Save zarr files to EOSC (CESNET) using s3fs
Contents
Save zarr files to EOSC (CESNET) using s3fs#
This example show you how to save your zarr file to object storage https://object-store.cloud.muni.cz
import s3fs
import xarray as xr
import zarr
Get a sample file#
ds = xr.tutorial.open_dataset("air_temperature.nc").rename({"air": "Tair"})
Save your results to Remote object storage#
If not done, create your credentials by follwoing this link
Verify your credentials in
$HOME/.aws/credentials
It should look like
[default]
aws_access_key_id=xxxxx
aws_secret_access_key=yyyy
aws_endpoint_url=https://object-store.cloud.muni.cz
It is important to save your results in 'your' bucket. [The credential created here ](../EOSC_to_bucket.md) is a common space for pangeo-eosc cloud users. You need to not to 'over write' data on other users
Define your s3 storage parameters#
your_name='yourname'
path='escience/'+your_name
s3_prefix = "s3://"+path
print(s3_prefix)
access_key = !aws configure get aws_access_key_id
access_key = access_key[0]
secret_key = !aws configure get aws_secret_access_key
secret_key = secret_key[0]
client_kwargs={'endpoint_url': 'https://object-store.cloud.muni.cz'}
s3://escience/yourname
set your zarr store (with S3Map)#
zarr_file_name= 'S3Map_zarr'
s3 = s3fs.S3FileSystem(client_kwargs=client_kwargs,key=access_key, secret=secret_key)
uri = f"{s3_prefix}/{zarr_file_name}"
store_s3= s3fs.S3Map(root=uri,s3=s3,check=False)
Write your file down to zarr#
%time ds.to_zarr(store=store_s3, mode='w', consolidated=True)
/srv/conda/envs/notebook/lib/python3.9/site-packages/xarray/core/dataset.py:2060: SerializationWarning: saving variable None with floating point data as an integer dtype without any _FillValue to use for NaNs
return to_zarr( # type: ignore
CPU times: user 714 ms, sys: 70.3 ms, total: 784 ms
Wall time: 50 s
<xarray.backends.zarr.ZarrStore at 0x7ff66f37ce40>
Verify that your ‘zarr’ file is at your storage#
target = s3fs.S3FileSystem(anon=False,client_kwargs=client_kwargs)
target.ls(path)#, detail=True, refresh=True)
['escience/yourname/S3Map_zarr']
Open your zarr storage#
xr.open_zarr(store_s3)
<xarray.Dataset> Dimensions: (time: 2920, lat: 25, lon: 53) Coordinates: * lat (lat) float32 75.0 72.5 70.0 67.5 65.0 ... 25.0 22.5 20.0 17.5 15.0 * lon (lon) float32 200.0 202.5 205.0 207.5 ... 322.5 325.0 327.5 330.0 * time (time) datetime64[ns] 2013-01-01 ... 2014-12-31T18:00:00 Data variables: Tair (time, lat, lon) float32 dask.array<chunksize=(730, 13, 27), meta=np.ndarray> Attributes: Conventions: COARDS description: Data is from NMC initialized reanalysis\n(4x/day). These a... platform: Model references: http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanaly... title: 4x daily NMC reanalysis (1948)
Delete the zarr file you created#
target.ls(path)
['escience/yourname/S3Map_zarr']
target.rm(path+'/S3Map_zarr', recursive=True)
target.ls('escience/')
['escience/jeani',
'escience/michaels',
'escience/mschulz',
'escience/tinaok',
'escience/yourname-here']
one users can delete another user's file.... So please be carefull especially when using recursive=True