Save larger files from bucket to bucket using forces minIO
Contents
Save larger files from bucket to bucket using forces minIO#
It is important to save your results in a place that can last longer than a few days/weeks!
- When you have saved data locally on your JupyterLab instance and you want to mak a backup on https://forces2021.uiogeo-apps.sigma2.no/import os
import pathlib
import s3fs
import xarray as xr
Connect to bucket (anonymous login for public data only)#
fs = s3fs.S3FileSystem(anon=True,
client_kwargs={
'endpoint_url': 'https://climate.uiogeo-apps.sigma2.no/'
})
Get data into xarray#
s3path = 's3://ESGF/CMIP6/GeoMIP/MPI-M/*/G6sulfur/*/day/tasmin/gn/*/*.nc'
remote_files = fs.glob(s3path)
remote_files
['ESGF/CMIP6/GeoMIP/MPI-M/MPI-ESM1-2-LR/G6sulfur/r1i1p1f1/day/tasmin/gn/v20190710/tasmin_day_MPI-ESM1-2-LR_G6sulfur_r1i1p1f1_gn_20150101-20341231.nc',
'ESGF/CMIP6/GeoMIP/MPI-M/MPI-ESM1-2-LR/G6sulfur/r1i1p1f1/day/tasmin/gn/v20190710/tasmin_day_MPI-ESM1-2-LR_G6sulfur_r1i1p1f1_gn_20350101-20541231.nc',
'ESGF/CMIP6/GeoMIP/MPI-M/MPI-ESM1-2-LR/G6sulfur/r1i1p1f1/day/tasmin/gn/v20190710/tasmin_day_MPI-ESM1-2-LR_G6sulfur_r1i1p1f1_gn_20550101-20741231.nc',
'ESGF/CMIP6/GeoMIP/MPI-M/MPI-ESM1-2-LR/G6sulfur/r1i1p1f1/day/tasmin/gn/v20190710/tasmin_day_MPI-ESM1-2-LR_G6sulfur_r1i1p1f1_gn_20750101-20941231.nc',
'ESGF/CMIP6/GeoMIP/MPI-M/MPI-ESM1-2-LR/G6sulfur/r1i1p1f1/day/tasmin/gn/v20190710/tasmin_day_MPI-ESM1-2-LR_G6sulfur_r1i1p1f1_gn_20950101-20991231.nc',
'ESGF/CMIP6/GeoMIP/MPI-M/MPI-ESM1-2-LR/G6sulfur/r2i1p1f1/day/tasmin/gn/v20190710/tasmin_day_MPI-ESM1-2-LR_G6sulfur_r2i1p1f1_gn_20150101-20341231.nc',
'ESGF/CMIP6/GeoMIP/MPI-M/MPI-ESM1-2-LR/G6sulfur/r2i1p1f1/day/tasmin/gn/v20190710/tasmin_day_MPI-ESM1-2-LR_G6sulfur_r2i1p1f1_gn_20350101-20541231.nc',
'ESGF/CMIP6/GeoMIP/MPI-M/MPI-ESM1-2-LR/G6sulfur/r2i1p1f1/day/tasmin/gn/v20190710/tasmin_day_MPI-ESM1-2-LR_G6sulfur_r2i1p1f1_gn_20550101-20741231.nc',
'ESGF/CMIP6/GeoMIP/MPI-M/MPI-ESM1-2-LR/G6sulfur/r2i1p1f1/day/tasmin/gn/v20190710/tasmin_day_MPI-ESM1-2-LR_G6sulfur_r2i1p1f1_gn_20750101-20941231.nc',
'ESGF/CMIP6/GeoMIP/MPI-M/MPI-ESM1-2-LR/G6sulfur/r2i1p1f1/day/tasmin/gn/v20190710/tasmin_day_MPI-ESM1-2-LR_G6sulfur_r2i1p1f1_gn_20950101-21001231.nc']
# Iterate through remote_files to create a fileset
fileset = [fs.open(file) for file in remote_files]
# This works
dset = xr.open_mfdataset(fileset, combine='by_coords', use_cftime=True)
dset
<xarray.Dataset> Dimensions: (bnds: 2, lat: 96, lon: 192, time: 31411) Coordinates: * time (time) object 2015-01-01 12:00:00 ... 2100-12-31 12:00:00 * lat (lat) float64 -88.57 -86.72 -84.86 -83.0 ... 84.86 86.72 88.57 * lon (lon) float64 0.0 1.875 3.75 5.625 ... 352.5 354.4 356.2 358.1 height float64 2.0 Dimensions without coordinates: bnds Data variables: time_bnds (time, bnds) object dask.array<chunksize=(7305, 2), meta=np.ndarray> lat_bnds (time, lat, bnds) float64 dask.array<chunksize=(7305, 96, 2), meta=np.ndarray> lon_bnds (time, lon, bnds) float64 dask.array<chunksize=(7305, 192, 2), meta=np.ndarray> tasmin (time, lat, lon) float32 dask.array<chunksize=(7305, 96, 192), meta=np.ndarray> Attributes: (12/48) CDO: Climate Data Operators version 1.9.9rc8 (https://... Conventions: CF-1.7 CMIP-6.2 activity_id: GeoMIP branch_method: standard branch_time_in_child: [60265.] branch_time_in_parent: [60265.] ... ... title: MPI-ESM1-2-LR output prepared for CMIP6 variable_id: tasmin variant_label: r1i1p1f1 license: CMIP6 model data produced by MPI-M is licensed un... cmor_version: 3.6.0 tracking_id: hdl:21.14100/dd1cb01a-dbe1-4096-835a-c9604879eea8
xarray.Dataset
- bnds: 2
- lat: 96
- lon: 192
- time: 31411
- time(time)object2015-01-01 12:00:00 ... 2100-12-...
- bounds :
- time_bnds
- axis :
- T
- long_name :
- time
- standard_name :
- time
array([cftime.DatetimeProlepticGregorian(2015, 1, 1, 12, 0, 0, 0), cftime.DatetimeProlepticGregorian(2015, 1, 2, 12, 0, 0, 0), cftime.DatetimeProlepticGregorian(2015, 1, 3, 12, 0, 0, 0), ..., cftime.DatetimeProlepticGregorian(2100, 12, 29, 12, 0, 0, 0), cftime.DatetimeProlepticGregorian(2100, 12, 30, 12, 0, 0, 0), cftime.DatetimeProlepticGregorian(2100, 12, 31, 12, 0, 0, 0)], dtype=object)
- lat(lat)float64-88.57 -86.72 ... 86.72 88.57
- bounds :
- lat_bnds
- units :
- degrees_north
- axis :
- Y
- long_name :
- Latitude
- standard_name :
- latitude
array([-88.572169, -86.722531, -84.86197 , -82.998942, -81.134977, -79.270559, -77.405888, -75.541061, -73.676132, -71.811132, -69.946081, -68.080991, -66.215872, -64.35073 , -62.485571, -60.620396, -58.755209, -56.890013, -55.024808, -53.159595, -51.294377, -49.429154, -47.563926, -45.698694, -43.833459, -41.96822 , -40.102979, -38.237736, -36.372491, -34.507243, -32.641994, -30.776744, -28.911492, -27.046239, -25.180986, -23.315731, -21.450475, -19.585219, -17.719962, -15.854704, -13.989446, -12.124187, -10.258928, -8.393669, -6.528409, -4.66315 , -2.79789 , -0.93263 , 0.93263 , 2.79789 , 4.66315 , 6.528409, 8.393669, 10.258928, 12.124187, 13.989446, 15.854704, 17.719962, 19.585219, 21.450475, 23.315731, 25.180986, 27.046239, 28.911492, 30.776744, 32.641994, 34.507243, 36.372491, 38.237736, 40.102979, 41.96822 , 43.833459, 45.698694, 47.563926, 49.429154, 51.294377, 53.159595, 55.024808, 56.890013, 58.755209, 60.620396, 62.485571, 64.35073 , 66.215872, 68.080991, 69.946081, 71.811132, 73.676132, 75.541061, 77.405888, 79.270559, 81.134977, 82.998942, 84.86197 , 86.722531, 88.572169])
- lon(lon)float640.0 1.875 3.75 ... 356.2 358.1
- bounds :
- lon_bnds
- units :
- degrees_east
- axis :
- X
- long_name :
- Longitude
- standard_name :
- longitude
array([ 0. , 1.875, 3.75 , 5.625, 7.5 , 9.375, 11.25 , 13.125, 15. , 16.875, 18.75 , 20.625, 22.5 , 24.375, 26.25 , 28.125, 30. , 31.875, 33.75 , 35.625, 37.5 , 39.375, 41.25 , 43.125, 45. , 46.875, 48.75 , 50.625, 52.5 , 54.375, 56.25 , 58.125, 60. , 61.875, 63.75 , 65.625, 67.5 , 69.375, 71.25 , 73.125, 75. , 76.875, 78.75 , 80.625, 82.5 , 84.375, 86.25 , 88.125, 90. , 91.875, 93.75 , 95.625, 97.5 , 99.375, 101.25 , 103.125, 105. , 106.875, 108.75 , 110.625, 112.5 , 114.375, 116.25 , 118.125, 120. , 121.875, 123.75 , 125.625, 127.5 , 129.375, 131.25 , 133.125, 135. , 136.875, 138.75 , 140.625, 142.5 , 144.375, 146.25 , 148.125, 150. , 151.875, 153.75 , 155.625, 157.5 , 159.375, 161.25 , 163.125, 165. , 166.875, 168.75 , 170.625, 172.5 , 174.375, 176.25 , 178.125, 180. , 181.875, 183.75 , 185.625, 187.5 , 189.375, 191.25 , 193.125, 195. , 196.875, 198.75 , 200.625, 202.5 , 204.375, 206.25 , 208.125, 210. , 211.875, 213.75 , 215.625, 217.5 , 219.375, 221.25 , 223.125, 225. , 226.875, 228.75 , 230.625, 232.5 , 234.375, 236.25 , 238.125, 240. , 241.875, 243.75 , 245.625, 247.5 , 249.375, 251.25 , 253.125, 255. , 256.875, 258.75 , 260.625, 262.5 , 264.375, 266.25 , 268.125, 270. , 271.875, 273.75 , 275.625, 277.5 , 279.375, 281.25 , 283.125, 285. , 286.875, 288.75 , 290.625, 292.5 , 294.375, 296.25 , 298.125, 300. , 301.875, 303.75 , 305.625, 307.5 , 309.375, 311.25 , 313.125, 315. , 316.875, 318.75 , 320.625, 322.5 , 324.375, 326.25 , 328.125, 330. , 331.875, 333.75 , 335.625, 337.5 , 339.375, 341.25 , 343.125, 345. , 346.875, 348.75 , 350.625, 352.5 , 354.375, 356.25 , 358.125])
- height()float642.0
- units :
- m
- axis :
- Z
- positive :
- up
- long_name :
- height
- standard_name :
- height
array(2.)
- time_bnds(time, bnds)objectdask.array<chunksize=(7305, 2), meta=np.ndarray>
Array Chunk Bytes 502.58 kB 116.88 kB Shape (31411, 2) (7305, 2) Count 15 Tasks 5 Chunks Type object numpy.ndarray - lat_bnds(time, lat, bnds)float64dask.array<chunksize=(7305, 96, 2), meta=np.ndarray>
Array Chunk Bytes 48.25 MB 11.22 MB Shape (31411, 96, 2) (7305, 96, 2) Count 20 Tasks 5 Chunks Type float64 numpy.ndarray - lon_bnds(time, lon, bnds)float64dask.array<chunksize=(7305, 192, 2), meta=np.ndarray>
Array Chunk Bytes 96.49 MB 22.44 MB Shape (31411, 192, 2) (7305, 192, 2) Count 20 Tasks 5 Chunks Type float64 numpy.ndarray - tasmin(time, lat, lon)float32dask.array<chunksize=(7305, 96, 192), meta=np.ndarray>
- standard_name :
- air_temperature
- long_name :
- Daily Minimum Near-Surface Air Temperature
- comment :
- minimum near-surface (usually, 2 meter) air temperature (add cell_method attribute 'time: min')
- units :
- K
- cell_methods :
- area: mean time: minimum
- cell_measures :
- area: areacella
- history :
- 2020-11-25T11:24:01Z altered by CMOR: Treated scalar dimension: 'height'. 2020-11-25T11:24:01Z altered by CMOR: replaced missing value flag (-9e+33) and corresponding data with standard missing value (1e+20). 2020-11-25T11:24:02Z altered by CMOR: Inverted axis: lat.
Array Chunk Bytes 2.32 GB 538.58 MB Shape (31411, 96, 192) (7305, 96, 192) Count 15 Tasks 5 Chunks Type float32 numpy.ndarray
- CDO :
- Climate Data Operators version 1.9.9rc8 (https://mpimet.mpg.de/cdo)
- Conventions :
- CF-1.7 CMIP-6.2
- activity_id :
- GeoMIP
- branch_method :
- standard
- branch_time_in_child :
- [60265.]
- branch_time_in_parent :
- [60265.]
- contact :
- cmip6-mpi-esm@dkrz.de
- creation_date :
- 2020-11-25T12:33:58Z
- data_specs_version :
- 01.00.30
- experiment :
- stratospheric sulfate aerosol injection to reduce net forcing from SSP585 to SSP245
- experiment_id :
- G6sulfur
- external_variables :
- areacella
- forcing_index :
- [1]
- frequency :
- day
- further_info_url :
- https://furtherinfo.es-doc.org/CMIP6.MPI-M.MPI-ESM1-2-LR.G6sulfur.none.r1i1p1f1
- grid :
- gn
- grid_label :
- gn
- history :
- 2020-11-25T12:33:58Z ; CMOR rewrote data to be consistent with CMIP6, CF-1.7 CMIP-6.2 and CF standards.
- initialization_index :
- [1]
- institution :
- Max Planck Institute for Meteorology, Hamburg 20146, Germany
- institution_id :
- MPI-M
- mip_era :
- CMIP6
- nominal_resolution :
- 250 km
- parent_activity_id :
- ScenarioMIP
- parent_experiment_id :
- ssp585
- parent_mip_era :
- CMIP6
- parent_source_id :
- MPI-ESM1-2-LR
- parent_time_units :
- days since 1850-1-1 00:00:00
- parent_variant_label :
- r1i1p1f1
- physics_index :
- [1]
- product :
- model-output
- project_id :
- CMIP6
- realization_index :
- [1]
- realm :
- atmos
- references :
- MPI-ESM: Mauritsen, T. et al. (2019), Developments in the MPI‐M Earth System Model version 1.2 (MPI‐ESM1.2) and Its Response to Increasing CO2, J. Adv. Model. Earth Syst.,11, 998-1038, doi:10.1029/2018MS001400, Mueller, W.A. et al. (2018): A high‐resolution version of the Max Planck Institute Earth System Model MPI‐ESM1.2‐HR. J. Adv. Model. EarthSyst.,10,1383–1413, doi:10.1029/2017MS001217
- source :
- MPI-ESM1.2-LR (2017): aerosol: none, prescribed MACv2-SP atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa) atmosChem: none land: JSBACH3.20 landIce: none/prescribed ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m) ocnBgchem: HAMOCC6 seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model)
- source_id :
- MPI-ESM1-2-LR
- source_type :
- AOGCM
- sub_experiment :
- none
- sub_experiment_id :
- none
- table_id :
- day
- table_info :
- Creation Date:(09 May 2019) MD5:5f007c16960eee824e07a4ce809e3ed1
- title :
- MPI-ESM1-2-LR output prepared for CMIP6
- variable_id :
- tasmin
- variant_label :
- r1i1p1f1
- license :
- CMIP6 model data produced by MPI-M is licensed under a Creative Commons Attribution ShareAlike 4.0 International License (https://creativecommons.org/licenses). Consult https://pcmdi.llnl.gov/CMIP6/TermsOfUse for terms of use governing CMIP6 output, including citation requirements and proper acknowledgment. Further information about this data, including some limitations, can be found via the further_info_url (recorded as a global attribute in this file) and. The data producers and data providers make no warranty, either express or implied, including, but not limited to, warranties of merchantability and fitness for a particular purpose. All liabilities arising from the supply of the information (including any liability arising in negligence) are excluded to the fullest extent permitted by law.
- cmor_version :
- 3.6.0
- tracking_id :
- hdl:21.14100/dd1cb01a-dbe1-4096-835a-c9604879eea8
Check the size (MB) of our dataset#
dset.nbytes / 1e6
2461.368272
Our dataset is bit more than 2.4 GB
Save file from memory to bucket#
%%time
dset.load()
CPU times: user 182 µs, sys: 27 µs, total: 209 µs
Wall time: 218 µs
<xarray.Dataset> Dimensions: (bnds: 2, lat: 96, lon: 192, time: 31411) Coordinates: * time (time) object 2015-01-01 12:00:00 ... 2100-12-31 12:00:00 * lat (lat) float64 -88.57 -86.72 -84.86 -83.0 ... 84.86 86.72 88.57 * lon (lon) float64 0.0 1.875 3.75 5.625 ... 352.5 354.4 356.2 358.1 height float64 2.0 Dimensions without coordinates: bnds Data variables: time_bnds (time, bnds) object 2015-01-01 00:00:00 ... 2101-01-01 00:00:00 lat_bnds (time, lat, bnds) float64 -89.5 -87.65 -87.65 ... 87.65 89.5 lon_bnds (time, lon, bnds) float64 -0.9375 0.9375 0.9375 ... 357.2 359.1 tasmin (time, lat, lon) float32 242.5 242.5 242.4 ... 253.4 253.4 253.4 Attributes: (12/48) CDO: Climate Data Operators version 1.9.9rc8 (https://... Conventions: CF-1.7 CMIP-6.2 activity_id: GeoMIP branch_method: standard branch_time_in_child: [60265.] branch_time_in_parent: [60265.] ... ... title: MPI-ESM1-2-LR output prepared for CMIP6 variable_id: tasmin variant_label: r1i1p1f1 license: CMIP6 model data produced by MPI-M is licensed un... cmor_version: 3.6.0 tracking_id: hdl:21.14100/dd1cb01a-dbe1-4096-835a-c9604879eea8
xarray.Dataset
- bnds: 2
- lat: 96
- lon: 192
- time: 31411
- time(time)object2015-01-01 12:00:00 ... 2100-12-...
- bounds :
- time_bnds
- axis :
- T
- long_name :
- time
- standard_name :
- time
array([cftime.DatetimeProlepticGregorian(2015, 1, 1, 12, 0, 0, 0), cftime.DatetimeProlepticGregorian(2015, 1, 2, 12, 0, 0, 0), cftime.DatetimeProlepticGregorian(2015, 1, 3, 12, 0, 0, 0), ..., cftime.DatetimeProlepticGregorian(2100, 12, 29, 12, 0, 0, 0), cftime.DatetimeProlepticGregorian(2100, 12, 30, 12, 0, 0, 0), cftime.DatetimeProlepticGregorian(2100, 12, 31, 12, 0, 0, 0)], dtype=object)
- lat(lat)float64-88.57 -86.72 ... 86.72 88.57
- bounds :
- lat_bnds
- units :
- degrees_north
- axis :
- Y
- long_name :
- Latitude
- standard_name :
- latitude
array([-88.572169, -86.722531, -84.86197 , -82.998942, -81.134977, -79.270559, -77.405888, -75.541061, -73.676132, -71.811132, -69.946081, -68.080991, -66.215872, -64.35073 , -62.485571, -60.620396, -58.755209, -56.890013, -55.024808, -53.159595, -51.294377, -49.429154, -47.563926, -45.698694, -43.833459, -41.96822 , -40.102979, -38.237736, -36.372491, -34.507243, -32.641994, -30.776744, -28.911492, -27.046239, -25.180986, -23.315731, -21.450475, -19.585219, -17.719962, -15.854704, -13.989446, -12.124187, -10.258928, -8.393669, -6.528409, -4.66315 , -2.79789 , -0.93263 , 0.93263 , 2.79789 , 4.66315 , 6.528409, 8.393669, 10.258928, 12.124187, 13.989446, 15.854704, 17.719962, 19.585219, 21.450475, 23.315731, 25.180986, 27.046239, 28.911492, 30.776744, 32.641994, 34.507243, 36.372491, 38.237736, 40.102979, 41.96822 , 43.833459, 45.698694, 47.563926, 49.429154, 51.294377, 53.159595, 55.024808, 56.890013, 58.755209, 60.620396, 62.485571, 64.35073 , 66.215872, 68.080991, 69.946081, 71.811132, 73.676132, 75.541061, 77.405888, 79.270559, 81.134977, 82.998942, 84.86197 , 86.722531, 88.572169])
- lon(lon)float640.0 1.875 3.75 ... 356.2 358.1
- bounds :
- lon_bnds
- units :
- degrees_east
- axis :
- X
- long_name :
- Longitude
- standard_name :
- longitude
array([ 0. , 1.875, 3.75 , 5.625, 7.5 , 9.375, 11.25 , 13.125, 15. , 16.875, 18.75 , 20.625, 22.5 , 24.375, 26.25 , 28.125, 30. , 31.875, 33.75 , 35.625, 37.5 , 39.375, 41.25 , 43.125, 45. , 46.875, 48.75 , 50.625, 52.5 , 54.375, 56.25 , 58.125, 60. , 61.875, 63.75 , 65.625, 67.5 , 69.375, 71.25 , 73.125, 75. , 76.875, 78.75 , 80.625, 82.5 , 84.375, 86.25 , 88.125, 90. , 91.875, 93.75 , 95.625, 97.5 , 99.375, 101.25 , 103.125, 105. , 106.875, 108.75 , 110.625, 112.5 , 114.375, 116.25 , 118.125, 120. , 121.875, 123.75 , 125.625, 127.5 , 129.375, 131.25 , 133.125, 135. , 136.875, 138.75 , 140.625, 142.5 , 144.375, 146.25 , 148.125, 150. , 151.875, 153.75 , 155.625, 157.5 , 159.375, 161.25 , 163.125, 165. , 166.875, 168.75 , 170.625, 172.5 , 174.375, 176.25 , 178.125, 180. , 181.875, 183.75 , 185.625, 187.5 , 189.375, 191.25 , 193.125, 195. , 196.875, 198.75 , 200.625, 202.5 , 204.375, 206.25 , 208.125, 210. , 211.875, 213.75 , 215.625, 217.5 , 219.375, 221.25 , 223.125, 225. , 226.875, 228.75 , 230.625, 232.5 , 234.375, 236.25 , 238.125, 240. , 241.875, 243.75 , 245.625, 247.5 , 249.375, 251.25 , 253.125, 255. , 256.875, 258.75 , 260.625, 262.5 , 264.375, 266.25 , 268.125, 270. , 271.875, 273.75 , 275.625, 277.5 , 279.375, 281.25 , 283.125, 285. , 286.875, 288.75 , 290.625, 292.5 , 294.375, 296.25 , 298.125, 300. , 301.875, 303.75 , 305.625, 307.5 , 309.375, 311.25 , 313.125, 315. , 316.875, 318.75 , 320.625, 322.5 , 324.375, 326.25 , 328.125, 330. , 331.875, 333.75 , 335.625, 337.5 , 339.375, 341.25 , 343.125, 345. , 346.875, 348.75 , 350.625, 352.5 , 354.375, 356.25 , 358.125])
- height()float642.0
- units :
- m
- axis :
- Z
- positive :
- up
- long_name :
- height
- standard_name :
- height
array(2.)
- time_bnds(time, bnds)object2015-01-01 00:00:00 ... 2101-01-...
array([[cftime.DatetimeProlepticGregorian(2015, 1, 1, 0, 0, 0, 0), cftime.DatetimeProlepticGregorian(2015, 1, 2, 0, 0, 0, 0)], [cftime.DatetimeProlepticGregorian(2015, 1, 2, 0, 0, 0, 0), cftime.DatetimeProlepticGregorian(2015, 1, 3, 0, 0, 0, 0)], [cftime.DatetimeProlepticGregorian(2015, 1, 3, 0, 0, 0, 0), cftime.DatetimeProlepticGregorian(2015, 1, 4, 0, 0, 0, 0)], ..., [cftime.DatetimeProlepticGregorian(2100, 12, 29, 0, 0, 0, 0), cftime.DatetimeProlepticGregorian(2100, 12, 30, 0, 0, 0, 0)], [cftime.DatetimeProlepticGregorian(2100, 12, 30, 0, 0, 0, 0), cftime.DatetimeProlepticGregorian(2100, 12, 31, 0, 0, 0, 0)], [cftime.DatetimeProlepticGregorian(2100, 12, 31, 0, 0, 0, 0), cftime.DatetimeProlepticGregorian(2101, 1, 1, 0, 0, 0, 0)]], dtype=object)
- lat_bnds(time, lat, bnds)float64-89.5 -87.65 -87.65 ... 87.65 89.5
array([[[-89.49698729, -87.64734973], [-87.64734973, -85.79225062], [-85.79225062, -83.93045597], ..., [ 83.93045597, 85.79225062], [ 85.79225062, 87.64734973], [ 87.64734973, 89.49698729]], [[-89.49698729, -87.64734973], [-87.64734973, -85.79225062], [-85.79225062, -83.93045597], ..., [ 83.93045597, 85.79225062], [ 85.79225062, 87.64734973], [ 87.64734973, 89.49698729]], [[-89.49698729, -87.64734973], [-87.64734973, -85.79225062], [-85.79225062, -83.93045597], ..., ... ..., [ 83.93045597, 85.79225062], [ 85.79225062, 87.64734973], [ 87.64734973, 89.49698729]], [[-89.49698729, -87.64734973], [-87.64734973, -85.79225062], [-85.79225062, -83.93045597], ..., [ 83.93045597, 85.79225062], [ 85.79225062, 87.64734973], [ 87.64734973, 89.49698729]], [[-89.49698729, -87.64734973], [-87.64734973, -85.79225062], [-85.79225062, -83.93045597], ..., [ 83.93045597, 85.79225062], [ 85.79225062, 87.64734973], [ 87.64734973, 89.49698729]]])
- lon_bnds(time, lon, bnds)float64-0.9375 0.9375 ... 357.2 359.1
array([[[ -0.9375, 0.9375], [ 0.9375, 2.8125], [ 2.8125, 4.6875], ..., [353.4375, 355.3125], [355.3125, 357.1875], [357.1875, 359.0625]], [[ -0.9375, 0.9375], [ 0.9375, 2.8125], [ 2.8125, 4.6875], ..., [353.4375, 355.3125], [355.3125, 357.1875], [357.1875, 359.0625]], [[ -0.9375, 0.9375], [ 0.9375, 2.8125], [ 2.8125, 4.6875], ..., ... ..., [353.4375, 355.3125], [355.3125, 357.1875], [357.1875, 359.0625]], [[ -0.9375, 0.9375], [ 0.9375, 2.8125], [ 2.8125, 4.6875], ..., [353.4375, 355.3125], [355.3125, 357.1875], [357.1875, 359.0625]], [[ -0.9375, 0.9375], [ 0.9375, 2.8125], [ 2.8125, 4.6875], ..., [353.4375, 355.3125], [355.3125, 357.1875], [357.1875, 359.0625]]])
- tasmin(time, lat, lon)float32242.5 242.5 242.4 ... 253.4 253.4
- standard_name :
- air_temperature
- long_name :
- Daily Minimum Near-Surface Air Temperature
- comment :
- minimum near-surface (usually, 2 meter) air temperature (add cell_method attribute 'time: min')
- units :
- K
- cell_methods :
- area: mean time: minimum
- cell_measures :
- area: areacella
- history :
- 2020-11-25T11:24:01Z altered by CMOR: Treated scalar dimension: 'height'. 2020-11-25T11:24:01Z altered by CMOR: replaced missing value flag (-9e+33) and corresponding data with standard missing value (1e+20). 2020-11-25T11:24:02Z altered by CMOR: Inverted axis: lat.
array([[[242.52869, 242.46033, 242.44861, ..., 242.70056, 242.64001, 242.57166], [243.98962, 243.93884, 243.82556, ..., 244.49744, 244.2904 , 244.1654 ], [247.41736, 247.25525, 247.08728, ..., 247.94861, 247.73572, 247.38025], ..., [246.62244, 245.71619, 244.83142, ..., 247.11853, 246.02087, 246.04236], [240.33533, 240.00525, 239.68298, ..., 240.91736, 240.47986, 240.44861], [242.21423, 242.17517, 242.12048, ..., 242.35876, 242.30408, 242.24744]], [[242.04356, 241.96153, 241.93614, ..., 242.2506 , 242.17833, 242.09825], [243.94005, 243.8463 , 243.73106, ..., 244.4127 , 244.20567, 244.08458], [248.15685, 248.02599, 247.91466, ..., 248.57286, 248.42052, 248.27599], ... [256.0935 , 256.46265, 256.82593, ..., 255.1306 , 255.42747, 255.74193], [256.25952, 256.25366, 256.19897, ..., 256.23413, 256.23804, 256.2478 ], [255.37083, 255.37083, 255.3767 , ..., 255.36888, 255.36888, 255.37083]], [[248.73009, 248.65977, 248.6461 , ..., 249.03868, 248.91563, 248.83556], [250.66563, 250.54259, 250.40001, ..., 251.02892, 250.91173, 250.79063], [250.50352, 250.45665, 250.48985, ..., 250.71837, 250.59337, 250.52306], ..., [251.30821, 251.78087, 252.26329, ..., 249.98985, 250.40782, 250.84532], [252.53087, 252.62657, 252.73985, ..., 252.25157, 252.359 , 252.43712], [253.41368, 253.44102, 253.40392, ..., 253.3629 , 253.38829, 253.39024]]], dtype=float32)
- CDO :
- Climate Data Operators version 1.9.9rc8 (https://mpimet.mpg.de/cdo)
- Conventions :
- CF-1.7 CMIP-6.2
- activity_id :
- GeoMIP
- branch_method :
- standard
- branch_time_in_child :
- [60265.]
- branch_time_in_parent :
- [60265.]
- contact :
- cmip6-mpi-esm@dkrz.de
- creation_date :
- 2020-11-25T12:33:58Z
- data_specs_version :
- 01.00.30
- experiment :
- stratospheric sulfate aerosol injection to reduce net forcing from SSP585 to SSP245
- experiment_id :
- G6sulfur
- external_variables :
- areacella
- forcing_index :
- [1]
- frequency :
- day
- further_info_url :
- https://furtherinfo.es-doc.org/CMIP6.MPI-M.MPI-ESM1-2-LR.G6sulfur.none.r1i1p1f1
- grid :
- gn
- grid_label :
- gn
- history :
- 2020-11-25T12:33:58Z ; CMOR rewrote data to be consistent with CMIP6, CF-1.7 CMIP-6.2 and CF standards.
- initialization_index :
- [1]
- institution :
- Max Planck Institute for Meteorology, Hamburg 20146, Germany
- institution_id :
- MPI-M
- mip_era :
- CMIP6
- nominal_resolution :
- 250 km
- parent_activity_id :
- ScenarioMIP
- parent_experiment_id :
- ssp585
- parent_mip_era :
- CMIP6
- parent_source_id :
- MPI-ESM1-2-LR
- parent_time_units :
- days since 1850-1-1 00:00:00
- parent_variant_label :
- r1i1p1f1
- physics_index :
- [1]
- product :
- model-output
- project_id :
- CMIP6
- realization_index :
- [1]
- realm :
- atmos
- references :
- MPI-ESM: Mauritsen, T. et al. (2019), Developments in the MPI‐M Earth System Model version 1.2 (MPI‐ESM1.2) and Its Response to Increasing CO2, J. Adv. Model. Earth Syst.,11, 998-1038, doi:10.1029/2018MS001400, Mueller, W.A. et al. (2018): A high‐resolution version of the Max Planck Institute Earth System Model MPI‐ESM1.2‐HR. J. Adv. Model. EarthSyst.,10,1383–1413, doi:10.1029/2017MS001217
- source :
- MPI-ESM1.2-LR (2017): aerosol: none, prescribed MACv2-SP atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa) atmosChem: none land: JSBACH3.20 landIce: none/prescribed ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m) ocnBgchem: HAMOCC6 seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model)
- source_id :
- MPI-ESM1-2-LR
- source_type :
- AOGCM
- sub_experiment :
- none
- sub_experiment_id :
- none
- table_id :
- day
- table_info :
- Creation Date:(09 May 2019) MD5:5f007c16960eee824e07a4ce809e3ed1
- title :
- MPI-ESM1-2-LR output prepared for CMIP6
- variable_id :
- tasmin
- variant_label :
- r1i1p1f1
- license :
- CMIP6 model data produced by MPI-M is licensed under a Creative Commons Attribution ShareAlike 4.0 International License (https://creativecommons.org/licenses). Consult https://pcmdi.llnl.gov/CMIP6/TermsOfUse for terms of use governing CMIP6 output, including citation requirements and proper acknowledgment. Further information about this data, including some limitations, can be found via the further_info_url (recorded as a global attribute in this file) and. The data producers and data providers make no warranty, either express or implied, including, but not limited to, warranties of merchantability and fitness for a particular purpose. All liabilities arising from the supply of the information (including any liability arising in negligence) are excluded to the fullest extent permitted by law.
- cmor_version :
- 3.6.0
- tracking_id :
- hdl:21.14100/dd1cb01a-dbe1-4096-835a-c9604879eea8
Save your results to Remote private object storage#
your credentials are in
$HOME/.aws/credentials
check with your instructor to get the secret access key (replace XXX by the right key)
[default]
aws_access_key_id=forces2021-work
aws_secret_access_key=XXXXXXXXXXXX
aws_endpoint_url=https://forces2021.uiogeo-apps.sigma2.no/
target = s3fs.S3FileSystem(anon=False,
client_kwargs={
'endpoint_url': 'https://forces2021.uiogeo-apps.sigma2.no/'
})
Save as netCDF#
netCDF is not a cloud-optimized format so it may be slow
s3_path = "s3://work/annefou/tasmin_day_MPI-ESM1-2-LR_G6sulfur_r1i1p1f1_gn.nc"
print(s3_path)
s3://work/annefou/tasmin_day_MPI-ESM1-2-LR_G6sulfur_r1i1p1f1_gn.nc
with target.open(s3_path, 'wb') as f:
f.write(dset.to_netcdf(None))
/opt/conda/lib/python3.8/site-packages/xarray/conventions.py:441: UserWarning: Variable 'time' has datetime type and a bounds variable but time.encoding does not have units specified. The units encodings for 'time' and 'time_bnds' will be determined independently and may not be equal, counter to CF-conventions. If this is a concern, specify a units encoding for 'time' before writing to a file.
warnings.warn(
Then you can use the remote file#
remote_file = ['work/annefou/tasmin_day_MPI-ESM1-2-LR_G6sulfur_r1i1p1f1_gn.nc']
fileset = [target.open(file) for file in remote_file]
%%time
ds_check = xr.open_mfdataset(fileset, combine='by_coords', use_cftime=True)
ds_check
CPU times: user 20.8 s, sys: 4.15 s, total: 24.9 s
Wall time: 51.1 s
<xarray.Dataset> Dimensions: (bnds: 2, lat: 96, lon: 192, time: 31411) Coordinates: * time (time) object 2015-01-01 12:00:00 ... 2100-12-31 12:00:00 * lon (lon) float64 0.0 1.875 3.75 5.625 ... 352.5 354.4 356.2 358.1 * lat (lat) float64 -88.57 -86.72 -84.86 -83.0 ... 84.86 86.72 88.57 height float64 ... Dimensions without coordinates: bnds Data variables: lon_bnds (time, lon, bnds) float64 dask.array<chunksize=(31411, 192, 2), meta=np.ndarray> tasmin (time, lat, lon) float32 dask.array<chunksize=(31411, 96, 192), meta=np.ndarray> lat_bnds (time, lat, bnds) float64 dask.array<chunksize=(31411, 96, 2), meta=np.ndarray> time_bnds (time, bnds) object dask.array<chunksize=(31411, 2), meta=np.ndarray> Attributes: (12/48) CDO: Climate Data Operators version 1.9.9rc8 (https://... Conventions: CF-1.7 CMIP-6.2 activity_id: GeoMIP branch_method: standard branch_time_in_child: 60265.0 branch_time_in_parent: 60265.0 ... ... title: MPI-ESM1-2-LR output prepared for CMIP6 variable_id: tasmin variant_label: r1i1p1f1 license: CMIP6 model data produced by MPI-M is licensed un... cmor_version: 3.6.0 tracking_id: hdl:21.14100/dd1cb01a-dbe1-4096-835a-c9604879eea8
xarray.Dataset
- bnds: 2
- lat: 96
- lon: 192
- time: 31411
- time(time)object2015-01-01 12:00:00 ... 2100-12-...
- bounds :
- time_bnds
- axis :
- T
- long_name :
- time
- standard_name :
- time
array([cftime.DatetimeProlepticGregorian(2015, 1, 1, 12, 0, 0, 0), cftime.DatetimeProlepticGregorian(2015, 1, 2, 12, 0, 0, 0), cftime.DatetimeProlepticGregorian(2015, 1, 3, 12, 0, 0, 0), ..., cftime.DatetimeProlepticGregorian(2100, 12, 29, 12, 0, 0, 0), cftime.DatetimeProlepticGregorian(2100, 12, 30, 12, 0, 0, 0), cftime.DatetimeProlepticGregorian(2100, 12, 31, 12, 0, 0, 0)], dtype=object)
- lon(lon)float640.0 1.875 3.75 ... 356.2 358.1
- bounds :
- lon_bnds
- units :
- degrees_east
- axis :
- X
- long_name :
- Longitude
- standard_name :
- longitude
array([ 0. , 1.875, 3.75 , 5.625, 7.5 , 9.375, 11.25 , 13.125, 15. , 16.875, 18.75 , 20.625, 22.5 , 24.375, 26.25 , 28.125, 30. , 31.875, 33.75 , 35.625, 37.5 , 39.375, 41.25 , 43.125, 45. , 46.875, 48.75 , 50.625, 52.5 , 54.375, 56.25 , 58.125, 60. , 61.875, 63.75 , 65.625, 67.5 , 69.375, 71.25 , 73.125, 75. , 76.875, 78.75 , 80.625, 82.5 , 84.375, 86.25 , 88.125, 90. , 91.875, 93.75 , 95.625, 97.5 , 99.375, 101.25 , 103.125, 105. , 106.875, 108.75 , 110.625, 112.5 , 114.375, 116.25 , 118.125, 120. , 121.875, 123.75 , 125.625, 127.5 , 129.375, 131.25 , 133.125, 135. , 136.875, 138.75 , 140.625, 142.5 , 144.375, 146.25 , 148.125, 150. , 151.875, 153.75 , 155.625, 157.5 , 159.375, 161.25 , 163.125, 165. , 166.875, 168.75 , 170.625, 172.5 , 174.375, 176.25 , 178.125, 180. , 181.875, 183.75 , 185.625, 187.5 , 189.375, 191.25 , 193.125, 195. , 196.875, 198.75 , 200.625, 202.5 , 204.375, 206.25 , 208.125, 210. , 211.875, 213.75 , 215.625, 217.5 , 219.375, 221.25 , 223.125, 225. , 226.875, 228.75 , 230.625, 232.5 , 234.375, 236.25 , 238.125, 240. , 241.875, 243.75 , 245.625, 247.5 , 249.375, 251.25 , 253.125, 255. , 256.875, 258.75 , 260.625, 262.5 , 264.375, 266.25 , 268.125, 270. , 271.875, 273.75 , 275.625, 277.5 , 279.375, 281.25 , 283.125, 285. , 286.875, 288.75 , 290.625, 292.5 , 294.375, 296.25 , 298.125, 300. , 301.875, 303.75 , 305.625, 307.5 , 309.375, 311.25 , 313.125, 315. , 316.875, 318.75 , 320.625, 322.5 , 324.375, 326.25 , 328.125, 330. , 331.875, 333.75 , 335.625, 337.5 , 339.375, 341.25 , 343.125, 345. , 346.875, 348.75 , 350.625, 352.5 , 354.375, 356.25 , 358.125])
- lat(lat)float64-88.57 -86.72 ... 86.72 88.57
- bounds :
- lat_bnds
- units :
- degrees_north
- axis :
- Y
- long_name :
- Latitude
- standard_name :
- latitude
array([-88.572169, -86.722531, -84.86197 , -82.998942, -81.134977, -79.270559, -77.405888, -75.541061, -73.676132, -71.811132, -69.946081, -68.080991, -66.215872, -64.35073 , -62.485571, -60.620396, -58.755209, -56.890013, -55.024808, -53.159595, -51.294377, -49.429154, -47.563926, -45.698694, -43.833459, -41.96822 , -40.102979, -38.237736, -36.372491, -34.507243, -32.641994, -30.776744, -28.911492, -27.046239, -25.180986, -23.315731, -21.450475, -19.585219, -17.719962, -15.854704, -13.989446, -12.124187, -10.258928, -8.393669, -6.528409, -4.66315 , -2.79789 , -0.93263 , 0.93263 , 2.79789 , 4.66315 , 6.528409, 8.393669, 10.258928, 12.124187, 13.989446, 15.854704, 17.719962, 19.585219, 21.450475, 23.315731, 25.180986, 27.046239, 28.911492, 30.776744, 32.641994, 34.507243, 36.372491, 38.237736, 40.102979, 41.96822 , 43.833459, 45.698694, 47.563926, 49.429154, 51.294377, 53.159595, 55.024808, 56.890013, 58.755209, 60.620396, 62.485571, 64.35073 , 66.215872, 68.080991, 69.946081, 71.811132, 73.676132, 75.541061, 77.405888, 79.270559, 81.134977, 82.998942, 84.86197 , 86.722531, 88.572169])
- height()float64...
- units :
- m
- axis :
- Z
- positive :
- up
- long_name :
- height
- standard_name :
- height
array(2.)
- lon_bnds(time, lon, bnds)float64dask.array<chunksize=(31411, 192, 2), meta=np.ndarray>
Array Chunk Bytes 96.49 MB 96.49 MB Shape (31411, 192, 2) (31411, 192, 2) Count 2 Tasks 1 Chunks Type float64 numpy.ndarray - tasmin(time, lat, lon)float32dask.array<chunksize=(31411, 96, 192), meta=np.ndarray>
- standard_name :
- air_temperature
- long_name :
- Daily Minimum Near-Surface Air Temperature
- comment :
- minimum near-surface (usually, 2 meter) air temperature (add cell_method attribute 'time: min')
- units :
- K
- cell_methods :
- area: mean time: minimum
- cell_measures :
- area: areacella
- history :
- 2020-11-25T11:24:01Z altered by CMOR: Treated scalar dimension: 'height'. 2020-11-25T11:24:01Z altered by CMOR: replaced missing value flag (-9e+33) and corresponding data with standard missing value (1e+20). 2020-11-25T11:24:02Z altered by CMOR: Inverted axis: lat.
Array Chunk Bytes 2.32 GB 2.32 GB Shape (31411, 96, 192) (31411, 96, 192) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - lat_bnds(time, lat, bnds)float64dask.array<chunksize=(31411, 96, 2), meta=np.ndarray>
Array Chunk Bytes 48.25 MB 48.25 MB Shape (31411, 96, 2) (31411, 96, 2) Count 2 Tasks 1 Chunks Type float64 numpy.ndarray - time_bnds(time, bnds)objectdask.array<chunksize=(31411, 2), meta=np.ndarray>
Array Chunk Bytes 502.58 kB 502.58 kB Shape (31411, 2) (31411, 2) Count 2 Tasks 1 Chunks Type object numpy.ndarray
- CDO :
- Climate Data Operators version 1.9.9rc8 (https://mpimet.mpg.de/cdo)
- Conventions :
- CF-1.7 CMIP-6.2
- activity_id :
- GeoMIP
- branch_method :
- standard
- branch_time_in_child :
- 60265.0
- branch_time_in_parent :
- 60265.0
- contact :
- cmip6-mpi-esm@dkrz.de
- creation_date :
- 2020-11-25T12:33:58Z
- data_specs_version :
- 01.00.30
- experiment :
- stratospheric sulfate aerosol injection to reduce net forcing from SSP585 to SSP245
- experiment_id :
- G6sulfur
- external_variables :
- areacella
- forcing_index :
- 1
- frequency :
- day
- further_info_url :
- https://furtherinfo.es-doc.org/CMIP6.MPI-M.MPI-ESM1-2-LR.G6sulfur.none.r1i1p1f1
- grid :
- gn
- grid_label :
- gn
- history :
- 2020-11-25T12:33:58Z ; CMOR rewrote data to be consistent with CMIP6, CF-1.7 CMIP-6.2 and CF standards.
- initialization_index :
- 1
- institution :
- Max Planck Institute for Meteorology, Hamburg 20146, Germany
- institution_id :
- MPI-M
- mip_era :
- CMIP6
- nominal_resolution :
- 250 km
- parent_activity_id :
- ScenarioMIP
- parent_experiment_id :
- ssp585
- parent_mip_era :
- CMIP6
- parent_source_id :
- MPI-ESM1-2-LR
- parent_time_units :
- days since 1850-1-1 00:00:00
- parent_variant_label :
- r1i1p1f1
- physics_index :
- 1
- product :
- model-output
- project_id :
- CMIP6
- realization_index :
- 1
- realm :
- atmos
- references :
- MPI-ESM: Mauritsen, T. et al. (2019), Developments in the MPI‐M Earth System Model version 1.2 (MPI‐ESM1.2) and Its Response to Increasing CO2, J. Adv. Model. Earth Syst.,11, 998-1038, doi:10.1029/2018MS001400, Mueller, W.A. et al. (2018): A high‐resolution version of the Max Planck Institute Earth System Model MPI‐ESM1.2‐HR. J. Adv. Model. EarthSyst.,10,1383–1413, doi:10.1029/2017MS001217
- source :
- MPI-ESM1.2-LR (2017): aerosol: none, prescribed MACv2-SP atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa) atmosChem: none land: JSBACH3.20 landIce: none/prescribed ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m) ocnBgchem: HAMOCC6 seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model)
- source_id :
- MPI-ESM1-2-LR
- source_type :
- AOGCM
- sub_experiment :
- none
- sub_experiment_id :
- none
- table_id :
- day
- table_info :
- Creation Date:(09 May 2019) MD5:5f007c16960eee824e07a4ce809e3ed1
- title :
- MPI-ESM1-2-LR output prepared for CMIP6
- variable_id :
- tasmin
- variant_label :
- r1i1p1f1
- license :
- CMIP6 model data produced by MPI-M is licensed under a Creative Commons Attribution ShareAlike 4.0 International License (https://creativecommons.org/licenses). Consult https://pcmdi.llnl.gov/CMIP6/TermsOfUse for terms of use governing CMIP6 output, including citation requirements and proper acknowledgment. Further information about this data, including some limitations, can be found via the further_info_url (recorded as a global attribute in this file) and. The data producers and data providers make no warranty, either express or implied, including, but not limited to, warranties of merchantability and fitness for a particular purpose. All liabilities arising from the supply of the information (including any liability arising in negligence) are excluded to the fullest extent permitted by law.
- cmor_version :
- 3.6.0
- tracking_id :
- hdl:21.14100/dd1cb01a-dbe1-4096-835a-c9604879eea8
%%time
ds_seas = ds_check.groupby('time.season').mean('time', keep_attrs=True, skipna = True)
CPU times: user 227 ms, sys: 2.54 ms, total: 229 ms
Wall time: 246 ms
Save as Zarr#
it usually takes longer to save but it is much faster to read
dset.load()
<xarray.Dataset> Dimensions: (bnds: 2, lat: 96, lon: 192, time: 31411) Coordinates: * time (time) object 2015-01-01 12:00:00 ... 2100-12-31 12:00:00 * lat (lat) float64 -88.57 -86.72 -84.86 -83.0 ... 84.86 86.72 88.57 * lon (lon) float64 0.0 1.875 3.75 5.625 ... 352.5 354.4 356.2 358.1 height float64 2.0 Dimensions without coordinates: bnds Data variables: time_bnds (time, bnds) object 2015-01-01 00:00:00 ... 2101-01-01 00:00:00 lat_bnds (time, lat, bnds) float64 -89.5 -87.65 -87.65 ... 87.65 89.5 lon_bnds (time, lon, bnds) float64 -0.9375 0.9375 0.9375 ... 357.2 359.1 tasmin (time, lat, lon) float32 242.5 242.5 242.4 ... 253.4 253.4 253.4 Attributes: (12/48) CDO: Climate Data Operators version 1.9.9rc8 (https://... Conventions: CF-1.7 CMIP-6.2 activity_id: GeoMIP branch_method: standard branch_time_in_child: [60265.] branch_time_in_parent: [60265.] ... ... title: MPI-ESM1-2-LR output prepared for CMIP6 variable_id: tasmin variant_label: r1i1p1f1 license: CMIP6 model data produced by MPI-M is licensed un... cmor_version: 3.6.0 tracking_id: hdl:21.14100/dd1cb01a-dbe1-4096-835a-c9604879eea8
xarray.Dataset
- bnds: 2
- lat: 96
- lon: 192
- time: 31411
- time(time)object2015-01-01 12:00:00 ... 2100-12-...
- bounds :
- time_bnds
- axis :
- T
- long_name :
- time
- standard_name :
- time
array([cftime.DatetimeProlepticGregorian(2015, 1, 1, 12, 0, 0, 0), cftime.DatetimeProlepticGregorian(2015, 1, 2, 12, 0, 0, 0), cftime.DatetimeProlepticGregorian(2015, 1, 3, 12, 0, 0, 0), ..., cftime.DatetimeProlepticGregorian(2100, 12, 29, 12, 0, 0, 0), cftime.DatetimeProlepticGregorian(2100, 12, 30, 12, 0, 0, 0), cftime.DatetimeProlepticGregorian(2100, 12, 31, 12, 0, 0, 0)], dtype=object)
- lat(lat)float64-88.57 -86.72 ... 86.72 88.57
- bounds :
- lat_bnds
- units :
- degrees_north
- axis :
- Y
- long_name :
- Latitude
- standard_name :
- latitude
array([-88.572169, -86.722531, -84.86197 , -82.998942, -81.134977, -79.270559, -77.405888, -75.541061, -73.676132, -71.811132, -69.946081, -68.080991, -66.215872, -64.35073 , -62.485571, -60.620396, -58.755209, -56.890013, -55.024808, -53.159595, -51.294377, -49.429154, -47.563926, -45.698694, -43.833459, -41.96822 , -40.102979, -38.237736, -36.372491, -34.507243, -32.641994, -30.776744, -28.911492, -27.046239, -25.180986, -23.315731, -21.450475, -19.585219, -17.719962, -15.854704, -13.989446, -12.124187, -10.258928, -8.393669, -6.528409, -4.66315 , -2.79789 , -0.93263 , 0.93263 , 2.79789 , 4.66315 , 6.528409, 8.393669, 10.258928, 12.124187, 13.989446, 15.854704, 17.719962, 19.585219, 21.450475, 23.315731, 25.180986, 27.046239, 28.911492, 30.776744, 32.641994, 34.507243, 36.372491, 38.237736, 40.102979, 41.96822 , 43.833459, 45.698694, 47.563926, 49.429154, 51.294377, 53.159595, 55.024808, 56.890013, 58.755209, 60.620396, 62.485571, 64.35073 , 66.215872, 68.080991, 69.946081, 71.811132, 73.676132, 75.541061, 77.405888, 79.270559, 81.134977, 82.998942, 84.86197 , 86.722531, 88.572169])
- lon(lon)float640.0 1.875 3.75 ... 356.2 358.1
- bounds :
- lon_bnds
- units :
- degrees_east
- axis :
- X
- long_name :
- Longitude
- standard_name :
- longitude
array([ 0. , 1.875, 3.75 , 5.625, 7.5 , 9.375, 11.25 , 13.125, 15. , 16.875, 18.75 , 20.625, 22.5 , 24.375, 26.25 , 28.125, 30. , 31.875, 33.75 , 35.625, 37.5 , 39.375, 41.25 , 43.125, 45. , 46.875, 48.75 , 50.625, 52.5 , 54.375, 56.25 , 58.125, 60. , 61.875, 63.75 , 65.625, 67.5 , 69.375, 71.25 , 73.125, 75. , 76.875, 78.75 , 80.625, 82.5 , 84.375, 86.25 , 88.125, 90. , 91.875, 93.75 , 95.625, 97.5 , 99.375, 101.25 , 103.125, 105. , 106.875, 108.75 , 110.625, 112.5 , 114.375, 116.25 , 118.125, 120. , 121.875, 123.75 , 125.625, 127.5 , 129.375, 131.25 , 133.125, 135. , 136.875, 138.75 , 140.625, 142.5 , 144.375, 146.25 , 148.125, 150. , 151.875, 153.75 , 155.625, 157.5 , 159.375, 161.25 , 163.125, 165. , 166.875, 168.75 , 170.625, 172.5 , 174.375, 176.25 , 178.125, 180. , 181.875, 183.75 , 185.625, 187.5 , 189.375, 191.25 , 193.125, 195. , 196.875, 198.75 , 200.625, 202.5 , 204.375, 206.25 , 208.125, 210. , 211.875, 213.75 , 215.625, 217.5 , 219.375, 221.25 , 223.125, 225. , 226.875, 228.75 , 230.625, 232.5 , 234.375, 236.25 , 238.125, 240. , 241.875, 243.75 , 245.625, 247.5 , 249.375, 251.25 , 253.125, 255. , 256.875, 258.75 , 260.625, 262.5 , 264.375, 266.25 , 268.125, 270. , 271.875, 273.75 , 275.625, 277.5 , 279.375, 281.25 , 283.125, 285. , 286.875, 288.75 , 290.625, 292.5 , 294.375, 296.25 , 298.125, 300. , 301.875, 303.75 , 305.625, 307.5 , 309.375, 311.25 , 313.125, 315. , 316.875, 318.75 , 320.625, 322.5 , 324.375, 326.25 , 328.125, 330. , 331.875, 333.75 , 335.625, 337.5 , 339.375, 341.25 , 343.125, 345. , 346.875, 348.75 , 350.625, 352.5 , 354.375, 356.25 , 358.125])
- height()float642.0
- units :
- m
- axis :
- Z
- positive :
- up
- long_name :
- height
- standard_name :
- height
array(2.)
- time_bnds(time, bnds)object2015-01-01 00:00:00 ... 2101-01-...
array([[cftime.DatetimeProlepticGregorian(2015, 1, 1, 0, 0, 0, 0), cftime.DatetimeProlepticGregorian(2015, 1, 2, 0, 0, 0, 0)], [cftime.DatetimeProlepticGregorian(2015, 1, 2, 0, 0, 0, 0), cftime.DatetimeProlepticGregorian(2015, 1, 3, 0, 0, 0, 0)], [cftime.DatetimeProlepticGregorian(2015, 1, 3, 0, 0, 0, 0), cftime.DatetimeProlepticGregorian(2015, 1, 4, 0, 0, 0, 0)], ..., [cftime.DatetimeProlepticGregorian(2100, 12, 29, 0, 0, 0, 0), cftime.DatetimeProlepticGregorian(2100, 12, 30, 0, 0, 0, 0)], [cftime.DatetimeProlepticGregorian(2100, 12, 30, 0, 0, 0, 0), cftime.DatetimeProlepticGregorian(2100, 12, 31, 0, 0, 0, 0)], [cftime.DatetimeProlepticGregorian(2100, 12, 31, 0, 0, 0, 0), cftime.DatetimeProlepticGregorian(2101, 1, 1, 0, 0, 0, 0)]], dtype=object)
- lat_bnds(time, lat, bnds)float64-89.5 -87.65 -87.65 ... 87.65 89.5
array([[[-89.49698729, -87.64734973], [-87.64734973, -85.79225062], [-85.79225062, -83.93045597], ..., [ 83.93045597, 85.79225062], [ 85.79225062, 87.64734973], [ 87.64734973, 89.49698729]], [[-89.49698729, -87.64734973], [-87.64734973, -85.79225062], [-85.79225062, -83.93045597], ..., [ 83.93045597, 85.79225062], [ 85.79225062, 87.64734973], [ 87.64734973, 89.49698729]], [[-89.49698729, -87.64734973], [-87.64734973, -85.79225062], [-85.79225062, -83.93045597], ..., ... ..., [ 83.93045597, 85.79225062], [ 85.79225062, 87.64734973], [ 87.64734973, 89.49698729]], [[-89.49698729, -87.64734973], [-87.64734973, -85.79225062], [-85.79225062, -83.93045597], ..., [ 83.93045597, 85.79225062], [ 85.79225062, 87.64734973], [ 87.64734973, 89.49698729]], [[-89.49698729, -87.64734973], [-87.64734973, -85.79225062], [-85.79225062, -83.93045597], ..., [ 83.93045597, 85.79225062], [ 85.79225062, 87.64734973], [ 87.64734973, 89.49698729]]])
- lon_bnds(time, lon, bnds)float64-0.9375 0.9375 ... 357.2 359.1
array([[[ -0.9375, 0.9375], [ 0.9375, 2.8125], [ 2.8125, 4.6875], ..., [353.4375, 355.3125], [355.3125, 357.1875], [357.1875, 359.0625]], [[ -0.9375, 0.9375], [ 0.9375, 2.8125], [ 2.8125, 4.6875], ..., [353.4375, 355.3125], [355.3125, 357.1875], [357.1875, 359.0625]], [[ -0.9375, 0.9375], [ 0.9375, 2.8125], [ 2.8125, 4.6875], ..., ... ..., [353.4375, 355.3125], [355.3125, 357.1875], [357.1875, 359.0625]], [[ -0.9375, 0.9375], [ 0.9375, 2.8125], [ 2.8125, 4.6875], ..., [353.4375, 355.3125], [355.3125, 357.1875], [357.1875, 359.0625]], [[ -0.9375, 0.9375], [ 0.9375, 2.8125], [ 2.8125, 4.6875], ..., [353.4375, 355.3125], [355.3125, 357.1875], [357.1875, 359.0625]]])
- tasmin(time, lat, lon)float32242.5 242.5 242.4 ... 253.4 253.4
- standard_name :
- air_temperature
- long_name :
- Daily Minimum Near-Surface Air Temperature
- comment :
- minimum near-surface (usually, 2 meter) air temperature (add cell_method attribute 'time: min')
- units :
- K
- cell_methods :
- area: mean time: minimum
- cell_measures :
- area: areacella
- history :
- 2020-11-25T11:24:01Z altered by CMOR: Treated scalar dimension: 'height'. 2020-11-25T11:24:01Z altered by CMOR: replaced missing value flag (-9e+33) and corresponding data with standard missing value (1e+20). 2020-11-25T11:24:02Z altered by CMOR: Inverted axis: lat.
array([[[242.52869, 242.46033, 242.44861, ..., 242.70056, 242.64001, 242.57166], [243.98962, 243.93884, 243.82556, ..., 244.49744, 244.2904 , 244.1654 ], [247.41736, 247.25525, 247.08728, ..., 247.94861, 247.73572, 247.38025], ..., [246.62244, 245.71619, 244.83142, ..., 247.11853, 246.02087, 246.04236], [240.33533, 240.00525, 239.68298, ..., 240.91736, 240.47986, 240.44861], [242.21423, 242.17517, 242.12048, ..., 242.35876, 242.30408, 242.24744]], [[242.04356, 241.96153, 241.93614, ..., 242.2506 , 242.17833, 242.09825], [243.94005, 243.8463 , 243.73106, ..., 244.4127 , 244.20567, 244.08458], [248.15685, 248.02599, 247.91466, ..., 248.57286, 248.42052, 248.27599], ... [256.0935 , 256.46265, 256.82593, ..., 255.1306 , 255.42747, 255.74193], [256.25952, 256.25366, 256.19897, ..., 256.23413, 256.23804, 256.2478 ], [255.37083, 255.37083, 255.3767 , ..., 255.36888, 255.36888, 255.37083]], [[248.73009, 248.65977, 248.6461 , ..., 249.03868, 248.91563, 248.83556], [250.66563, 250.54259, 250.40001, ..., 251.02892, 250.91173, 250.79063], [250.50352, 250.45665, 250.48985, ..., 250.71837, 250.59337, 250.52306], ..., [251.30821, 251.78087, 252.26329, ..., 249.98985, 250.40782, 250.84532], [252.53087, 252.62657, 252.73985, ..., 252.25157, 252.359 , 252.43712], [253.41368, 253.44102, 253.40392, ..., 253.3629 , 253.38829, 253.39024]]], dtype=float32)
- CDO :
- Climate Data Operators version 1.9.9rc8 (https://mpimet.mpg.de/cdo)
- Conventions :
- CF-1.7 CMIP-6.2
- activity_id :
- GeoMIP
- branch_method :
- standard
- branch_time_in_child :
- [60265.]
- branch_time_in_parent :
- [60265.]
- contact :
- cmip6-mpi-esm@dkrz.de
- creation_date :
- 2020-11-25T12:33:58Z
- data_specs_version :
- 01.00.30
- experiment :
- stratospheric sulfate aerosol injection to reduce net forcing from SSP585 to SSP245
- experiment_id :
- G6sulfur
- external_variables :
- areacella
- forcing_index :
- [1]
- frequency :
- day
- further_info_url :
- https://furtherinfo.es-doc.org/CMIP6.MPI-M.MPI-ESM1-2-LR.G6sulfur.none.r1i1p1f1
- grid :
- gn
- grid_label :
- gn
- history :
- 2020-11-25T12:33:58Z ; CMOR rewrote data to be consistent with CMIP6, CF-1.7 CMIP-6.2 and CF standards.
- initialization_index :
- [1]
- institution :
- Max Planck Institute for Meteorology, Hamburg 20146, Germany
- institution_id :
- MPI-M
- mip_era :
- CMIP6
- nominal_resolution :
- 250 km
- parent_activity_id :
- ScenarioMIP
- parent_experiment_id :
- ssp585
- parent_mip_era :
- CMIP6
- parent_source_id :
- MPI-ESM1-2-LR
- parent_time_units :
- days since 1850-1-1 00:00:00
- parent_variant_label :
- r1i1p1f1
- physics_index :
- [1]
- product :
- model-output
- project_id :
- CMIP6
- realization_index :
- [1]
- realm :
- atmos
- references :
- MPI-ESM: Mauritsen, T. et al. (2019), Developments in the MPI‐M Earth System Model version 1.2 (MPI‐ESM1.2) and Its Response to Increasing CO2, J. Adv. Model. Earth Syst.,11, 998-1038, doi:10.1029/2018MS001400, Mueller, W.A. et al. (2018): A high‐resolution version of the Max Planck Institute Earth System Model MPI‐ESM1.2‐HR. J. Adv. Model. EarthSyst.,10,1383–1413, doi:10.1029/2017MS001217
- source :
- MPI-ESM1.2-LR (2017): aerosol: none, prescribed MACv2-SP atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa) atmosChem: none land: JSBACH3.20 landIce: none/prescribed ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m) ocnBgchem: HAMOCC6 seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model)
- source_id :
- MPI-ESM1-2-LR
- source_type :
- AOGCM
- sub_experiment :
- none
- sub_experiment_id :
- none
- table_id :
- day
- table_info :
- Creation Date:(09 May 2019) MD5:5f007c16960eee824e07a4ce809e3ed1
- title :
- MPI-ESM1-2-LR output prepared for CMIP6
- variable_id :
- tasmin
- variant_label :
- r1i1p1f1
- license :
- CMIP6 model data produced by MPI-M is licensed under a Creative Commons Attribution ShareAlike 4.0 International License (https://creativecommons.org/licenses). Consult https://pcmdi.llnl.gov/CMIP6/TermsOfUse for terms of use governing CMIP6 output, including citation requirements and proper acknowledgment. Further information about this data, including some limitations, can be found via the further_info_url (recorded as a global attribute in this file) and. The data producers and data providers make no warranty, either express or implied, including, but not limited to, warranties of merchantability and fitness for a particular purpose. All liabilities arising from the supply of the information (including any liability arising in negligence) are excluded to the fullest extent permitted by law.
- cmor_version :
- 3.6.0
- tracking_id :
- hdl:21.14100/dd1cb01a-dbe1-4096-835a-c9604879eea8
s3_path = "s3://work/annefou/tasmin_day_MPI-ESM1-2-LR_G6sulfur_r1i1p1f1_gn.zarr"
print(s3_path)
s3://work/annefou/tasmin_day_MPI-ESM1-2-LR_G6sulfur_r1i1p1f1_gn.zarr
store = s3fs.S3Map(root=s3_path, s3=target, check=False)
%%time
dset.to_zarr(store=store, mode="w", consolidated=True, compute=True)
CPU times: user 35.2 s, sys: 6.62 s, total: 41.8 s
Wall time: 1min
<xarray.backends.zarr.ZarrStore at 0x7f651e2a3040>
Then you can use the remote file#
loading Zarr is usually faster, especially with large datasets
%%time
ds_check = xr.open_zarr(store=store, consolidated=True)
ds_check
CPU times: user 90.7 ms, sys: 5.84 ms, total: 96.5 ms
Wall time: 697 ms
<xarray.Dataset> Dimensions: (bnds: 2, lat: 96, lon: 192, time: 31411) Coordinates: height float64 ... * lat (lat) float64 -88.57 -86.72 -84.86 -83.0 ... 84.86 86.72 88.57 * lon (lon) float64 0.0 1.875 3.75 5.625 ... 352.5 354.4 356.2 358.1 * time (time) datetime64[ns] 2015-01-01T12:00:00 ... 2100-12-31T12:00:00 Dimensions without coordinates: bnds Data variables: lat_bnds (time, lat, bnds) float64 dask.array<chunksize=(3927, 24, 1), meta=np.ndarray> lon_bnds (time, lon, bnds) float64 dask.array<chunksize=(3927, 48, 1), meta=np.ndarray> tasmin (time, lat, lon) float32 dask.array<chunksize=(1964, 12, 24), meta=np.ndarray> time_bnds (time, bnds) datetime64[ns] dask.array<chunksize=(15706, 2), meta=np.ndarray> Attributes: (12/48) CDO: Climate Data Operators version 1.9.9rc8 (https://... Conventions: CF-1.7 CMIP-6.2 activity_id: GeoMIP branch_method: standard branch_time_in_child: [60265.0] branch_time_in_parent: [60265.0] ... ... table_id: day table_info: Creation Date:(09 May 2019) MD5:5f007c16960eee824... title: MPI-ESM1-2-LR output prepared for CMIP6 tracking_id: hdl:21.14100/dd1cb01a-dbe1-4096-835a-c9604879eea8 variable_id: tasmin variant_label: r1i1p1f1
xarray.Dataset
- bnds: 2
- lat: 96
- lon: 192
- time: 31411
- height()float64...
- axis :
- Z
- long_name :
- height
- positive :
- up
- standard_name :
- height
- units :
- m
array(2.)
- lat(lat)float64-88.57 -86.72 ... 86.72 88.57
- axis :
- Y
- bounds :
- lat_bnds
- long_name :
- Latitude
- standard_name :
- latitude
- units :
- degrees_north
array([-88.572169, -86.722531, -84.86197 , -82.998942, -81.134977, -79.270559, -77.405888, -75.541061, -73.676132, -71.811132, -69.946081, -68.080991, -66.215872, -64.35073 , -62.485571, -60.620396, -58.755209, -56.890013, -55.024808, -53.159595, -51.294377, -49.429154, -47.563926, -45.698694, -43.833459, -41.96822 , -40.102979, -38.237736, -36.372491, -34.507243, -32.641994, -30.776744, -28.911492, -27.046239, -25.180986, -23.315731, -21.450475, -19.585219, -17.719962, -15.854704, -13.989446, -12.124187, -10.258928, -8.393669, -6.528409, -4.66315 , -2.79789 , -0.93263 , 0.93263 , 2.79789 , 4.66315 , 6.528409, 8.393669, 10.258928, 12.124187, 13.989446, 15.854704, 17.719962, 19.585219, 21.450475, 23.315731, 25.180986, 27.046239, 28.911492, 30.776744, 32.641994, 34.507243, 36.372491, 38.237736, 40.102979, 41.96822 , 43.833459, 45.698694, 47.563926, 49.429154, 51.294377, 53.159595, 55.024808, 56.890013, 58.755209, 60.620396, 62.485571, 64.35073 , 66.215872, 68.080991, 69.946081, 71.811132, 73.676132, 75.541061, 77.405888, 79.270559, 81.134977, 82.998942, 84.86197 , 86.722531, 88.572169])
- lon(lon)float640.0 1.875 3.75 ... 356.2 358.1
- axis :
- X
- bounds :
- lon_bnds
- long_name :
- Longitude
- standard_name :
- longitude
- units :
- degrees_east
array([ 0. , 1.875, 3.75 , 5.625, 7.5 , 9.375, 11.25 , 13.125, 15. , 16.875, 18.75 , 20.625, 22.5 , 24.375, 26.25 , 28.125, 30. , 31.875, 33.75 , 35.625, 37.5 , 39.375, 41.25 , 43.125, 45. , 46.875, 48.75 , 50.625, 52.5 , 54.375, 56.25 , 58.125, 60. , 61.875, 63.75 , 65.625, 67.5 , 69.375, 71.25 , 73.125, 75. , 76.875, 78.75 , 80.625, 82.5 , 84.375, 86.25 , 88.125, 90. , 91.875, 93.75 , 95.625, 97.5 , 99.375, 101.25 , 103.125, 105. , 106.875, 108.75 , 110.625, 112.5 , 114.375, 116.25 , 118.125, 120. , 121.875, 123.75 , 125.625, 127.5 , 129.375, 131.25 , 133.125, 135. , 136.875, 138.75 , 140.625, 142.5 , 144.375, 146.25 , 148.125, 150. , 151.875, 153.75 , 155.625, 157.5 , 159.375, 161.25 , 163.125, 165. , 166.875, 168.75 , 170.625, 172.5 , 174.375, 176.25 , 178.125, 180. , 181.875, 183.75 , 185.625, 187.5 , 189.375, 191.25 , 193.125, 195. , 196.875, 198.75 , 200.625, 202.5 , 204.375, 206.25 , 208.125, 210. , 211.875, 213.75 , 215.625, 217.5 , 219.375, 221.25 , 223.125, 225. , 226.875, 228.75 , 230.625, 232.5 , 234.375, 236.25 , 238.125, 240. , 241.875, 243.75 , 245.625, 247.5 , 249.375, 251.25 , 253.125, 255. , 256.875, 258.75 , 260.625, 262.5 , 264.375, 266.25 , 268.125, 270. , 271.875, 273.75 , 275.625, 277.5 , 279.375, 281.25 , 283.125, 285. , 286.875, 288.75 , 290.625, 292.5 , 294.375, 296.25 , 298.125, 300. , 301.875, 303.75 , 305.625, 307.5 , 309.375, 311.25 , 313.125, 315. , 316.875, 318.75 , 320.625, 322.5 , 324.375, 326.25 , 328.125, 330. , 331.875, 333.75 , 335.625, 337.5 , 339.375, 341.25 , 343.125, 345. , 346.875, 348.75 , 350.625, 352.5 , 354.375, 356.25 , 358.125])
- time(time)datetime64[ns]2015-01-01T12:00:00 ... 2100-12-...
- axis :
- T
- bounds :
- time_bnds
- long_name :
- time
- standard_name :
- time
array(['2015-01-01T12:00:00.000000000', '2015-01-02T12:00:00.000000000', '2015-01-03T12:00:00.000000000', ..., '2100-12-29T12:00:00.000000000', '2100-12-30T12:00:00.000000000', '2100-12-31T12:00:00.000000000'], dtype='datetime64[ns]')
- lat_bnds(time, lat, bnds)float64dask.array<chunksize=(3927, 24, 1), meta=np.ndarray>
Array Chunk Bytes 48.25 MB 753.98 kB Shape (31411, 96, 2) (3927, 24, 1) Count 65 Tasks 64 Chunks Type float64 numpy.ndarray - lon_bnds(time, lon, bnds)float64dask.array<chunksize=(3927, 48, 1), meta=np.ndarray>
Array Chunk Bytes 96.49 MB 1.51 MB Shape (31411, 192, 2) (3927, 48, 1) Count 65 Tasks 64 Chunks Type float64 numpy.ndarray - tasmin(time, lat, lon)float32dask.array<chunksize=(1964, 12, 24), meta=np.ndarray>
- cell_measures :
- area: areacella
- cell_methods :
- area: mean time: minimum
- comment :
- minimum near-surface (usually, 2 meter) air temperature (add cell_method attribute 'time: min')
- history :
- 2020-11-25T11:24:01Z altered by CMOR: Treated scalar dimension: 'height'. 2020-11-25T11:24:01Z altered by CMOR: replaced missing value flag (-9e+33) and corresponding data with standard missing value (1e+20). 2020-11-25T11:24:02Z altered by CMOR: Inverted axis: lat.
- long_name :
- Daily Minimum Near-Surface Air Temperature
- standard_name :
- air_temperature
- units :
- K
Array Chunk Bytes 2.32 GB 2.26 MB Shape (31411, 96, 192) (1964, 12, 24) Count 1025 Tasks 1024 Chunks Type float32 numpy.ndarray - time_bnds(time, bnds)datetime64[ns]dask.array<chunksize=(15706, 2), meta=np.ndarray>
Array Chunk Bytes 502.58 kB 251.30 kB Shape (31411, 2) (15706, 2) Count 3 Tasks 2 Chunks Type datetime64[ns] numpy.ndarray
- CDO :
- Climate Data Operators version 1.9.9rc8 (https://mpimet.mpg.de/cdo)
- Conventions :
- CF-1.7 CMIP-6.2
- activity_id :
- GeoMIP
- branch_method :
- standard
- branch_time_in_child :
- [60265.0]
- branch_time_in_parent :
- [60265.0]
- cmor_version :
- 3.6.0
- contact :
- cmip6-mpi-esm@dkrz.de
- creation_date :
- 2020-11-25T12:33:58Z
- data_specs_version :
- 01.00.30
- experiment :
- stratospheric sulfate aerosol injection to reduce net forcing from SSP585 to SSP245
- experiment_id :
- G6sulfur
- external_variables :
- areacella
- forcing_index :
- [1]
- frequency :
- day
- further_info_url :
- https://furtherinfo.es-doc.org/CMIP6.MPI-M.MPI-ESM1-2-LR.G6sulfur.none.r1i1p1f1
- grid :
- gn
- grid_label :
- gn
- history :
- 2020-11-25T12:33:58Z ; CMOR rewrote data to be consistent with CMIP6, CF-1.7 CMIP-6.2 and CF standards.
- initialization_index :
- [1]
- institution :
- Max Planck Institute for Meteorology, Hamburg 20146, Germany
- institution_id :
- MPI-M
- license :
- CMIP6 model data produced by MPI-M is licensed under a Creative Commons Attribution ShareAlike 4.0 International License (https://creativecommons.org/licenses). Consult https://pcmdi.llnl.gov/CMIP6/TermsOfUse for terms of use governing CMIP6 output, including citation requirements and proper acknowledgment. Further information about this data, including some limitations, can be found via the further_info_url (recorded as a global attribute in this file) and. The data producers and data providers make no warranty, either express or implied, including, but not limited to, warranties of merchantability and fitness for a particular purpose. All liabilities arising from the supply of the information (including any liability arising in negligence) are excluded to the fullest extent permitted by law.
- mip_era :
- CMIP6
- nominal_resolution :
- 250 km
- parent_activity_id :
- ScenarioMIP
- parent_experiment_id :
- ssp585
- parent_mip_era :
- CMIP6
- parent_source_id :
- MPI-ESM1-2-LR
- parent_time_units :
- days since 1850-1-1 00:00:00
- parent_variant_label :
- r1i1p1f1
- physics_index :
- [1]
- product :
- model-output
- project_id :
- CMIP6
- realization_index :
- [1]
- realm :
- atmos
- references :
- MPI-ESM: Mauritsen, T. et al. (2019), Developments in the MPI‐M Earth System Model version 1.2 (MPI‐ESM1.2) and Its Response to Increasing CO2, J. Adv. Model. Earth Syst.,11, 998-1038, doi:10.1029/2018MS001400, Mueller, W.A. et al. (2018): A high‐resolution version of the Max Planck Institute Earth System Model MPI‐ESM1.2‐HR. J. Adv. Model. EarthSyst.,10,1383–1413, doi:10.1029/2017MS001217
- source :
- MPI-ESM1.2-LR (2017): aerosol: none, prescribed MACv2-SP atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa) atmosChem: none land: JSBACH3.20 landIce: none/prescribed ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m) ocnBgchem: HAMOCC6 seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model)
- source_id :
- MPI-ESM1-2-LR
- source_type :
- AOGCM
- sub_experiment :
- none
- sub_experiment_id :
- none
- table_id :
- day
- table_info :
- Creation Date:(09 May 2019) MD5:5f007c16960eee824e07a4ce809e3ed1
- title :
- MPI-ESM1-2-LR output prepared for CMIP6
- tracking_id :
- hdl:21.14100/dd1cb01a-dbe1-4096-835a-c9604879eea8
- variable_id :
- tasmin
- variant_label :
- r1i1p1f1
%%time
ds_seas = ds_check.groupby('time.season').mean('time', keep_attrs=True, skipna = True)
CPU times: user 186 ms, sys: 2.35 ms, total: 188 ms
Wall time: 201 ms