXoMLsSlsDIkisFPdMoqwcrmRnMG/F3MXKZTk+ymEEBVBXj2vY9cSyM7RYmYqc1TLgkGJ17FjxzA3N8fPzw+ADRs28MMPP9CsWTNef/11LCxye042b94MQFhYmO7cu/9fGNfhq/FEJd7GztKMniWorq5SqRjRrg5vbjrD6kMRPNXRW3p3gE0nr5OjVWjp5YCPi62xwxFCiBJp7G6HvZUZSenZnIlOwr+2g7FDqpIMSmefe+45Lly4AMCVK1cYMWIENjY2/P7778yePbvY11EURVbGGdH6kNxhsf5+HliZm5bo3CGta2FhZsKZ6CRORWnKIrxK5+5aaEIIUdmYmKh0vV6yfVDZMSjxunDhAi1btgTg999/5+GHH2bVqlWsWLGCP//8s8jzv/vuO3x9fbGyssLKygpfX1++/fZbQ0IRBkrPymHTyWgAHm9Vu8TnO9hY0N/XA4DVhyJKNbbK6FJcCicjNZiaqAjwL3qRghBCVER59bwk8So7BiVeiqKg1WoB2L59O48++igAXl5e3Lx5s9Bz58+fz0svvcTAgQP5/fff+f333xk4cCDTp0/ntddeMyQcYYDd5+NITs+mptqKDj6GrUzMq+m1MSSK1Izs0gyv0tlwp/ewWyNXnGtYGjkaIYQwTF6P15FrCTIiVUYMmuPVtm1b3n77bXr16sWePXv46quvgNz5W+7u7oWe+9VXX/HNN98wcuRI3bFBgwbh7+/PlClTePvttw0JSZRQ3rDYYy1rYWLgXoId6zlR19mGq7fS2HTyOsPvJGLVjaIoJaqFJoQQFZVfLTVW5ibEp2Zy+UYKDdzsjB1SlWNQj9cnn3zCsWPHmDx5Mq+++ioNGjQA4I8//qBz586FnpuTk0Pbtm3zHW/Tpg3Z2dW716S8JKZlsvNcHPBg85FUKpUu2VpzuPoONx69lkBkwm1qWJrRu2nhf3gIIURFZmFmQksvBwAOhSUYN5gqyqDEy9/fn1OnTqHRaFi4cKHu+AcffMCPP/5Y6LlPPfWUrofsbsuXL2f06NGGhCNK6O9T0WTlKDStaU9jjwf7a+bJNrUxM1FxPDyR8zHJpRRh5bL2Tm9XP18PrC1KtkhBCCEqmrztg6SeV9kwaKgxIiIClUpF7dq5k7IPHTrEqlWraNasGRMnTszX/uWXX9b9v0ql4ttvv2Xr1q107NgRgAMHDhAREcGYMWMMCUeU0Hrd6jvPB76Wq50lvZq6E3Q6htWHwnl9UPMHvmZlkpGdw9+6RQoyzCiEqPxkgn3ZMqjHa9SoUezatQuAmJgYevfuzaFDh3jllVd4880387U/fvy47nHq1CnatGmDq6srly9f5vLly7i6utK6dWtOnz79YK9GFCkiPo3DVxNQqWBQi9JJFEa09wJy541Vt81Vd5+/geZ2Fu72lnSsJ1tsCCEqv9Z1HDE1URGVeJuoxNvGDqfKMajHKzQ0lPbt2wPw22+/4evry3///cfWrVt5/vnnWbBggV77vCRNGF/e6rvO9Z3xUFuVyjUfauhKLQdrohJvExQaU60mmK+/a5GCqYGLFIQQoiKxtTTD19OeE5EaDofFU6sa/U4vDwb1eGVlZWFpmbtkfvv27QwaNAiAJk2aEB0dXXrRiVKlt/quZem9kUxNVAxrm9vrtfpQeKldt6LT3M5ix9kHX6QghBAVTYc7PfjvB50jVIpklyqDEq/mzZvz9ddf8++//7Jt2zb69esHwPXr13F2luGWiio0KonLN1KxNDOh353ip6VlWLvamKjgYFg8V26klOq1K6p/TkWTmaOliYcdTWvaGzscIYQoNc929aGBWw2iNek8+fU+3VxW8eAMSrzef/99li1bRvfu3Rk5ciQtWrQAYOPGjbohSFHx5PV29WnugZ2Vealeu6bamu6Nc/d7/LWalJZYK7W7hBBVlJu9FWsndaZ7Y1fSs7S8uOoYn2y/gFYrRVUflEGJV/fu3bl58yY3b97k+++/1x2fOHEiX3/9dakFJ0pPdo6WjSeuA6WzmrEgI9rlDjf+eSySzGxtmdyjoohMSONQWPydRQpl8/0UQghjsrcy57un2/FsVx8APtl+kSmrj3M7s3otoiptBiVeAKampjg6Ouodq1u3Lm5ubg8clCh9wZducjMlAydbCx5q6Fom9+jRxA1XO0tupmRW+WXIG0Jyk9iOPs54OlgbORohhCgbpiYqXgtoxuIn/DE3VfH3qWiGLttHtEZWOxrK4MTrjz/+YNiwYXTs2JHWrVvrPUTFk7f6bqB/TcxNDf5nL5S5qYmupMKJyMQyuUdFcPcihcdbyzCjEKLqG9bOi1UTOuJka0FoVBKDlv7H8XCpbG8Igz6BP/vsM5555hnc3Nw4fvw47du3x9nZmStXrtC/f//SjlE8oNSMbLacjgXKfj5Si9pqAEIiEsv0PsZ0+noSl+JSymSRghBCVFTt6jqx4cUuNPGw40ZyBsOXH9D9US+Kz6DE68svv2T58uUsXboUCwsLZs+ezbZt25g6dSoajSw7rWi2nonhdlYOdZ1tdHtwlZUWd65/sgr3eOX1dvVq5o59KS9SEEKIiszLyYY/XuhMr6buZGZrmfZrCIuDzsmk+xIwKPEKDw/XbYZtbW1NcnLuHn2BgYGsXr269KITpcKlhiVdG7gwpHVtVKqyLfLZ3NMeUxMVsUkZxGjSy/RexqC3SKEUa6EJIURlUcPSjOWBbZjUvT4AX+6+zHM/HyUlI9vIkVUOBiVeHh4e3Lp1CwBvb28OHDgAQFhYGIpSsbLe7OxsXnvtNXx8fLC2tqZevXq8+eabaLX/X3WnKAqvv/46np6eWFtb071793zbF2VkZDBlyhRcXFywtbVl0KBBREZG6rVJSEggMDAQtVqNWq0mMDCQxMTE8niZhXqooSs/P9uBKY80KPN72ViY0dCtBlA153ntu3yLG8kZONqY83CjslmkIIQQFZ2JiYrZ/ZrwyfCWWJiZsO1MLE9+tY+I+DRjh1bhGZR4PfLII/z1118AjB8/nunTp9O7d2+GDx/O448/XqoBPqj333+fr7/+mqVLl3L27FkWL17MBx98wOeff65rs3jxYpYsWcLSpUs5fPgwHh4e9O7dW9eTBzBt2jTWrVvHmjVrCA4OJiUlhYCAAHJy/r+sdtSoUYSEhBAUFERQUBAhISEEBgaW6+stTFn3duXJG848UQXneekWKbTwxMKsbBYpCCFEZTG4VS3WTOyISw1LzsUk89gX/3H4atVe1f6gVIoBXVRarRatVouZWe5Wj7///jv//vsvDRo04IUXXsDcvOLMewkICMDd3Z3vvvtOd+yJJ57AxsaGlStXoigKnp6eTJs2jTlz5gC5vVvu7u68//77PPfcc2g0GlxdXVm5ciXDhw8Hcqv0e3l5sXnzZvr27cvZs2dp1qwZBw4coEOHDgAcOHCATp06ce7cORo3blxkrElJSajVajQaDfb2lbcS+qqD4byy7hRdG7jw87MdjB1OqUnLzKbt29tJy8xh7aTOtK7jWPRJQghRDVxPvM2En45w+noSlmYmfDm6NT2buhs7rHJTks9vg/5kNzExITs7m0OHDrFp0yYsLS3p1asXdevWJSgoyKCgy0rXrl3ZsWMHFy5cAODEiRMEBwfz6KOPArnDozExMfTp00d3jqWlJd26dWPfvn0AHD16lKysLL02np6e+Pr66trs378ftVqtS7oAOnbsiFqt1rW5V0ZGBklJSXqPqqCFV+7KxhORiVVqwuXW07GkZebg7WxDqzJepCCEEJWJp4M1vz/fiV5N3cjI1jJx5VFZ8XgfZoacFBQURGBgoG6e191UKpXe8JuxzZkzB41GQ5MmTTA1NSUnJ4d33nmHkSNHAhATEwOAu7t+Zu7u7s61a9d0bSwsLPIVjHV3d9edHxMTU2DxWDc3N12be7377ru88cYbD/YCK6BG7nZYmpmQnJ7N1Vup1HOtYeyQSsXdG4yX17CtEEJUFjYWZnz1VBtm/3GSdcejmPZrCEnpWYzpVNfYoVUoBvV4TZ48mWHDhhEdHa0bdsx7VKSkC+DXX3/l559/ZtWqVRw7dowff/yRDz/8kB9//FGv3b0fpIqiFPnhem+bgtoXdp158+ah0Wh0j4iIqrHHobmpCb61/t/rVRXcSM7g34s3ANmbUQgh7sfc1ISPhrZgbOe6ACzYcJrPd1yscAvvjMmgxCsuLo6XX345Xy9RRTRr1izmzp3LiBEj8PPzIzAwkOnTp/Puu+8CuSs0gXy9UnFxcbrX5+HhQWZmJgkJCYW2iY2NzXf/Gzdu3Pf7ZGlpib29vd6jqvC/U0j1RETVqOv214nraBVoVccBHxdbY4cjhBAVlomJioUDm/FSz4YAfLTtAm//fbZKTT15EAYlXk8++SS7d+8u5VDKRlpaGiYm+i/T1NRUV07Cx8cHDw8Ptm3bpns+MzOTPXv26GqVtWnTBnNzc7020dHRhIaG6tp06tQJjUbDoUOHdG0OHjyIRqPRtalOdCsbq0iP1/qQO1sESW+XEEIUSaVSMb13IxYENAPgu+AwZv95kuwcbRFnVn0GzfFaunQpQ4cO5d9//8XPzy/fKsapU6eWSnClYeDAgbzzzjvUqVOH5s2bc/z4cZYsWcK4ceOA3B+OadOmsWjRIho2bEjDhg1ZtGgRNjY2jBo1CgC1Ws348eOZMWMGzs7OODk5MXPmTPz8/OjVqxcATZs2pV+/fkyYMIFly5YBMHHiRAICAoq1orGq8a/tAORur5OVoy2z/SHLw6W4FE5GajAzUTHAr6axwxFCiEpjXFcf7K3NmfPnSf44GklyehafjmiFlbmpsUMzGoMSr1WrVrFlyxasra3ZvXt3vnlOFSnx+vzzz5k/fz6TJk0iLi4OT09PnnvuORYsWKBrM3v2bG7fvs2kSZNISEigQ4cObN26FTs7O12bjz/+GDMzM4YNG8bt27fp2bMnK1aswNT0/z88v/zyC1OnTtWtfhw0aBBLly4tvxdbgdR1tsHeyoyk9GzOxyTr5nxVRnkrc7o1csW5hqWRoxFCiMrlyTa1sbMyY8qq42w5Hcv4Hw+zLLAtNSwNSkEqPYPqeHl4eDB16lTmzp2bbxhPGK6q1PHKE/jdQf69eJN3HvdldAdvY4djkNSMbLp9sIubKZl8PrIVA1t4GjskIYSolPZdusmEn46QmplDCy8HVoxth6OthbHDKhVlXscrMzOT4cOHS9IlCtXiznBjZa5g/31wGDdTMqnrbEM/Xw9jhyOEEJVW5wYu/DKhIw425pyISGTYsv1Vck/fohiUOT399NP8+uuvpR2LqGLyVjaejKycKxsTUjNZvvcKAC/3aVyp56kJIURF0NLLgd+f64S7vSUX41J48ut9XL2ZauywypVBA6w5OTksXryYLVu24O/vn29y/ZIlS0olOFG55a1svBCbTFpmNjYWlWs8/6s9l0nOyKZZTXsCZFK9EEKUiobudvzxfGee+u4g126l8eTX+1k5vj1Na1b+KTbFYdCf8KdOnaJVq1aYmJgQGhrK8ePHdY+QkJBSDlFUVm72VnjYW6FVIDSqcm2HFK25zYp9VwGY1a8xJiZSqV4IIUqLl5MNvz/fiSYedtxMyWDE8gNcvpFi7LDKhUFdELt27SrtOEQV1cJLTczpdE5EJNLex8nY4RTbZzsukpmtpb2PE90buRo7HCGEqHLc7Kz49blOjPn+ECciEnn2xyOsm9QZB5uqMeH+fmTSiihTefW8QipRIdUrN1L47UgkAHP6NZZ9GYUQooyorc35dkxbajlYE3YzlRd+PkZWFS+yKomXKFN587xOVqLE66NtF8jRKvRq6kYb78rTSyeEEJWRq50l341ti62FKfuv3GLBhtAqvbejJF6iTOUVTo2Iv82tlAwjR1O00CgNf5+MRqWCmX2r344DQghhDE087PlsZCtUKlh9KILvgsOMHVKZkcRLlCm1tTn1XHM3lT4ZVfHLSizech6AwS1r0cSjeqywEUKIiqBnU3defbQp/K+9O4+Lslz/B/4ZlhkWYWQRBgQRNxQXVDBSUbQU6Yup6UlzQeiYSR5Rs1zzF5qJaEZ6yg2PYufkVgpK5a6Au6JCDoIiCm6A5AKDsjPX7w/iiYEBwXRmsOv9es3rxTzP/dz3fTHD/Vw82w1g6b5UHLt6X8s9ejk48WIvXfcm8iDVMzce4nja7zDQE+HjQR203R3GGPvbmeTljPd6OYIICN6WiKs5TeuO+IbgxIu9dE3hQapEhBUHrwIAxnm2QisrEy33iDHG/n5EIhG+GN4Fr7exxNPSCkzacgEPmsBlKo3BiRd76dz+uMD+tzt5OnvB5OGU+0i8nQdjQ31Me6OdtrvDGGN/W2IDPayf4A5na1PcyyvCh/+9gOKyCm1364XhxIu9dJ3szGGgJ8LDp6W4l1ek7e7UUqEkfPXHtV3/9GoNGzMjLfeIMcb+3pqbiLEpwAPmRga4dDsP83Zf1tl/3BuLEy/20hkZ6gtTQfx2R/dON+5JvIfruU8gNTbEh/3bars7jDHGALRp0QzrJrhDX0+EPUlZWBObru0uvRCceDGN+PM6rzztdqSGkvIKhB9OAwB8NKAtpMaGz9iCMcaYpvRtZ40vhncGAKw8lIZ98mwt9+iv48SLaUTVdV5JOnZn4/Zzt3Evrwi25hIE9G6t7e4wxhirYbynE97v2xoAMOvHJJ37B76xOPFiGuH2xyMlku/lo0KpG+fpn5aU49tjlYeup7/ZHsZifS33iDHGmDoL/VwxwKUFisuUmPzfC8jJL9Z2l54bJ15MI9rZNIOJWB9PSyt0Zgb6zScz8PBpKVpbmWC0h6O2u8MYY6wO+noifDu2BzrYNsN9RQk++G8CCkvLtd2t58KJF9MIfT2RMH2QLjxI9fHTUkQcvwkAmOXjAkN9/lNgjDFdZmZkiE0BvWBpKkbyPQVm7fwNSh05g9IYvLdhGlM1YfZvOnB+fl38DRSUlMPVzhxDu9ppuzuMMcYawNHSBBH+7hDr6+HAlRxsPtX05nTkxItpjK48wT47vwhbTmcCAGb7ukBPT6TV/jDGGGs4j9aWCBnmCgD46uA1ZDx4quUeNQ4nXkxjqi6wT81WoKRce08hXn3kOkrLlXjN2RIDOrTQWj8YY4w9n3GvtYJXO2uUlCsxZ1fTOuXIiRfTGAcLY1iailFWQUjNLtBKH278/gQ/XbwLAJjr6wKRiI92McZYUyMSiRA2qitMxfpIyHyM789kartLDcaJF9MYkUgENwftXmAffigNFUrCoE42cHey1EofGGOM/XUOFiaY/3+dAADLD1zFrYdN45QjJ15Mo7r9cbpRGxfY/3D2Fn6VZ0MkAj4d4qLx9hljjL1Y415rhd5trFBcpsScXZebxClHTryYRgl3Nmr4iNfhlPv4fG8yAGDmmx3QUWau0fYZY4y9eHp6Iqz4RzeYiPVxLuMRfjh3S9tdeiZOvJhGVd3ZePPBUyiKyzTSZuLtxwjefglKAsZ4OGL6m+000i5jjLGXz9HSBPPe6ggACNt/FXceFWq5R/XjxItplFUzCRwsjEEEJGvgsRKZD55i0vcXUFymxACXFvjynS58QT1jjL1iJng6wdPZEoWlFZi7+zKIdPeUIydeTOPchOu8Xm7i9fBJCQIiz+PR01J0aWmONeN68hPqGWPsFVR1ytHIUA+nbzzEtvO3td2lOvFeiGmcm+PLv7OxqLQC//z+Am49LISDhTE2B/aCqcTgpbXHGGNMu5ysTDFnSOUpx9BfU3H3sW6ecuTEi2lc1Z2Nl1/SnY3lFUoEb7+E3+7kobmJIb7/52uwMTN6KW0xxhjTHYF9WqNXaws8La3A/Ci5Tp5y5MSLaVzXllLoiYCs/GLkKopfaN1EhM9jruBIai4kBnrYFOCBti2avdA2GGOM6abKU45ukBjo4cT1B9iZcEfbXaqFEy+mcaYSA7SzqUyGXvR1XmvjbmDbudsQiYDV73Xnh6QyxtjfjLO1KWb/8azGpb+mIiuvSMs9UsWJF9MKt5dwujHq0l18dfAaACBkqCt8u9i9sLoZY4w1He/3dUbPVs1RUFKuc6ccOfFiWtHtjwepJr2gC+xPXn+AObsuAwA+7N8GgX2dX0i9jDHGmh79P045ig30EJ/2uzBHry7gxItpRXfhiFf+X/5PJCVLgaAfLqJcSRjazQ7zfDu+gB4yxhhrytrZNMMngzsAAJb8koKc/Bd7TfHz+lskXvfu3cOECRNgZWUFExMTdO/eHRcvXhTWExEWLVoEe3t7GBsbY8CAAbhy5YpKHSUlJQgODoa1tTVMTU0xbNgw3L2rmkE/fvwY/v7+kEqlkEql8Pf3R15eniZCbHJcZGYQ6+shv6gMtx4+/y2/9/KK8P6W83hSUg5PZ0t8PdoNenr8gFTGGGPAB/3awM2xOQqKy7EgWjdOOb7yidfjx4/Rt29fGBoaYv/+/UhJScHXX3+N5s2bC2VWrFiB8PBwfPfdd0hISIBMJsPgwYNRUFAglJk5cyaio6OxY8cOnDx5Ek+ePMHQoUNRUVEhlBk3bhySkpJw4MABHDhwAElJSfD399dkuE2G2EAPrvaV8yU+74TZ+YVlCNx8HvcVJWhv0wwR/h6QGOi/wF4yxhhryvT1RFj5j24Q6+vh2NVcRCfe03aXAHrFzZ07l7y8vOpcr1QqSSaTUVhYmLCsuLiYpFIprV+/noiI8vLyyNDQkHbs2CGUuXfvHunp6dGBAweIiCglJYUA0NmzZ4UyZ86cIQB09erVBvU1Pz+fAFB+fn6jYmyqQvYmk9PcX2hxzJVGb5tfVEqj158mp7m/UK8vD9Pdx4UvoYeMMcZeBWtir5PT3F+oa8gBup9f9MLrb8z++5U/4hUTEwMPDw+8++67sLGxQY8ePbBx40ZhfUZGBnJycuDj4yMsk0gk8Pb2xunTpwEAFy9eRFlZmUoZe3t7dOnSRShz5swZSKVSeHp6CmVef/11SKVSoUxNJSUlUCgUKq+/k6oJsxt7Z+PBKzkYHB6PcxmP0ExigC3vv4aWzY1fQg8ZY4y9Cj7s1wbdHKRQFJdjQXSyVk85vvKJ182bN7Fu3Tq0b98eBw8eRFBQEKZPn47//ve/AICcnBwAgK2trcp2tra2wrqcnByIxWJYWFjUW8bGxqZW+zY2NkKZmpYtWyZcDyaVSuHo6PjXgm1i3P64szE5Kx/lFcpnls/JL8aU/13AlP9dxH1FCZysTPD9P18TTlkyxhhj6hjo6+Grf7jBupkEb3WRabcvWm1dA5RKJTw8PBAaGgoA6NGjB65cuYJ169Zh4sSJQjmRSPWCbCKqtaymmmXUla+vnvnz52PWrFnCe4VC8bdKvpytTGEmMUBBSTnS7j+pM4FSKglbz9/Giv1XUVBSDgM9ET7s3wbT32wPI0O+posxxtizucjMcHLuQK3vN175I152dnZwdXVVWdapUyfcvl05c7lMVpn51jwqlZubKxwFk8lkKC0txePHj+stc//+/Vrt//7777WOplWRSCQwNzdXef2d6OmJ0K1qwuw6Tjem3S/AuxvO4P/tSUZBSTncHJvj52AvzPHtqPU/HsYYY02LLuw3XvnEq2/fvrh27ZrKsrS0NDg5OQEAnJ2dIZPJcPjwYWF9aWkp4uPj0adPHwCAu7s7DA0NVcpkZ2cjOTlZKNO7d2/k5+fj/PnzQplz584hPz9fKMNqq2vC7OKyCoQfuga/f5/AxVuPYSrWx6K3XRH1UR90svt7JaiMMcZeHa/8qcaPP/4Yffr0QWhoKEaPHo3z588jIiICERERACpPD86cOROhoaFo37492rdvj9DQUJiYmGDcuHEAAKlUikmTJuGTTz6BlZUVLC0t8emnn6Jr164YNGgQgMqjaL6+vpg8eTI2bNgAAPjwww8xdOhQuLi4aCf4JqBq6qCkO3/O2Xj25kMsiJbj5u9PAQCDOtngi+FdYM8X0DPGGGviXvnEq1evXoiOjsb8+fPxxRdfwNnZGatWrcL48eOFMnPmzEFRURGmTp2Kx48fw9PTE4cOHYKZmZlQ5ptvvoGBgQFGjx6NoqIivPnmm9iyZQv09f88bLl161ZMnz5duPtx2LBh+O677zQXbBPk9sepxrT7BcjJL8aqI2nY8cds8i3MJFg8rDPe6iJ75vV2jDHGWFMgIm3eU8lUKBQKSKVS5Ofn/22u9yIieIYeRW5BCUzE+igsrXwg7TjPVpjr2xFSY0Mt95AxxhirX2P236/8ES+m20QiEbo5NMeR1PsoLK1A2xamWDayG15zttR21xhjjLEXjhMvpnWjPRyQkpWPdz0cMXVgW572hzHG2CuLEy+mdT6dZfDprN0H2jHGGGOa8Mo/ToIxxhhjTFdw4sUYY4wxpiGceDHGGGOMaQgnXowxxhhjGsKJF2OMMcaYhnDixRhjjDGmIZx4McYYY4xpCCdejDHGGGMawokXY4wxxpiGcOLFGGOMMaYhnHgxxhhjjGkIJ16MMcYYYxrCiRdjjDHGmIZw4sUYY4wxpiEG2u4A+xMRAQAUCoWWe8IYY4yxhqrab1ftx+vDiZcOKSgoAAA4OjpquSeMMcYYa6yCggJIpdJ6y4ioIekZ0wilUomsrCyYmZlBJBK90LoVCgUcHR1x584dmJubv9C6tYVjaho4pqaBY2oaOCbdREQoKCiAvb099PTqv4qLj3jpED09PTg4OLzUNszNzZvsF7suHFPTwDE1DRxT08Ax6Z5nHemqwhfXM8YYY4xpCCdejDHGGGMawonX34REIkFISAgkEom2u/LCcExNA8fUNHBMTQPH1PTxxfWMMcYYYxrCR7wYY4wxxjSEEy/GGGOMMQ3hxIsxxhhjTEM48WKMMcYY0xBOvHRIYGAgRCIRRCIRDA0NYWtri8GDB2Pz5s1QKpUvrd1Hjx4hODgYLi4uMDExQatWrTB9+nTk5+cLZTIzMzFp0iQ4OzvD2NgYbdu2RUhICEpLS5+73bVr18LZ2RlGRkZwd3fHiRMn1JabMmUKRCIRVq1a9cw65XI5vL29YWxsjJYtW+KLL76oNXdWfHw83N3dYWRkhDZt2mD9+vXPHUNN9cX05MkTTJs2DQ4ODjA2NkanTp2wbt06nY3p+PHjePvtt2Fvbw+RSIQ9e/YI68rKyjB37lx07doVpqamsLe3x8SJE5GVlaWz8TwrpiqpqakYNmwYpFIpzMzM8Prrr+P27ds6G9OyZcvQq1cvmJmZwcbGBiNGjMC1a9dUyhARFi1aBHt7exgbG2PAgAG4cuXKM+vWVFy6PPYBwLBhw9CqVSsYGRnBzs4O/v7+Dfquq8Pjnm6PexpBTGcEBASQr68vZWdn0927d+nixYu0dOlSatasGb311ltUVlb2UtqVy+U0cuRIiomJofT0dDp69Ci1b9+eRo0aJZTZv38/BQYG0sGDB+nGjRu0d+9esrGxoU8++eS52tyxYwcZGhrSxo0bKSUlhWbMmEGmpqZ069YtlXLR0dHk5uZG9vb29M0339RbZ35+Ptna2tJ7771Hcrmcdu/eTWZmZrRy5UqhzM2bN8nExIRmzJhBKSkptHHjRjI0NKRdu3Y9VxyNiemDDz6gtm3bUmxsLGVkZNCGDRtIX1+f9uzZo5Mx7du3jz777DPavXs3AaDo6GhhXV5eHg0aNIh27txJV69epTNnzpCnpye5u7vXW6e2P6P6YiIiSk9PJ0tLS5o9ezZdunSJbty4Qb/88gvdv39fZ2MaMmQIRUZGUnJyMiUlJZGfnx+1atWKnjx5IpQJCwsjMzMz2r17N8nlchozZgzZ2dmRQqHQibh0eewjIgoPD6czZ85QZmYmnTp1inr37k29e/dudHs87un+uKcJnHjpkICAABo+fHit5UePHiUAtHHjRiKq3OlNnjyZWrRoQWZmZjRw4EBKSkpS2Wbv3r3k7u5OEomErKys6J133mlUX3788UcSi8X1DngrVqwgZ2fnRtVb5bXXXqOgoCCVZR07dqR58+YJ7+/evUstW7ak5ORkcnJyeuYAtHbtWpJKpVRcXCwsW7ZsGdnb25NSqSQiojlz5lDHjh1VtpsyZQq9/vrrzxVHdc+KqXPnzvTFF1+orO/ZsyctXLiwzjq1HVMVdUlKTefPnycAtXYi1elKPETqYxozZgxNmDChUfXoUkxERLm5uQSA4uPjiYhIqVSSTCajsLAwoUxxcTFJpVJav359nfVoMq6mNvbt3buXRCIRlZaWNqpuHvcqNZVx72XhU41NwBtvvAE3NzdERUWBiODn54ecnBzs27cPFy9eRM+ePfHmm2/i0aNHAIBff/0VI0eOhJ+fHxITE3H06FF4eHg0qs38/HyYm5vDwKDu6Tzz8/NhaWnZ6HhKS0tx8eJF+Pj4qCz38fHB6dOnAVROGO7v74/Zs2ejc+fOausJDAzEgAEDhPdnzpyBt7e3ykP4hgwZgqysLGRmZgplarY7ZMgQXLhwAWVlZY2OpTExeXl5ISYmBvfu3QMRITY2FmlpaRgyZIhOxtRY+fn5EIlEaN68ubCsKcWjVCrx66+/okOHDhgyZAhsbGzg6elZ63SkrsdUdZqs6m8zIyMDOTk5Ku1LJBJ4e3sL301djUsXx75Hjx5h69at6NOnDwwNDRtcL497r+a49zw48WoiOnbsiMzMTMTGxkIul+Onn36Ch4cH2rdvj5UrV6J58+bYtWsXAGDp0qV47733sHjxYnTq1Alubm5YsGBBg9t6+PAhlixZgilTptRZ5saNG/j2228RFBTU6FgePHiAiooK2Nraqiy3tbVFTk4OAGD58uUwMDDA9OnT66zHzs4OrVq1Et7n5OSorbNqXX1lysvL8eDBg0bH0piY/v3vf8PV1RUODg4Qi8Xw9fXF2rVr4eXlpZMxNUZxcTHmzZuHcePGqUxy25Tiyc3NxZMnTxAWFgZfX18cOnQI77zzDkaOHIn4+HihnC7HRESYNWsWvLy80KVLF5U+1PfdBHQ3Ll0Z++bOnQtTU1NYWVnh9u3b2Lt3b6Pi4HHv1Rv3nlfdhzOYTiEiiEQiXLx4EU+ePIGVlZXK+qKiIty4cQMAkJSUhMmTJ6utJzQ0FKGhocL7lJQUlS+8QqGAn58fXF1dERISoraOrKws+Pr64t1338UHH3zw3DGJRCKV99VjXL16NS5dulSrTHXLli1rUJ01lzekzPOqKyagcgA6e/YsYmJi4OTkhOPHj2Pq1Kmws7PDoEGDAOhmTM9SVlaG9957D0qlEmvXrlVZ15TiqbqIe/jw4fj4448BAN27d8fp06exfv16eHt7A9DtmKZNm4bLly/j5MmTDepj9WW6GpeujH2zZ8/GpEmTcOvWLSxevBgTJ07EL7/80ug4edx7Nca9v4ITryYiNTUVzs7OUCqVsLOzQ1xcXK0yVad4jI2N66wnKCgIo0ePFt7b29sLPxcUFMDX1xfNmjVDdHS02sPoWVlZGDhwIHr37o2IiIjnisXa2hr6+voq/20DlUccbG1tceLECeTm5qoMihUVFfjkk0+watUq4VBzTTKZTG2dwJ//LdVVxsDAoNaA/iJjKioqwoIFCxAdHQ0/Pz8AQLdu3ZCUlISVK1cKA5AuxdQQZWVlGD16NDIyMnDs2DGVo13q6HI81tbWMDAwgKurq8ryTp06qU1kquhKTMHBwYiJicHx48fh4OCg0j+g8giBnZ2dSvs1jxhUpytx6crYZ21tDWtra3To0AGdOnWCo6Mjzp49i969ezcoDh73Xp1x76/iU41NwLFjxyCXyzFq1Cj07NkTOTk5MDAwQLt27VRe1tbWACq/2EePHlVbl6Wlpco2VdcxKBQK+Pj4QCwWIyYmBkZGRrW2vXfvHgYMGICePXsiMjISenrP9/URi8Vwd3fH4cOHVZYfPnwYffr0gb+/Py5fvoykpCThZW9vj9mzZ+PgwYN11tu7d28cP35c5REXhw4dgr29PVq3bi2UqdnuoUOH4OHh0ajrNRobU1lZGcrKymr9zvT19eu9XV6bMT1LVdJ1/fp1HDlypEGDnS7HIxaL0atXr1qPYkhLS4OTk1Od22k7JiLCtGnTEBUVhWPHjsHZ2VllvbOzM2QymUr7paWliI+PR58+fXQ2LkB3xr6aqo6slJSUNDgWHvf+1JTHvRdCM9fws4ao75bqoUOHUnl5OSmVSvLy8iI3Nzc6cOAAZWRk0KlTp+izzz6jhIQEIiKKjY0lPT09+vzzzyklJYUuX75My5cvr7NdhUJBnp6e1LVrV0pPT6fs7GzhVV5eTkRE9+7do3bt2tEbb7xBd+/eVSnzPKpuQd60aROlpKTQzJkzydTUlDIzM9WWV3d3z7x588jf3194n5eXR7a2tjR27FiSy+UUFRVF5ubmam9B/vjjjyklJYU2bdr0wm+rrismb29v6ty5M8XGxtLNmzcpMjKSjIyMaO3atToZU0FBASUmJlJiYiIBoPDwcEpMTKRbt25RWVkZDRs2jBwcHCgpKUnl+1BSUqKT8TwrJiKiqKgoMjQ0pIiICLp+/Tp9++23pK+vTydOnNDZmD766COSSqUUFxen8jkUFhYKZcLCwkgqlVJUVBTJ5XIaO3ZsrcdJaDMuXR77zp07R99++y0lJiZSZmYmHTt2jLy8vKht27Yqd901BI97uj/uaQInXjokICCAABAAMjAwoBYtWtCgQYNo8+bNVFFRIZRTKBQUHBxM9vb2ZGhoSI6OjjR+/Hi6ffu2UGb37t3UvXt3EovFZG1tTSNHjqyz3djYWKHdmq+MjAwiIoqMjKyzzPNas2YNOTk5kVgspp49ewq3v6ujbgAKCAggb29vlWWXL1+mfv36kUQiIZlMRosWLRJuP64SFxdHPXr0ILFYTK1bt6Z169Y9dww11RdTdnY2BQYGkr29PRkZGZGLiwt9/fXXKv3TpZjq+l4EBARQRkZGnd+H2NhYnYznWTFV2bRpE7Vr146MjIzIzc2t1vOGdC2muj6HyMhIoYxSqaSQkBCSyWQkkUiof//+JJfLdSYuXR77Ll++TAMHDiRLS0uSSCTUunVrCgoKort37zY6TiIe93R93NMEEVGNR8EyxhhjjLGXgq/xYowxxhjTEE68GGOMMcY0hBMvxhhjjDEN4cSLMcYYY0xDOPFijDHGGNMQTrwYY4wxxjSEEy/GGGOMMQ3hxIsx9rfXunVrrFq1SittL1q0CLa2thCJRNizZ49W+sBefcuWLUOvXr1gZmYGGxsbjBgxotb0WESERYsWwd7eHsbGxhgwYACuXLkirH/06BGCg4Ph4uICExMTtGrVCtOnT0d+fr5KPUuXLkWfPn1gYmIizKP5LHFxcRCJRBCJRNDT04NUKkWPHj0wZ84cZGdn/+X4n2Xjxo3o168fLCwsYGFhgUGDBuH8+fMqZdatW4du3brB3Nwc5ubm6N27N/bv39/otjjxYqwJCgwMFAap6q/09HShzJ07dzBp0iTY29tDLBbDyckJM2bMwMOHD1XqGjBggLC9WCxG27ZtMX/+/Frz0KlrTyQSYceOHUIZIkJERAQ8PT3RrFkzNG/eHB4eHli1ahUKCwtV6rt79y7EYjE6duyoNsbY2FgMHDgQlpaWMDExQfv27REQEIDy8vI646/+UmfLli1qdwQJCQn48MMP6/2dvwypqalYvHgxNmzYgOzsbLz11lsa70NNuraDnjFjBtzd3SGRSNC9e/da6+Pi4jB8+HDY2dnB1NQU3bt3x9atW1XKREVFYfDgwWjRooWww6w5/2FDdrxNWXx8PP71r3/h7NmzOHz4MMrLy+Hj44OnT58KZVasWIHw8HB89913SEhIgEwmw+DBg1FQUAAAyMrKQlZWFlauXAm5XI4tW7bgwIEDmDRpkkpbpaWlePfdd/HRRx81up/Xrl1DVlYWEhISMHfuXBw5cgRdunSBXC7/a7+AZ4iLi8PYsWMRGxuLM2fOoFWrVvDx8cG9e/eEMg4ODggLC8OFCxdw4cIFvPHGGxg+fLjKd79BtPrcfMbYc6k+t526+eVu3LhBNjY25OXlRXFxcXTr1i3at28fde7cmdq3b08PHz4U6vL29qbJkydTdnY23bp1i3bt2kVmZmY0b948lTbxxzQ0NdssKioSyowfP56MjY1p6dKldP78ecrIyKA9e/bQgAEDKDo6WqW+JUuW0Pjx48nR0ZFOnjypsi45OZkkEgnNnj2b5HI5paen0/79+2nSpElUUlJCeXl5Kn1Q1zd1IiMjSSqV/oXf/Iv1888/E4BaU6FUV33uS00YMmQIRUZGUnJyMiUlJZGfnx+1atWKnjx5IpQJCwsjMzMz2r17N8nlchozZozK3I9yuZxGjhxJMTExlJ6eTkePHqX27dvTqFGjVNr6/PPPKTw8nGbNmlXn5xIcHEzfffcd+fv7k5ubW631S5cupYULF9KpU6coPT2dVq9eTXp6ehQTEyOUmTFjBi1fvpzOnz9PaWlpNH/+fDI0NKRLly4JZcaNG0dr1qyhxMRESk1Npffff5+kUulzTw2k63JzcwmAML2PUqkkmUxGYWFhQpni4mKSSqW0fv36Ouv58ccfSSwWU1lZWa11jfl7q5q+6fHjxyrLCwsLycXFhfr27auyfPPmzdSxY0eSSCTk4uJCa9asUVl/584dGjNmDFlYWJCJiQm5u7vT2bNnG9QXIqLy8nIyMzOj77//vt5yFhYW9J///KfB9RLxXI2MNUkBAQE0fPjwOtf7+vqSg4ODykTJRJXzppmYmFBQUJCwzNvbm2bMmKFSbuTIkdSzZ0+VZQBqJU/V7dy5kwDUmtuQqHJQz8vLU3nfpk0bOnDgAM2dO5fef/99lfLffPMNtW7dus62anpW34jUz8sXEhJCRLXnxANA69evJz8/PzI2NqaOHTvS6dOn6fr16+Tt7U0mJib0+uuvU3p6ukobMTEx1LNnT5JIJOTs7EyLFi1Su0MiIgoJCVE772nVZxsaGkp2dnbk5ORERH/OGWhkZESWlpY0efJkKigoEOqr2m7p0qVkY2NDUqlUaP/TTz8lCwsLatmyJW3atKnBv1ci3dlBh4SEqE281Pm///u/Wt+pmlxdXWnx4sV1rm/ojrepun79OgEQ5uy8ceMGAVBJRomIhg0bRhMnTqyzno0bN5K1tbXadS8i8SKqHA8A0P3794mIKCIiguzs7Gj37t108+ZN2r17N1laWtKWLVuIiKigoIDatGlD/fr1oxMnTtD169dp586ddPr06Qb1hahyXlAjIyP6+eef1a4vLy+n7du3k1gspitXrjS4XiIiPtXI2Cvm0aNHOHjwIKZOnQpjY2OVdTKZDOPHj8fOnTtBdUzT+ttvv+HUqVMwNDRsVLtbt26Fi4sLhg8fXmudSCSCVCoV3sfGxqKwsBCDBg2Cv78/fvzxR+F0RlU/s7Ozcfz48Ub1oT59+vTBqlWrYG5ujuzsbGRnZ+PTTz+ts/ySJUswceJEJCUloWPHjhg3bhymTJmC+fPn48KFCwCAadOmCeUPHjyICRMmYPr06UhJScGGDRuwZcsWLF26VG39n376KSIjIwFA6E+Vo0ePIjU1FYcPH8Yvv/yCwsJC+Pr6wsLCAgkJCfjpp59w5MgRlfYB4NixY8jKysLx48cRHh6ORYsWYejQobCwsMC5c+cQFBSEoKAg3Llzp8G/t6rTg5aWlgCAjIwM5OTkwMfHRygjkUjg7e2N06dP11uPubk5DAwMGtz288rPzxf6q45SqURBQUG9ZQoLC1FWVlZvmaaKiDBr1ix4eXmhS5cuAICcnBwAgK2trUpZW1tbYV1NDx8+xJIlSzBlypSX2t+qyxEyMzMBVP5tfv311xg5ciScnZ0xcuRIfPzxx9iwYQMAYNu2bfj999+xZ88eeHl5oV27dhg9ejR69+7d4DbnzZuHli1bYtCgQSrL5XI5mjVrBolEgqCgIERHR8PV1bVxATUqTWOM6YSAgADS19cnU1NT4fWPf/yDiIjOnj1b7xGg8PBwlf8evb29ydDQkExNTUksFhMA0tPTo127dqlsB4CMjIxU2jQ1NaUbN24QEVGnTp1o2LBhDer/uHHjaObMmcJ7Nzc32rhxo/C+vLycAgMDCQDJZDIaMWIEffvtt5Sfn6+2vvrira6u/8DVHfFauHCh8P7MmTMEQOVo0fbt28nIyEh4369fPwoNDVWp93//+x/Z2dnV2Z/o6GiqOQwHBASQra2tyinGiIgIsrCwUDnd9+uvv5Kenh7l5OQI2zk5OVFFRYVQxsXFhfr16ye8Ly8vJ1NTU9q+fXudfapOqVTS22+/TV5eXsKyU6dOEQC6d++eStnJkyeTj4+P2noePHhArVq1os8++0zt+hd5xOunn34isVhMycnJdZZZsWIFWVpaCn8D6kydOpXatm2rcir9VTF16lRycnKiO3fuCMuqPtesrCyVsh988AENGTKkVh35+fnk6elJvr6+VFpaqraduj5XV1dXYfzw9fUlovqPeO3bt48A0Pnz54UjsMbGxirjkEQiIRsbGyIi+uijj6h///5q+3Tr1i2V7ZYuXVqrzPLly8nCwoJ+++23WutKSkro+vXrlJCQQPPmzSNra+tGH/F6+f96MMZeioEDB2LdunXCe1NT0wZtR38c6ap+Afr48ePx2WefQaFQYPny5TA3N8eoUaNqbfvNN9/U+g/Q0dFRqLeui9qry8vLQ1RUFE6ePCksmzBhAjZv3owPPvgAAKCvr4/IyEh8+eWXOHbsGM6ePYulS5di+fLlOH/+POzs7BoU61/RrVs34eeqowBdu3ZVWVZcXAyFQgFzc3NcvHgRCQkJKke4KioqUFxcjMLCQpiYmDS47a5du0IsFgvvU1NT4ebmpvIZ9+3bF0qlEteuXRP617lzZ+jp/Xkiw9bWVjiiAVT+Xq2srJCbm9ugfkybNg2XL19W+ayq1Pys6/r8FQoF/Pz84OrqipCQkAa1+7zi4uIQGBiIjRs3onPnzmrLbN++HYsWLcLevXthY2OjtsyKFSuwfft2xMXFwcjI6GV2WeOCg4MRExOD48ePw8HBQVguk8kAVB75qv73lZubW+soWEFBAXx9fdGsWTNER0c3+uj4vn37UFZWBgC1jsqrk5qaCqDy7mOlUgmg8mYIT09PlXL6+vrPrNPe3h5JSUnC+5pHNFeuXInQ0FAcOXJEZQyoIhaL0a5dOwCAh4cHEhISsHr1auFoW0Nw4sVYE2VqaioMANW1a9cOIpEIKSkpGDFiRK31V69ehYWFBaytrYVlUqlUqOuHH35A586dsWnTplp3K8lkMrVtAkCHDh2EAbI+27ZtQ3FxscqgSURQKpVISUlROWzfsmVL+Pv7w9/fH19++SU6dOiA9evXY/Hixc9s56+qvjOpSijULavaESiVSixevBgjR46sVVdjd941k+j6ktrqy2vuAEUikdplVX2ujy7soBsjPj4eb7/9NsLDwzFx4kS1ZXbu3IlJkybhp59+qvUPRJVn7XibKiJCcHAwoqOjERcXB2dnZ5X1zs7OkMlkOHz4MHr06AGg8u7E+Ph4LF++XCinUCgwZMgQSCQSxMTEPFdi6uTk1OCyRUVFiIiIQP/+/dGiRQsAlePCzZs3MX78eLXbdOvWDf/5z3/w6NGjWomVgYFBnWPYV199hS+//BIHDx6Eh4dHg/pHRLXuAH8WvsaLsVeMlZUVBg8ejLVr16KoqEhlXU5ODrZu3YoxY8bUuSM3NDTEggULsHDhwlqPgKjPuHHjkJaWhr1799ZaR0TCtUKbNm3CJ598gqSkJOH122+/YeDAgdi8eXOd9VtYWMDOzk7l9vfGEovFqKioeO7t69OzZ09cu3YN7dq1q/WqfhTqebi6uiIpKUkl9lOnTkFPTw8dOnT4q11XQUSYNm0aoqKicOzYsXp30FWqdtB9+vQRlikUCvj4+EAsFj/3Drqh4uLi4Ofnh7CwsDofC7J9+3YEBgZi27Zt8PPzU1vmq6++wpIlS3DgwIEG73ibin/961/44YcfsG3bNpiZmSEnJwc5OTnCGCESiTBz5kyEhoYiOjoaycnJCAwMhImJCcaNGwegMpGuegTFpk2boFAohHqq/13dvn0bSUlJuH37NioqKoS/8ydPnjyzn7m5ucjJycH169exY8cO9O3bFw8ePFA5ur9o0SIsW7YMq1evRlpaGuRyOSIjIxEeHg4AGDt2LGQyGUaMGIFTp07h5s2b2L17N86cOVNnuytWrMDChQuxefNmtG7dWoirep8XLFiAEydOIDMzE3K5HJ999hni4uLqTADr1KgTk4wxnfCsuxrT0tLI2tqa+vXrR/Hx8XT79m3av38/denSRe3jJGre1VhSUkJ2dnb01VdfCctQx+Mkqq47UiqVNGbMGDI2NqbQ0FBKSEigzMxM+vnnn+mNN96g6OhoSkxMJACUmppaq88RERHUokULKi0tpfXr11NQUBAdPHiQ0tPTKTk5mebMmUN6enoUFxdXa1s08BqvqutYjhw5Qr///js9ffqUiNRf41W9voyMDAJAiYmJwrKa16QcOHCADAwMKCQkhJKTkyklJYV27NhR53VNRHVf41Xzs3369CnZ2dnRqFGjSC6X07Fjx6hNmzYUEBBQ73bqPtuasdb00UcfkVQqpbi4OJXPufodsmFhYSSVSikqKorkcjmNHTtW5XESCoWCPD09qWvXrpSenq72kSdEldfbJCYm0uLFi6lZs2aUmJhIiYmJKndrXr9+nRITE2nKlCnUoUMHoUzVNXCxsbFkYmJC8+fPV2mn+nd827ZtZGBgQGvWrFEpU/1O2+XLl5NYLKZdu3aplKnel6YMNe6grXpFRkYKZZRKJYWEhJBMJiOJREL9+/cX7nokUn9ncNUrIyNDKBcQEKC2TGxsbJ39q163SCQiMzMzcnNzo9mzZ6t9PMzWrVupe/fuJBaLycLCgvr3709RUVHC+szMTBo1ahSZm5uTiYkJeXh40Llz5+ps38nJSW2fq+58JiL65z//SU5OTiQWi6lFixb05ptv0qFDh+r/xavBiRdjTdCzEi+iyoEnMDCQZDIZGRoakqOjIwUHB9ODBw9UyqnbORNVPh+pRYsWwo6nrgF32bJlwjYVFRW0bt066tWrF5mYmJC5uTm5u7vT6tWrqbCwkKZNm0aurq5q+5ubm0v6+vq0e/duunTpEk2YMIGcnZ1JIpGQlZUV9e/fX+XZTNU1NPEiIgoKCiIrK6tnPk6isYkXUWXy1adPHzI2NiZzc3N67bXXKCIios6+NDTxImr44ySqe57ES9d20N7e3vXWU1cd3t7ez6yjeuLakB0vYy+CiKiOe8oZY4wxxtgLxdd4McYYY4xpCCdejDHGGGMawokXY4wxxpiGcOLFGGOMMaYhnHgxxhhjjGkIJ16MMcYYYxrCiRdjjDHGmIZw4sUYY4wxpiGceDHGGGOMaQgnXowxxhhjGsKJF2OMMcaYhnDixRhjjDGmIf8fygnTBUrb0noAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cams_masked.sel(lat=60., lon=10.75, method='nearest').plot()" ] }, { "cell_type": "markdown", "id": "b34d4ed5-2b85-4548-aed8-0976a3b8f473", "metadata": { "tags": [] }, "source": [ "## Save xarray Dataset\n", "\n", "It is very often convenient to save intermediate or final results into a local file. We will learn more about the different file formats Xarray can handle, but for now let's save it as a netCDF file. Check the file size after saving the result into netCDF." ] }, { "cell_type": "code", "execution_count": 52, "id": "7f1d1630", "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "cams_masked.to_netcdf('cams_Nordic_masked.nc')" ] }, { "cell_type": "markdown", "id": "57ad2af8", "metadata": {}, "source": [ "## Advanced Saving methods\n", "### Encoding and Compression\n", "\n", "From the near-surface temperature dataset we already know that values are encoded as `float32`. A compression method can be defined as well; if the format is netCDF4 with the engine set to 'netcdf4' or 'h5netcdf' there are different compression options. The easiest solution is to stick with the default one for NetCDF4 files.\n", "\n", "Note that encoding parameters needs to be done through a nested dictionary and parameters have to be defined for each single variable." ] }, { "cell_type": "code", "execution_count": 53, "id": "bb83939f", "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "cams_masked.to_netcdf('cams_Nordic_mcs.nc',\n", " engine='netcdf4',\n", " encoding={'pm2p5_conc':{\"dtype\": np.float32,\n", " 'zlib': True, 'complevel':4}\n", " }\n", " )" ] }, { "cell_type": "markdown", "id": "be248f7e", "metadata": {}, "source": [ "
\n", " Key Points\n", "
\n", "
    \n", "
  • Xarray Dataset and DataArray
  • \n", "
  • Read and get metadata from local raster file
  • \n", "
  • Dataset and DataArray selection
  • \n", "
  • Aggregation and statistics
  • \n", "
  • Masking values
  • \n", "
\n", "
" ] }, { "cell_type": "markdown", "id": "44c44075", "metadata": {}, "source": [ "Through the datatype and the compression a compression of almost 10 time has been achieved; as drawback reading speed has been decreased." ] }, { "cell_type": "markdown", "id": "8a045187", "metadata": {}, "source": [ "## References\n", "\n", "```{bibliography}\n", ":style: alpha\n", ":filter: topic % \"xarray\" and not topic % \"package\"\n", ":keyprefix: a-\n", "```" ] }, { "cell_type": "markdown", "id": "8c9ad204", "metadata": {}, "source": [ "## Packages citation\n", "\n", "```{bibliography}\n", ":style: alpha\n", ":filter: topic % \"xarray\" and topic % \"package\"\n", ":keyprefix: a-\n", "```" ] }, { "cell_type": "code", "execution_count": null, "id": "41600614-d4e0-46fe-97a5-929952b51987", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" } }, "nbformat": 4, "nbformat_minor": 5 }